Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Abhilash Kesavan | 621 | 69.46% | 4 | 22.22% |
Nico Pitre | 123 | 13.76% | 2 | 11.11% |
Marek Szyprowski | 63 | 7.05% | 2 | 11.11% |
Chanho Park | 50 | 5.59% | 1 | 5.56% |
Chander Kashyap | 18 | 2.01% | 1 | 5.56% |
Pankaj Dubey | 8 | 0.89% | 2 | 11.11% |
Krzysztof Kozlowski | 6 | 0.67% | 2 | 11.11% |
Ard Biesheuvel | 2 | 0.22% | 1 | 5.56% |
Kukjin Kim | 1 | 0.11% | 1 | 5.56% |
Florian Fainelli | 1 | 0.11% | 1 | 5.56% |
Russell King | 1 | 0.11% | 1 | 5.56% |
Total | 894 | 18 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2014 Samsung Electronics Co., Ltd. // http://www.samsung.com // // Based on arch/arm/mach-vexpress/dcscb.c #include <linux/arm-cci.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/syscore_ops.h> #include <linux/soc/samsung/exynos-regs-pmu.h> #include <asm/cputype.h> #include <asm/cp15.h> #include <asm/mcpm.h> #include <asm/smp_plat.h> #include "common.h" #define EXYNOS5420_CPUS_PER_CLUSTER 4 #define EXYNOS5420_NR_CLUSTERS 2 #define EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN BIT(9) #define EXYNOS5420_USE_ARM_CORE_DOWN_STATE BIT(29) #define EXYNOS5420_USE_L2_COMMON_UP_STATE BIT(30) static void __iomem *ns_sram_base_addr __ro_after_init; static bool secure_firmware __ro_after_init; /* * The common v7_exit_coherency_flush API could not be used because of the * Erratum 799270 workaround. This macro is the same as the common one (in * arch/arm/include/asm/cacheflush.h) except for the erratum handling. */ #define exynos_v7_exit_coherency_flush(level) \ asm volatile( \ "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR\n\t" \ "bic r0, r0, #"__stringify(CR_C)"\n\t" \ "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR\n\t" \ "isb\n\t"\ "bl v7_flush_dcache_"__stringify(level)"\n\t" \ "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR\n\t" \ "bic r0, r0, #(1 << 6) @ disable local coherency\n\t" \ /* Dummy Load of a device register to avoid Erratum 799270 */ \ "ldr r4, [%0]\n\t" \ "and r4, r4, #0\n\t" \ "orr r0, r0, r4\n\t" \ "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR\n\t" \ "isb\n\t" \ "dsb\n\t" \ : \ : "Ir" (pmu_base_addr + S5P_INFORM0) \ : "r0", "r1", "r2", "r3", "r4", "r5", "r6", \ "r9", "r10", "ip", "lr", "memory") static int exynos_cpu_powerup(unsigned int cpu, unsigned int cluster) { unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); bool state; pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER || cluster >= EXYNOS5420_NR_CLUSTERS) return -EINVAL; state = exynos_cpu_power_state(cpunr); exynos_cpu_power_up(cpunr); if (!state && secure_firmware) { /* * This assumes the cluster number of the big cores(Cortex A15) * is 0 and the Little cores(Cortex A7) is 1. * When the system was booted from the Little core, * they should be reset during power up cpu. */ if (cluster && cluster == MPIDR_AFFINITY_LEVEL(cpu_logical_map(0), 1)) { unsigned int timeout = 16; /* * Before we reset the Little cores, we should wait * the SPARE2 register is set to 1 because the init * codes of the iROM will set the register after * initialization. */ while (timeout && !pmu_raw_readl(S5P_PMU_SPARE2)) { timeout--; udelay(10); } if (timeout == 0) { pr_err("cpu %u cluster %u powerup failed\n", cpu, cluster); exynos_cpu_power_down(cpunr); return -ETIMEDOUT; } pmu_raw_writel(EXYNOS5420_KFC_CORE_RESET(cpu), EXYNOS_SWRESET); } } return 0; } static int exynos_cluster_powerup(unsigned int cluster) { pr_debug("%s: cluster %u\n", __func__, cluster); if (cluster >= EXYNOS5420_NR_CLUSTERS) return -EINVAL; exynos_cluster_power_up(cluster); return 0; } static void exynos_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster) { unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || cluster >= EXYNOS5420_NR_CLUSTERS); exynos_cpu_power_down(cpunr); } static void exynos_cluster_powerdown_prepare(unsigned int cluster) { pr_debug("%s: cluster %u\n", __func__, cluster); BUG_ON(cluster >= EXYNOS5420_NR_CLUSTERS); exynos_cluster_power_down(cluster); } static void exynos_cpu_cache_disable(void) { /* Disable and flush the local CPU cache. */ exynos_v7_exit_coherency_flush(louis); } static void exynos_cluster_cache_disable(void) { if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { /* * On