Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nico Pitre | 1487 | 83.63% | 10 | 52.63% |
Dave P Martin | 264 | 14.85% | 3 | 15.79% |
Sudeep Holla | 9 | 0.51% | 1 | 5.26% |
Arnd Bergmann | 8 | 0.45% | 1 | 5.26% |
Florian Fainelli | 6 | 0.34% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.11% | 1 | 5.26% |
Mauro Carvalho Chehab | 1 | 0.06% | 1 | 5.26% |
Marek Szyprowski | 1 | 0.06% | 1 | 5.26% |
Total | 1778 | 19 |
// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM * * Created by: Nicolas Pitre, March 2012 * Copyright: (C) 2012-2013 Linaro Limited */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/irqflags.h> #include <linux/cpu_pm.h> #include <asm/mcpm.h> #include <asm/cacheflush.h> #include <asm/idmap.h> #include <asm/cputype.h> #include <asm/suspend.h> /* * The public API for this code is documented in arch/arm/include/asm/mcpm.h. * For a comprehensive description of the main algorithm used here, please * see Documentation/arm/cluster-pm-race-avoidance.rst. */ struct sync_struct mcpm_sync; /* * __mcpm_cpu_going_down: Indicates that the cpu is being torn down. * This must be called at the point of committing to teardown of a CPU. * The CPU cache (SCTRL.C bit) is expected to still be active. */ static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster) { mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN; sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); } /* * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the * cluster can be torn down without disrupting this CPU. * To avoid deadlocks, this must be called before a CPU is powered down. * The CPU cache (SCTRL.C bit) is expected to be off. * However L2 cache might or might not be active. */ static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster) { dmb(); mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN; sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); sev(); } /* * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section. * @state: the final state of the cluster: * CLUSTER_UP: no destructive teardown was done and the cluster has been * restored to the previous state (CPU cache still active); or * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off * (CPU cache disabled, L2 cache either enabled or disabled). */ static void __mcpm_outbound_leave_critical(unsigned int cluster, int state) { dmb(); mcpm_sync.clusters[cluster].cluster = state; sync_cache_w(&mcpm_sync.clusters[cluster].cluster); sev(); } /* * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section. * This function should be called by the last man, after local CPU teardown * is complete. CPU cache expected to be active. * * Returns: * false: the critical section was not entered because an inbound CPU was * observed, or the cluster is already being set up; * true: the critical section was entered: it is now safe to tear down the * cluster. */ static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster) { unsigned int i; struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster]; /* Warn inbound CPUs that the cluster is being torn down: */ c->cluster = CLUSTER_GOING_DOWN; sync_cache_w(&c->cluster); /* Back out if the inbound cluster is already in the critical region: */ sync_cache_r(&c->inbound); if (c->inbound == INBOUND_COMING_UP) goto abort; /* * Wait for all CPUs to get out of the GOING_DOWN state, so that local * teardown is complete on each CPU before tearing down the cluster. * * If any CPU has been woken up again from the DOWN state, then we * shouldn't be taking the cluster down at all: abort in that case. */ sync_cache_r(&c->cpus); for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) { int cpustate; if (i == cpu) continue; while (1) { cpustate = c->cpus[i].cpu; if (cpustate != CPU_GOING_DOWN) break; wfe(); sync_cache_r(&c->cpus[i].cpu); } switch (cpustate) { case CPU_DOWN: continue; default: goto abort; } } return true; abort: __mcpm_outbound_leave_critical(cluster, CLUSTER_UP); return false; } static int __mcpm_cluster_state(unsigned int cluster) { sync_cache_r(&mcpm_sync.clusters[cluster].cluster); return mcpm_sync.clusters[cluster].cluster; } extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr) { unsigned long val = ptr ? __pa_symbol(ptr) : 0; mcpm_entry_vectors[cluster][cpu] = val; sync_cache_w(&mcpm_entry_vectors[cluster][cpu]); } extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2]; void mcpm_set_early_poke(unsigned cpu, unsigned cluster, unsigned long poke_phys_addr, unsigned long poke_val) { unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0]; poke[0] = poke_phys_addr; poke[1] = poke_val; __sync_cache_range_w(poke, 2 * sizeof(*poke)); } static const struct mcpm_platform_ops *platform_ops; int __init mcpm_platform_register(const struct mcpm_platform_ops *ops) { if (platform_ops) return -EBUSY; platform_ops = ops; return 0; } bool mcpm_is_available(void) { return (platform_ops) ? true : false; } EXPORT_SYMBOL_GPL(mcpm_is_available); /* * We can't use regular spinlocks. In the switcher case, it is possible * for an outbound CPU to call power_down() after its inbound counterpart * is already live using the same logical CPU number which trips lockdep * debugging. */ static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED; static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; static inline bool mcpm_cluster_unused(unsigned int cluster) { int i, cnt; for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++) cnt |= mcpm_cpu_use_count[cluster][i]; return !cnt; } int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster) { bool cpu_is_down, cluster_is_down; int ret = 0; pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (!platform_ops) return -EUNATCH; /* try not to shadow power_up errors */ might_sleep(); /* * Since this is called with IRQs enabled, and no arch_spin_lock_irq * variant exists, we need to disable IRQs manually here. */ local_irq_disable(); arch_spin_lock(&mcpm_lock); cpu_is_down = !mcpm_cpu_use_count[cluster][cpu]; cluster_is_down = mcpm_cluster_unused(cluster); mcpm_cpu_use_count[cluster][cpu]++; /* * The only possible values are: * 0 = CPU down * 1 = CPU (still) up * 2 = CPU requested to be