Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Miquel Raynal | 2643 | 66.39% | 18 | 45.00% |
Ezequiel García | 965 | 24.24% | 8 | 20.00% |
Baruch Siach | 296 | 7.44% | 4 | 10.00% |
Russell King | 28 | 0.70% | 1 | 2.50% |
Andrzej Pietrasiewicz | 21 | 0.53% | 1 | 2.50% |
Zak Hays | 19 | 0.48% | 2 | 5.00% |
Linus Torvalds | 2 | 0.05% | 1 | 2.50% |
Yue haibing | 2 | 0.05% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.50% |
Sascha Hauer | 1 | 0.03% | 1 | 2.50% |
Wei Yongjun | 1 | 0.03% | 1 | 2.50% |
Nadav Haklai | 1 | 0.03% | 1 | 2.50% |
Total | 3981 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * Marvell EBU Armada SoCs thermal sensor driver * * Copyright (C) 2013 Marvell */ #include <linux/device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/of_device.h> #include <linux/thermal.h> #include <linux/iopoll.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/interrupt.h> #include "thermal_core.h" /* Thermal Manager Control and Status Register */ #define PMU_TDC0_SW_RST_MASK (0x1 << 1) #define PMU_TM_DISABLE_OFFS 0 #define PMU_TM_DISABLE_MASK (0x1 << PMU_TM_DISABLE_OFFS) #define PMU_TDC0_REF_CAL_CNT_OFFS 11 #define PMU_TDC0_REF_CAL_CNT_MASK (0x1ff << PMU_TDC0_REF_CAL_CNT_OFFS) #define PMU_TDC0_OTF_CAL_MASK (0x1 << 30) #define PMU_TDC0_START_CAL_MASK (0x1 << 25) #define A375_UNIT_CONTROL_SHIFT 27 #define A375_UNIT_CONTROL_MASK 0x7 #define A375_READOUT_INVERT BIT(15) #define A375_HW_RESETn BIT(8) /* Errata fields */ #define CONTROL0_TSEN_TC_TRIM_MASK 0x7 #define CONTROL0_TSEN_TC_TRIM_VAL 0x3 #define CONTROL0_TSEN_START BIT(0) #define CONTROL0_TSEN_RESET BIT(1) #define CONTROL0_TSEN_ENABLE BIT(2) #define CONTROL0_TSEN_AVG_BYPASS BIT(6) #define CONTROL0_TSEN_CHAN_SHIFT 13 #define CONTROL0_TSEN_CHAN_MASK 0xF #define CONTROL0_TSEN_OSR_SHIFT 24 #define CONTROL0_TSEN_OSR_MAX 0x3 #define CONTROL0_TSEN_MODE_SHIFT 30 #define CONTROL0_TSEN_MODE_EXTERNAL 0x2 #define CONTROL0_TSEN_MODE_MASK 0x3 #define CONTROL1_TSEN_AVG_MASK 0x7 #define CONTROL1_EXT_TSEN_SW_RESET BIT(7) #define CONTROL1_EXT_TSEN_HW_RESETn BIT(8) #define CONTROL1_TSEN_INT_EN BIT(25) #define CONTROL1_TSEN_SELECT_OFF 21 #define CONTROL1_TSEN_SELECT_MASK 0x3 #define STATUS_POLL_PERIOD_US 1000 #define STATUS_POLL_TIMEOUT_US 100000 #define OVERHEAT_INT_POLL_DELAY_MS 1000 struct armada_thermal_data; /* Marvell EBU Thermal Sensor Dev Structure */ struct armada_thermal_priv { struct device *dev; struct regmap *syscon; char zone_name[THERMAL_NAME_LENGTH]; /* serialize temperature reads/updates */ struct mutex update_lock; struct armada_thermal_data *data; struct thermal_zone_device *overheat_sensor; int interrupt_source; int current_channel; long current_threshold; long current_hysteresis; }; struct armada_thermal_data { /* Initialize the thermal IC */ void (*init)(struct platform_device *pdev, struct armada_thermal_priv *priv); /* Formula coeficients: temp = (b - m * reg) / div */ s64 coef_b; s64 coef_m; u32 coef_div; bool inverted; bool signed_sample; /* Register shift and mask to access the sensor temperature */ unsigned int temp_shift; unsigned int temp_mask; unsigned int thresh_shift; unsigned int hyst_shift; unsigned int hyst_mask; u32 is_valid_bit; /* Syscon access */ unsigned int syscon_control0_off; unsigned int syscon_control1_off; unsigned int syscon_status_off; unsigned int dfx_irq_cause_off; unsigned int dfx_irq_mask_off; unsigned int dfx_overheat_irq; unsigned int dfx_server_irq_mask_off; unsigned int dfx_server_irq_en; /* One sensor is in the thermal IC, the others are in the CPUs if any */ unsigned int cpu_nr; }; struct armada_drvdata { enum drvtype { LEGACY, SYSCON } type; union { struct armada_thermal_priv *priv; struct thermal_zone_device *tz; } data; }; /* * struct armada_thermal_sensor - hold the information of one thermal sensor * @thermal: pointer to the local private structure * @tzd: pointer to the thermal zone device * @id: identifier of the thermal sensor */ struct armada_thermal_sensor { struct armada_thermal_priv *priv; int id; }; static void armadaxp_init(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; regmap_read(priv->syscon, data->syscon_control1_off, ®); reg |= PMU_TDC0_OTF_CAL_MASK; /* Reference calibration value */ reg &= ~PMU_TDC0_REF_CAL_CNT_MASK; reg |= (0xf1 << PMU_TDC0_REF_CAL_CNT_OFFS); /* Reset the sensor */ reg |= PMU_TDC0_SW_RST_MASK; regmap_write(priv->syscon, data->syscon_control1_off, reg); reg &= ~PMU_TDC0_SW_RST_MASK; regmap_write(priv->syscon, data->syscon_control1_off, reg); /* Enable the sensor */ regmap_read(priv->syscon, data->syscon_status_off, ®); reg &= ~PMU_TM_DISABLE_MASK; regmap_write(priv->syscon, data->syscon_status_off, reg); } static void armada370_init(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; regmap_read(priv->syscon, data->syscon_control1_off, ®); reg |= PMU_TDC0_OTF_CAL_MASK; /* Reference calibration value */ reg &= ~PMU_TDC0_REF_CAL_CNT_MASK; reg |= (0xf1 << PMU_TDC0_REF_CAL_CNT_OFFS); /* Reset the sensor */ reg &= ~PMU_TDC0_START_CAL_MASK; regmap_write(priv->syscon, data->syscon_control1_off, reg); msleep(10); } static void armada375_init(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; regmap_read(priv->syscon, data->syscon_control1_off, ®); reg &= ~(A375_UNIT_CONTROL_MASK << A375_UNIT_CONTROL_SHIFT); reg &= ~A375_READOUT_INVERT; reg &= ~A375_HW_RESETn; regmap_write(priv->syscon, data->syscon_control1_off, reg); msleep(20); reg |= A375_HW_RESETn; regmap_write(priv->syscon, data->syscon_control1_off, reg); msleep(50); } static int armada_wait_sensor_validity(struct armada_thermal_priv *priv) { u32 reg; return regmap_read_poll_timeout(priv->syscon, priv->data->syscon_status_off, reg, reg & priv->data->is_valid_bit, STATUS_POLL_PERIOD_US, STATUS_POLL_TIMEOUT_US); } static void armada380_init(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; /* Disable the HW/SW reset */ regmap_read(priv->syscon, data->syscon_control1_off, ®); reg |= CONTROL1_EXT_TSEN_HW_RESETn; reg &= ~CONTROL1_EXT_TSEN_SW_RESET; regmap_write(priv->syscon, data->syscon_control1_off, reg); /* Set Tsen Tc Trim to correct default value (errata #132698) */ regmap_read(priv->syscon, data->syscon_control0_off, ®); reg &= ~CONTROL0_TSEN_TC_TRIM_MASK; reg |= CONTROL0_TSEN_TC_TRIM_VAL; regmap_write(priv->syscon, data->syscon_control0_off, reg); } static void armada_ap806_init(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; regmap_read(priv->syscon, data->syscon_control0_off, ®); reg &= ~CONTROL0_TSEN_RESET; reg |= CONTROL0_TSEN_START | CONTROL0_TSEN_ENABLE; /* Sample every ~2ms */ reg |= CONTROL0_TSEN_OSR_MAX << CONTROL0_TSEN_OSR_SHIFT; /* Enable average (2 samples by default) */ reg &= ~CONTROL0_TSEN_AVG_BYPASS; regmap_write(priv->syscon, data->syscon_control0_off, reg); } static void armada_cp110_init(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; armada380_init(pdev, priv); /* Sample every ~2ms */ regmap_read(priv->syscon, data->syscon_control0_off, ®); reg |= CONTROL0_TSEN_OSR_MAX << CONTROL0_TSEN_OSR_SHIFT; regmap_write(priv->syscon, data->syscon_control0_off, reg); /* Average the output value over 