the Cortex-A15 we need to disable * L2 prefetching before flushing the cache. */ asm volatile( "mcr p15, 1, %0, c15, c0, 3\n\t" "isb\n\t" "dsb" : : "r" (0x400)); } /* Flush all cache levels for this cluster. */ exynos_v7_exit_coherency_flush(all); /* * Disable cluster-level coherency by masking * incoming snoops and DVM messages: */ cci_disable_port_by_cpu(read_cpuid_mpidr()); } static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster) { unsigned int tries = 100; unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || cluster >= EXYNOS5420_NR_CLUSTERS); /* Wait for the core state to be OFF */ while (tries--) { if ((exynos_cpu_power_state(cpunr) == 0)) return 0; /* success: the CPU is halted */ /* Otherwise, wait and retry: */ msleep(1); } return -ETIMEDOUT; /* timeout */ } static void exynos_cpu_is_up(unsigned int cpu, unsigned int cluster) { /* especially when resuming: make sure power control is set */ exynos_cpu_powerup(cpu, cluster); } static const struct mcpm_platform_ops exynos_power_ops = { .cpu_powerup = exynos_cpu_powerup, .cluster_powerup = exynos_cluster_powerup, .cpu_powerdown_prepare = exynos_cpu_powerdown_prepare, .cluster_powerdown_prepare = exynos_cluster_powerdown_prepare, .cpu_cache_disable = exynos_cpu_cache_disable, .cluster_cache_disable = exynos_cluster_cache_disable, .wait_for_powerdown = exynos_wait_for_powerdown, .cpu_is_up = exynos_cpu_is_up, }; /* * Enable cluster-level coherency, in preparation for turning on the MMU. */ static void __naked exynos_pm_power_up_setup(unsigned int affinity_level) { asm volatile ("\n" "cmp r0, #1\n" "bxne lr\n" "b cci_enable_port_for_self"); } static const struct of_device_id exynos_dt_mcpm_match[] = { { .compatible = "samsung,exynos5420" }, { .compatible = "samsung,exynos5800" }, {}, }; static void exynos_mcpm_setup_entry_point(void) { /* * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr * as part of secondary_cpu_start(). Let's redirect it to the * mcpm_entry_point(). This is done during both secondary boot-up as * well as system resume. */ __raw_writel(0xe59f0000, ns_sram_base_addr); /* ldr r0, [pc, #0] */ __raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx r0 */ __raw_writel(__pa_symbol(mcpm_entry_point), ns_sram_base_addr + 8); } static struct syscore_ops exynos_mcpm_syscore_ops = { .resume = exynos_mcpm_setup_entry_point, }; static int __init exynos_mcpm_init(void) { struct device_node *node; unsigned int value, i; int ret; node = of_find_matching_node(NULL, exynos_dt_mcpm_match); if (!node) return -ENODEV; of_node_put(node); if (!cci_probed()) return -ENODEV; node = of_find_compatible_node(NULL, NULL, "samsung,exynos4210-sysram-ns"); if (!node) return -ENODEV; ns_sram_base_addr = of_iomap(node, 0); of_node_put(node); if (!ns_sram_base_addr) { pr_err("failed to map non-secure iRAM base address\n"); return -ENOMEM; } secure_firmware = exynos_secure_firmware_available(); /* * To increase the stability of KFC reset we need to program * the PMU SPARE3 register */ pmu_raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3); ret = mcpm_platform_register(&exynos_power_ops); if (!ret) ret = mcpm_sync_init(exynos_pm_power_up_setup); if (!ret) ret = mcpm_loopback(exynos_cluster_cache_disable); /* turn on the CCI */ if (ret) { iounmap(ns_sram_base_addr); return ret; } mcpm_smp_set_ops(); pr_info("Exynos MCPM support installed\n"); /* * On Exynos5420/5800 for the A15 and A7 clusters: * * EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN ensures that all the cores * in a cluster are turned off before turning off the cluster L2. * * EXYNOS5420_USE_ARM_CORE_DOWN_STATE ensures that a cores is powered * off before waking it up. * * EXYNOS5420_USE_L2_COMMON_UP_STATE ensures that cluster L2 will be * turned on before the first man is powered up. */ for (i = 0; i < EXYNOS5420_NR_CLUSTERS; i++) { value = pmu_raw_readl(EXYNOS_COMMON_OPTION(i)); value |= EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN | EXYNOS5420_USE_ARM_CORE_DOWN_STATE | EXYNOS5420_USE_L2_COMMON_UP_STATE; pmu_raw_writel(value, EXYNOS_COMMON_OPTION(i)); } exynos_mcpm_setup_entry_point(); register_syscore_ops(&exynos_mcpm_syscore_ops); return ret; } early_initcall(exynos_mcpm_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1