up before it had a chance * to actually make itself down. * Any other value is a bug. */ BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 && mcpm_cpu_use_count[cluster][cpu] != 2); if (cluster_is_down) ret = platform_ops->cluster_powerup(cluster); if (cpu_is_down && !ret) ret = platform_ops->cpu_powerup(cpu, cluster); arch_spin_unlock(&mcpm_lock); local_irq_enable(); return ret; } typedef typeof(cpu_reset) phys_reset_t; void mcpm_cpu_power_down(void) { unsigned int mpidr, cpu, cluster; bool cpu_going_down, last_man; phys_reset_t phys_reset; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (WARN_ON_ONCE(!platform_ops)) return; BUG_ON(!irqs_disabled()); setup_mm_for_reboot(); __mcpm_cpu_going_down(cpu, cluster); arch_spin_lock(&mcpm_lock); BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); mcpm_cpu_use_count[cluster][cpu]--; BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 && mcpm_cpu_use_count[cluster][cpu] != 1); cpu_going_down = !mcpm_cpu_use_count[cluster][cpu]; last_man = mcpm_cluster_unused(cluster); if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { platform_ops->cpu_powerdown_prepare(cpu, cluster); platform_ops->cluster_powerdown_prepare(cluster); arch_spin_unlock(&mcpm_lock); platform_ops->cluster_cache_disable(); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); } else { if (cpu_going_down) platform_ops->cpu_powerdown_prepare(cpu, cluster); arch_spin_unlock(&mcpm_lock); /* * If cpu_going_down is false here, that means a power_up * request raced ahead of us. Even if we do not want to * shut this CPU down, the caller still expects execution * to return through the system resume entry path, like * when the WFI is aborted due to a new IRQ or the like.. * So let's continue with cache cleaning in all cases. */ platform_ops->cpu_cache_disable(); } __mcpm_cpu_down(cpu, cluster); /* Now we are prepared for power-down, do it: */ if (cpu_going_down) wfi(); /* * It is possible for a power_up request to happen concurrently * with a power_down request for the same CPU. In this case the * CPU might not be able to actually enter a powered down state * with the WFI instruction if the power_up request has removed * the required reset condition. We must perform a re-entry in * the kernel as if the power_up method just had deasserted reset * on the CPU. */ phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); phys_reset(__pa_symbol(mcpm_entry_point), false); /* should never get here */ BUG(); } int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster) { int ret; if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown)) return -EUNATCH; ret = platform_ops->wait_for_powerdown(cpu, cluster); if (ret) pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n", __func__, cpu, cluster, ret); return ret; } void mcpm_cpu_suspend(void) { if (WARN_ON_ONCE(!platform_ops)) return; /* Some platforms might have to enable special resume modes, etc. */ if (platform_ops->cpu_suspend_prepare) { unsigned int mpidr = read_cpuid_mpidr(); unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); arch_spin_lock(&mcpm_lock); platform_ops->cpu_suspend_prepare(cpu, cluster); arch_spin_unlock(&mcpm_lock); } mcpm_cpu_power_down(); } int mcpm_cpu_powered_up(void) { unsigned int mpidr, cpu, cluster; bool cpu_was_down, first_man; unsigned long flags; if (!platform_ops) return -EUNATCH; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); local_irq_save(flags); arch_spin_lock(&mcpm_lock); cpu_was_down = !mcpm_cpu_use_count[cluster][cpu]; first_man = mcpm_cluster_unused(cluster); if (first_man && platform_ops->cluster_is_up) platform_ops->cluster_is_up(cluster); if (cpu_was_down) mcpm_cpu_use_count[cluster][cpu] = 1; if (platform_ops->cpu_is_up) platform_ops->cpu_is_up(cpu, cluster); arch_spin_unlock(&mcpm_lock); local_irq_restore(flags); return 0; } #ifdef CONFIG_ARM_CPU_SUSPEND static int __init nocache_trampoline(unsigned long _arg) { void (*cache_disable)(void) = (void *)_arg; unsigned int mpidr = read_cpuid_mpidr(); unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); phys_reset_t phys_reset; mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp); setup_mm_for_reboot(); __mcpm_cpu_going_down(cpu, cluster); BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster)); cache_disable(); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); __mcpm_cpu_down(cpu, cluster); phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); phys_reset(__pa_symbol(mcpm_entry_point), false); BUG(); } int __init mcpm_loopback(void (*cache_disable)(void)) { int ret; /* * We're going to soft-restart the current CPU through the * low-level MCPM code by leveraging the suspend/resume * infrastructure. Let's play it safe by using cpu_pm_enter() * in case the CPU init code path resets the VFP or similar. */ local_irq_disable(); local_fiq_disable(); ret = cpu_pm_enter(); if (!ret) { ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline); cpu_pm_exit(); } local_fiq_enable(); local_irq_enable(); if (ret) pr_err("%s returned %d\n", __func__, ret); return ret; } #endif extern unsigned long mcpm_power_up_setup_phys; int __init mcpm_sync_init( void (*power_up_setup)(unsigned int affinity_level)) { unsigned int i, j, mpidr, this_cluster; BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync); BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1)); /* * Set initial CPU and cluster states. * Only one cluster is assumed to be active at this point. */ for (i = 0; i < MAX_NR_CLUSTERS; i++) { mcpm_sync.clusters[i].cluster = CLUSTER_DOWN; mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP; for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++) mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN; } mpidr = read_cpuid_mpidr(); this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); for_each_online_cpu(i) { mcpm_cpu_use_count[this_cluster][i] = 1; mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP; } mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP; sync_cache_w(&mcpm_sync); if (power_up_setup) { mcpm_power_up_setup_phys = __pa_symbol(power_up_setup); sync_cache_w(&mcpm_power_up_setup_phys); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1