2^1 = 2 samples */ regmap_read(priv->syscon, data->syscon_control1_off, ®); reg &= ~CONTROL1_TSEN_AVG_MASK; reg |= 1; regmap_write(priv->syscon, data->syscon_control1_off, reg); } static bool armada_is_valid(struct armada_thermal_priv *priv) { u32 reg; if (!priv->data->is_valid_bit) return true; regmap_read(priv->syscon, priv->data->syscon_status_off, ®); return reg & priv->data->is_valid_bit; } static void armada_enable_overheat_interrupt(struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; /* Clear DFX temperature IRQ cause */ regmap_read(priv->syscon, data->dfx_irq_cause_off, ®); /* Enable DFX Temperature IRQ */ regmap_read(priv->syscon, data->dfx_irq_mask_off, ®); reg |= data->dfx_overheat_irq; regmap_write(priv->syscon, data->dfx_irq_mask_off, reg); /* Enable DFX server IRQ */ regmap_read(priv->syscon, data->dfx_server_irq_mask_off, ®); reg |= data->dfx_server_irq_en; regmap_write(priv->syscon, data->dfx_server_irq_mask_off, reg); /* Enable overheat interrupt */ regmap_read(priv->syscon, data->syscon_control1_off, ®); reg |= CONTROL1_TSEN_INT_EN; regmap_write(priv->syscon, data->syscon_control1_off, reg); } static void __maybe_unused armada_disable_overheat_interrupt(struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; u32 reg; regmap_read(priv->syscon, data->syscon_control1_off, ®); reg &= ~CONTROL1_TSEN_INT_EN; regmap_write(priv->syscon, data->syscon_control1_off, reg); } /* There is currently no board with more than one sensor per channel */ static int armada_select_channel(struct armada_thermal_priv *priv, int channel) { struct armada_thermal_data *data = priv->data; u32 ctrl0; if (channel < 0 || channel > priv->data->cpu_nr) return -EINVAL; if (priv->current_channel == channel) return 0; /* Stop the measurements */ regmap_read(priv->syscon, data->syscon_control0_off, &ctrl0); ctrl0 &= ~CONTROL0_TSEN_START; regmap_write(priv->syscon, data->syscon_control0_off, ctrl0); /* Reset the mode, internal sensor will be automatically selected */ ctrl0 &= ~(CONTROL0_TSEN_MODE_MASK << CONTROL0_TSEN_MODE_SHIFT); /* Other channels are external and should be selected accordingly */ if (channel) { /* Change the mode to external */ ctrl0 |= CONTROL0_TSEN_MODE_EXTERNAL << CONTROL0_TSEN_MODE_SHIFT; /* Select the sensor */ ctrl0 &= ~(CONTROL0_TSEN_CHAN_MASK << CONTROL0_TSEN_CHAN_SHIFT); ctrl0 |= (channel - 1) << CONTROL0_TSEN_CHAN_SHIFT; } /* Actually set the mode/channel */ regmap_write(priv->syscon, data->syscon_control0_off, ctrl0); priv->current_channel = channel; /* Re-start the measurements */ ctrl0 |= CONTROL0_TSEN_START; regmap_write(priv->syscon, data->syscon_control0_off, ctrl0); /* * The IP has a latency of ~15ms, so after updating the selected source, * we must absolutely wait for the sensor validity bit to ensure we read * actual data. */ if (armada_wait_sensor_validity(priv)) { dev_err(priv->dev, "Temperature sensor reading not valid\n"); return -EIO; } return 0; } static int armada_read_sensor(struct armada_thermal_priv *priv, int *temp) { u32 reg, div; s64 sample, b, m; regmap_read(priv->syscon, priv->data->syscon_status_off, ®); reg = (reg >> priv->data->temp_shift) & priv->data->temp_mask; if (priv->data->signed_sample) /* The most significant bit is the sign bit */ sample = sign_extend32(reg, fls(priv->data->temp_mask) - 1); else sample = reg; /* Get formula coeficients */ b = priv->data->coef_b; m = priv->data->coef_m; div = priv->data->coef_div; if (priv->data->inverted) *temp = div_s64((m * sample) - b, div); else *temp = div_s64(b - (m * sample), div); return 0; } static int armada_get_temp_legacy(struct thermal_zone_device *thermal, int *temp) { struct armada_thermal_priv *priv = thermal->devdata; int ret; /* Valid check */ if (!armada_is_valid(priv)) { dev_err(priv->dev, "Temperature sensor reading not valid\n"); return -EIO; } /* Do the actual reading */ ret = armada_read_sensor(priv, temp); return ret; } static struct thermal_zone_device_ops legacy_ops = { .get_temp = armada_get_temp_legacy, }; static int armada_get_temp(void *_sensor, int *temp) { struct armada_thermal_sensor *sensor = _sensor; struct armada_thermal_priv *priv = sensor->priv; int ret; mutex_lock(&priv->update_lock); /* Select the desired channel */ ret = armada_select_channel(priv, sensor->id); if (ret) goto unlock_mutex; /* Do the actual reading */ ret = armada_read_sensor(priv, temp); if (ret) goto unlock_mutex; /* * Select back the interrupt source channel from which a potential * critical trip point has been set. */ ret = armada_select_channel(priv, priv->interrupt_source); unlock_mutex: mutex_unlock(&priv->update_lock); return ret; } static const struct thermal_zone_of_device_ops of_ops = { .get_temp = armada_get_temp, }; static unsigned int armada_mc_to_reg_temp(struct armada_thermal_data *data, unsigned int temp_mc) { s64 b = data->coef_b; s64 m = data->coef_m; s64 div = data->coef_div; unsigned int sample; if (data->inverted) sample = div_s64(((temp_mc * div) + b), m); else sample = div_s64((b - (temp_mc * div)), m); return sample & data->temp_mask; } /* * The documentation states: * high/low watermark = threshold +/- 0.4761 * 2^(hysteresis + 2) * which is the mathematical derivation for: * 0x0 <=> 1.9°C, 0x1 <=> 3.8°C, 0x2 <=> 7.6°C, 0x3 <=> 15.2°C */ static unsigned int hyst_levels_mc[] = {1900, 3800, 7600, 15200}; static unsigned int armada_mc_to_reg_hyst(struct armada_thermal_data *data, unsigned int hyst_mc) { int i; /* * We will always take the smallest possible hysteresis to avoid risking * the hardware integrity by enlarging the threshold by +8°C in the * worst case. */ for (i = ARRAY_SIZE(hyst_levels_mc) - 1; i > 0; i--) if (hyst_mc >= hyst_levels_mc[i]) break; return i & data->hyst_mask; } static void armada_set_overheat_thresholds(struct armada_thermal_priv *priv, int thresh_mc, int hyst_mc) { struct armada_thermal_data *data = priv->data; unsigned int threshold = armada_mc_to_reg_temp(data, thresh_mc); unsigned int hysteresis = armada_mc_to_reg_hyst(data, hyst_mc); u32 ctrl1; regmap_read(priv->syscon, data->syscon_control1_off, &ctrl1); /* Set Threshold */ if (thresh_mc >= 0) { ctrl1 &= ~(data->temp_mask << data->thresh_shift); ctrl1 |= threshold << data->thresh_shift; priv->current_threshold = thresh_mc; } /* Set Hysteresis */ if (hyst_mc >= 0) { ctrl1 &= ~(data->hyst_mask << data->hyst_shift); ctrl1 |= hysteresis << data->hyst_shift; priv->current_hysteresis = hyst_mc; } regmap_write(priv->syscon, data->syscon_control1_off, ctrl1); } static irqreturn_t armada_overheat_isr(int irq, void *blob) { /* * Disable the IRQ and continue in thread context (thermal core * notification and temperature monitoring). */ disable_irq_nosync(irq); return IRQ_WAKE_THREAD; } static irqreturn_t armada_overheat_isr_thread(int irq, void *blob) { struct armada_thermal_priv *priv = blob; int low_threshold = priv->current_threshold - priv->current_hysteresis; int temperature; u32 dummy; int ret; /* Notify the core in thread context */ thermal_zone_device_update(priv->overheat_sensor, THERMAL_EVENT_UNSPECIFIED); /* * The overheat interrupt must be cleared by reading the DFX interrupt * cause _after_ the temperature has fallen down to the low threshold. * Otherwise future interrupts might not be served. */ do { msleep(OVERHEAT_INT_POLL_DELAY_MS); mutex_lock(&priv->update_lock); ret = armada_read_sensor(priv, &temperature); mutex_unlock(&priv->update_lock); if (ret) goto enable_irq; } while (temperature >= low_threshold); regmap_read(priv->syscon, priv->data->dfx_irq_cause_off, &dummy); /* Notify the thermal core that the temperature is acceptable again */ thermal_zone_device_update(priv->overheat_sensor, THERMAL_EVENT_UNSPECIFIED); enable_irq: enable_irq(irq); return IRQ_HANDLED; } static const struct armada_thermal_data armadaxp_data = { .init = armadaxp_init, .temp_shift = 10, .temp_mask = 0x1ff, .coef_b = 3153000000ULL, .coef_m = 10000000ULL, .coef_div = 13825, .syscon_status_off = 0xb0, .syscon_control1_off = 0x2d0, }; static const struct armada_thermal_data armada370_data = { .init = armada370_init, .is_valid_bit = BIT(9), .temp_shift = 10, .temp_mask = 0x1ff, .coef_b = 3153000000ULL, .coef_m = 10000000ULL, .coef_div = 13825, .syscon_status_off = 0x0, .syscon_control1_off = 0x4, }; static const struct armada_thermal_data armada375_data = { .init = armada375_init, .is_valid_bit = BIT(10), .temp_shift = 0, .temp_mask = 0x1ff, .coef_b = 3171900000ULL, .coef_m = 10000000ULL, .coef_div = 13616, .syscon_status_off = 0x78, .syscon_control0_off = 0x7c, .syscon_control1_off = 0x80, }; static const struct armada_thermal_data armada380_data = { .init = armada380_init, .is_valid_bit = BIT(10), .temp_shift = 0, .temp_mask = 0x3ff, .coef_b = 1172499100ULL, .coef_m = 2000096ULL, .coef_div = 4201, .inverted = true, .syscon_control0_off = 0x70, .syscon_control1_off = 0x74, .syscon_status_off = 0x78, }; static const struct armada_thermal_data armada_ap806_data = { .init = armada_ap806_init, .is_valid_bit = BIT(16), .temp_shift = 0, .temp_mask = 0x3ff, .thresh_shift = 3, .hyst_shift = 19, .hyst_mask = 0x3, .coef_b = -150000LL, .coef_m = 423ULL, .coef_div = 1, .inverted = true, .signed_sample = true, .syscon_control0_off = 0x84, .syscon_control1_off = 0x88, .syscon_status_off = 0x8C, .dfx_irq_cause_off = 0x108, .dfx_irq_mask_off = 0x10C, .dfx_overheat_irq = BIT(22), .dfx_server_irq_mask_off = 0x104, .dfx_server_irq_en = BIT(1), .cpu_nr = 4, }; static const struct armada_thermal_data armada_cp110_data = { .init = armada_cp110_init, .is_valid_bit = BIT(10), .temp_shift = 0, .temp_mask = 0x3ff, .thresh_shift = 16, .hyst_shift = 26, .hyst_mask = 0x3, .coef_b = 1172499100ULL, .coef_m = 2000096ULL, .coef_div = 4201, .inverted = true, .syscon_control0_off = 0x70, .syscon_control1_off = 0x74, .syscon_status_off = 0x78, .dfx_irq_cause_off = 0x108, .dfx_irq_mask_off = 0x10C, .dfx_overheat_irq = BIT(20), .dfx_server_irq_mask_off = 0x104, .dfx_server_irq_en = BIT(1), }; static const struct of_device_id armada_thermal_id_table[] = { { .compatible = "marvell,armadaxp-thermal", .data = &armadaxp_data, }, { .compatible = "marvell,armada370-thermal", .data = &armada370_data, }, { .compatible = "marvell,armada375-thermal", .data = &armada375_data, }, { .compatible = "marvell,armada380-thermal", .data = &armada380_data, }, { .compatible = "marvell,armada-ap806-thermal", .data = &armada_ap806_data, }, { .compatible = "marvell,armada-cp110-thermal", .data = &armada_cp110_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, armada_thermal_id_table); static const struct regmap_config armada_thermal_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .fast_io = true, }; static int armada_thermal_probe_legacy(struct platform_device *pdev, struct armada_thermal_priv *priv) { struct armada_thermal_data *data = priv->data; struct resource *res; void __iomem *base; /* First memory region points towards the status register */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); /* * Fix up from the old individual DT register specification to * cover all the registers. We do this by adjusting the ioremap() * result, which should be fine as ioremap() deals with pages. * However, validate that we do not cross a page boundary while * making this adjustment. */ if (((unsigned long)base & ~PAGE_MASK) < data->syscon_status_off) return -EINVAL; base -= data->syscon_status_off; priv->syscon = devm_regmap_init_mmio(&pdev->dev, base, &armada_thermal_regmap_config); return PTR_ERR_OR_ZERO(priv->syscon); } static int armada_thermal_probe_syscon(struct platform_device *pdev, struct armada_thermal_priv *priv) { priv->syscon = syscon_node_to_regmap(pdev->dev.parent->of_node); return PTR_ERR_OR_ZERO(priv->syscon); } static void armada_set_sane_name(struct platform_device *pdev, struct armada_thermal_priv *priv) { const char *name = dev_name(&pdev->dev); char *insane_char; if (strlen(name) > THERMAL_NAME_LENGTH) { /* * When inside a system controller, the device name has the * form: f06f8000.system-controller:ap-thermal so stripping * after the ':' should give us a shorter but meaningful name. */ name = strrchr(name, ':'); if (!name) name = "armada_thermal"; else name++; } /* Save the name locally */ strncpy(priv->zone_name, name, THERMAL_NAME_LENGTH - 1); priv->zone_name[THERMAL_NAME_LENGTH - 1] = '\0'; /* Then check there are no '-' or hwmon core will complain */ do { insane_char = strpbrk(priv->zone_name, "-"); if (insane_char) *insane_char = '_'; } while (insane_char); } /* * The IP can manage to trigger interrupts on overheat situation from all the * sensors. However, the interrupt source changes along with the last selected * source (ie. the last read sensor), which is an inconsistent behavior. Avoid * possible glitches by always selecting back only one channel (arbitrarily: the * first in the DT which has a critical trip point). We also disable sensor * switch during overheat situations. */ static int armada_configure_overheat_int(struct armada_thermal_priv *priv, struct thermal_zone_device *tz, int sensor_id) { /* Retrieve the critical trip point to enable the overheat interrupt */ const struct thermal_trip *trips = of_thermal_get_trip_points(tz); int ret; int i; if (!trips) return -EINVAL; for (i = 0; i < of_thermal_get_ntrips(tz); i++) if (trips[i].type == THERMAL_TRIP_CRITICAL) break; if (i == of_thermal_get_ntrips(tz)) return -EINVAL; ret = armada_select_channel(priv, sensor_id); if (ret) return ret; armada_set_overheat_thresholds(priv, trips[i].temperature, trips[i].hysteresis); priv->overheat_sensor = tz; priv->interrupt_source = sensor_id; armada_enable_overheat_interrupt(priv); return 0; } static int armada_thermal_probe(struct platform_device *pdev) { struct thermal_zone_device *tz; struct armada_thermal_sensor *sensor; struct armada_drvdata *drvdata; const struct of_device_id *match; struct armada_thermal_priv *priv; int sensor_id, irq; int ret; match = of_match_device(armada_thermal_id_table, &pdev->dev); if (!match) return -ENODEV; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; priv->dev = &pdev->dev; priv->data = (struct armada_thermal_data *)match->data; mutex_init(&priv->update_lock); /* * Legacy DT bindings only described "control1" register (also referred * as "control MSB" on old documentation). Then, bindings moved to cover * "control0/control LSB" and "control1/control MSB" registers within * the same resource, which was then of size 8 instead of 4. * * The logic of defining sporadic registers is broken. For instance, it * blocked the addition of the overheat interrupt feature that needed * another resource somewhere else in the same memory area. One solution * is to define an overall system controller and put the thermal node * into it, which requires the use of regmaps across all the driver. */ if (IS_ERR(syscon_node_to_regmap(pdev->dev.parent->of_node))) { /* Ensure device name is correct for the thermal core */ armada_set_sane_name(pdev, priv); ret = armada_thermal_probe_legacy(pdev, priv); if (ret) return ret; priv->data->init(pdev, priv); /* Wait the sensors to be valid */ armada_wait_sensor_validity(priv); tz = thermal_zone_device_register(priv->zone_name, 0, 0, priv, &legacy_ops, NULL, 0, 0); if (IS_ERR(tz)) { dev_err(&pdev->dev, "Failed to register thermal zone device\n"); return PTR_ERR(tz); } ret = thermal_zone_device_enable(tz); if (ret) { thermal_zone_device_unregister(tz); return ret; } drvdata->type = LEGACY; drvdata->data.tz = tz; platform_set_drvdata(pdev, drvdata); return 0; } ret = armada_thermal_probe_syscon(pdev, priv); if (ret) return ret; priv->current_channel = -1; priv->data->init(pdev, priv); drvdata->type = SYSCON; drvdata->data.priv = priv; platform_set_drvdata(pdev, drvdata); irq = platform_get_irq(pdev, 0); if (irq == -EPROBE_DEFER) return irq; /* The overheat interrupt feature is not mandatory */ if (irq > 0) { ret = devm_request_threaded_irq(&pdev->dev, irq, armada_overheat_isr, armada_overheat_isr_thread, 0, NULL, priv); if (ret) { dev_err(&pdev->dev, "Cannot request threaded IRQ %d\n", irq); return ret; } } /* * There is one channel for the IC and one per CPU (if any), each * channel has one sensor. */ for (sensor_id = 0; sensor_id <= priv->data->cpu_nr; sensor_id++) { sensor = devm_kzalloc(&pdev->dev, sizeof(struct armada_thermal_sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; /* Register the sensor */ sensor->priv = priv; sensor->id = sensor_id; tz = devm_thermal_zone_of_sensor_register(&pdev->dev, sensor->id, sensor, &of_ops); if (IS_ERR(tz)) { dev_info(&pdev->dev, "Thermal sensor %d unavailable\n", sensor_id); devm_kfree(&pdev->dev, sensor); continue; } /* * The first channel that has a critical trip point registered * in the DT will serve as interrupt source. Others possible * critical trip points will simply be ignored by the driver. */ if (irq > 0 && !priv->overheat_sensor) armada_configure_overheat_int(priv, tz, sensor->id); } /* Just complain if no overheat interrupt was set up */ if (!priv->overheat_sensor) dev_warn(&pdev->dev, "Overheat interrupt not available\n"); return 0; } static int armada_thermal_exit(struct platform_device *pdev) { struct armada_drvdata *drvdata = platform_get_drvdata(pdev); if (drvdata->type == LEGACY) thermal_zone_device_unregister(drvdata->data.tz); return 0; } static struct platform_driver armada_thermal_driver = { .probe = armada_thermal_probe, .remove = armada_thermal_exit, .driver = { .name = "armada_thermal", .of_match_table = armada_thermal_id_table, }, }; module_platform_driver(armada_thermal_driver); MODULE_AUTHOR("Ezequiel Garcia <ezequiel.garcia@free-electrons.com>"); MODULE_DESCRIPTION("Marvell EBU Armada SoCs thermal driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1