Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 5333 | 88.78% | 25 | 62.50% |
Nathan Huckleberry | 367 | 6.11% | 2 | 5.00% |
Herbert Xu | 208 | 3.46% | 1 | 2.50% |
Eric Biggers | 48 | 0.80% | 6 | 15.00% |
Mikulas Patocka | 24 | 0.40% | 1 | 2.50% |
Stephan Mueller | 20 | 0.33% | 2 | 5.00% |
Kees Cook | 4 | 0.07% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.50% |
zhong jiang | 1 | 0.02% | 1 | 2.50% |
Total | 6007 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES * * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <asm/neon.h> #include <asm/hwcap.h> #include <asm/simd.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/sha2.h> #include <crypto/internal/hash.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/module.h> #include <linux/cpufeature.h> #include <crypto/xts.h> #include "aes-ce-setkey.h" #ifdef USE_V8_CRYPTO_EXTENSIONS #define MODE "ce" #define PRIO 300 #define aes_expandkey ce_aes_expandkey #define aes_ecb_encrypt ce_aes_ecb_encrypt #define aes_ecb_decrypt ce_aes_ecb_decrypt #define aes_cbc_encrypt ce_aes_cbc_encrypt #define aes_cbc_decrypt ce_aes_cbc_decrypt #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt #define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt #define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt #define aes_ctr_encrypt ce_aes_ctr_encrypt #define aes_xctr_encrypt ce_aes_xctr_encrypt #define aes_xts_encrypt ce_aes_xts_encrypt #define aes_xts_decrypt ce_aes_xts_decrypt #define aes_mac_update ce_aes_mac_update MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 Crypto Extensions"); #else #define MODE "neon" #define PRIO 200 #define aes_ecb_encrypt neon_aes_ecb_encrypt #define aes_ecb_decrypt neon_aes_ecb_decrypt #define aes_cbc_encrypt neon_aes_cbc_encrypt #define aes_cbc_decrypt neon_aes_cbc_decrypt #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt #define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt #define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt #define aes_ctr_encrypt neon_aes_ctr_encrypt #define aes_xctr_encrypt neon_aes_xctr_encrypt #define aes_xts_encrypt neon_aes_xts_encrypt #define aes_xts_decrypt neon_aes_xts_decrypt #define aes_mac_update neon_aes_mac_update MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 NEON"); #endif #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS) MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); MODULE_ALIAS_CRYPTO("xctr(aes)"); #endif MODULE_ALIAS_CRYPTO("cts(cbc(aes))"); MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)"); MODULE_ALIAS_CRYPTO("cmac(aes)"); MODULE_ALIAS_CRYPTO("xcbc(aes)"); MODULE_ALIAS_CRYPTO("cbcmac(aes)"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); /* defined in aes-modes.S */ asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int blocks); asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int blocks); asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int bytes, u8 const iv[]); asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int bytes, u8 const iv[]); asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int bytes, u8 ctr[]); asmlinkage void aes_xctr_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int bytes, u8 ctr[], int byte_ctr); asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[], int rounds, int bytes, u32 const rk2[], u8 iv[], int first); asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[], int rounds, int bytes, u32 const rk2[], u8 iv[], int first); asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[], int rounds, int blocks, u8 iv[], u32 const rk2[]); asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[], int rounds, int blocks, u8 iv[], u32 const rk2[]); asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds, int blocks, u8 dg[], int enc_before, int enc_after); struct crypto_aes_xts_ctx { struct crypto_aes_ctx key1; struct crypto_aes_ctx __aligned(8) key2; }; struct crypto_aes_essiv_cbc_ctx { struct crypto_aes_ctx key1; struct crypto_aes_ctx __aligned(8) key2; struct crypto_shash *hash; }; struct mac_tfm_ctx { struct crypto_aes_ctx key; u8 __aligned(8) consts[]; }; struct mac_desc_ctx { unsigned int len; u8 dg[AES_BLOCK_SIZE]; }; static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); return aes_expandkey(ctx, in_key, key_len); } static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ret = xts_verify_key(tfm, in_key, key_len); if (ret) return ret; ret = aes_expandkey(&ctx->key1, in_key, key_len / 2); if (!ret) ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2], key_len / 2); return ret; } static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); u8 digest[SHA256_DIGEST_SIZE]; int ret; ret = aes_expandkey(&ctx->key1, in_key, key_len); if (ret) return ret; crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest); return aes_expandkey(&ctx->key2, digest, sizeof(digest)); } static int __maybe_unused ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, false); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { kernel_neon_begin(); aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, rounds, blocks); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } return err; } static int __maybe_unused ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, false); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { kernel_neon_begin(); aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, rounds, blocks); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } return err; } static int cbc_encrypt_walk(struct skcipher_request *req, struct skcipher_walk *walk) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err = 0, rounds = 6 + ctx->key_length / 4; unsigned int blocks; while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) { kernel_neon_begin(); aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr, ctx->key_enc, rounds, blocks, walk->iv); kernel_neon_end(); err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE); } return err; } static int __maybe_unused cbc_encrypt(struct skcipher_request *req) { struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); if (err) return err; return cbc_encrypt_walk(req, &walk); } static int cbc_decrypt_walk(struct skcipher_request *req, struct skcipher_walk *walk) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err = 0, rounds = 6 + ctx->key_length / 4; unsigned int blocks; while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) { kernel_neon_begin(); aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr, ctx->key_dec, rounds, blocks, walk->iv); kernel_neon_end(); err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE); } return err; } static int __maybe_unused cbc_decrypt(struct skcipher_request *req) { struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); if (err) return err; return cbc_decrypt_walk(req, &walk); } static int cts_cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key_length / 4; int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; struct scatterlist *src = req->src, *dst = req->dst; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct skcipher_walk walk; skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); if (req->cryptlen <= AES_BLOCK_SIZE) { if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; cbc_blocks = 1; } if (cbc_blocks > 0) { skcipher_request_set_crypt(&subreq, req->src, req->dst, cbc_blocks * AES_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false) ?: cbc_encrypt_walk(&subreq, &walk); if (err) return err; if (req->cryptlen == AES_BLOCK_SIZE) return 0; dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen); } /* handle ciphertext stealing */ skcipher_request_set_crypt(&subreq, src, dst, req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_neon_begin(); aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, rounds, walk.nbytes, walk.iv); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static int cts_cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key_length / 4; int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; struct scatterlist *src = req->src, *dst = req->dst; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct skcipher_walk walk; skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); if (req->cryptlen <= AES_BLOCK_SIZE) { if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; cbc_blocks = 1; } if (cbc_blocks > 0) { skcipher_request_set_crypt(&subreq, req->src, req->dst, cbc_blocks * AES_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false) ?: cbc_decrypt_walk(&subreq, &walk); if (err) return err; if (req->cryptlen == AES_BLOCK_SIZE) return 0; dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen); } /* handle ciphertext stealing */ skcipher_request_set_crypt(&subreq, src, dst, req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_neon_begin(); aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, rounds, walk.nbytes, walk.iv); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm) { struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->hash = crypto_alloc_shash("sha256", 0, 0); return PTR_ERR_OR_ZERO(ctx->hash); } static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm) { struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_shash(ctx->hash); } static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key1.key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, false); blocks = walk.nbytes / AES_BLOCK_SIZE; if (blocks) { kernel_neon_begin(); aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key1.key_enc, rounds, blocks, req->iv, ctx->key2.key_enc); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } return err ?: cbc_encrypt_walk(req, &walk); } static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key1.key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, false); blocks = walk.nbytes / AES_BLOCK_SIZE; if (blocks) { kernel_neon_begin(); aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key1.key_dec, rounds, blocks, req->iv, ctx->key2.key_enc); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } return err ?: cbc_decrypt_walk(req, &walk); } static int __maybe_unused xctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int byte_ctr = 0; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes > 0) { const u8 *src = walk.src.virt.addr; unsigned int nbytes = walk.nbytes; u8 *dst = walk.dst.virt.addr; u8 buf[AES_BLOCK_SIZE]; /* * If given less than 16 bytes, we must copy the partial block * into a temporary buffer of 16 bytes to avoid out of bounds * reads and writes. Furthermore, this code is somewhat unusual * in that it expects the end of the data to be at the end of * the temporary buffer, rather than the start of the data at * the start of the temporary buffer. */ if (unlikely(nbytes < AES_BLOCK_SIZE)) src = dst = memcpy(buf + sizeof(buf) - nbytes, src, nbytes); else if (nbytes < walk.total) nbytes &= ~(AES_BLOCK_SIZE - 1); kernel_neon_begin(); aes_xctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes, walk.iv, byte_ctr); kernel_neon_end(); if (unlikely(nbytes < AES_BLOCK_SIZE)) memcpy(walk.dst.virt.addr, buf + sizeof(buf) - nbytes, nbytes); byte_ctr += nbytes; err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int __maybe_unused ctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes > 0) { const u8 *src = walk.src.virt.addr; unsigned int nbytes = walk.nbytes; u8 *dst = walk.dst.virt.addr; u8 buf[AES_BLOCK_SIZE]; /* * If given less than 16 bytes, we must copy the partial block * into a temporary buffer of 16 bytes to avoid out of bounds * reads and writes. Furthermore, this code is somewhat unusual * in that it expects the end of the data to be at the end of * the temporary buffer, rather than the start of the data at * the start of the temporary buffer. */ if (unlikely(nbytes < AES_BLOCK_SIZE)) src = dst = memcpy(buf + sizeof(buf) - nbytes, src, nbytes); else if (nbytes < walk.total) nbytes &= ~(AES_BLOCK_SIZE - 1); kernel_neon_begin(); aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes, walk.iv); kernel_neon_end(); if (unlikely(nbytes < AES_BLOCK_SIZE)) memcpy(walk.dst.virt.addr, buf + sizeof(buf) - nbytes, nbytes); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int __maybe_unused xts_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key1.key_length / 4; int tail = req->cryptlen % AES_BLOCK_SIZE; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct scatterlist *src, *dst; struct skcipher_walk walk; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; err = skcipher_walk_virt(&walk, req, false); if (unlikely(tail > 0 && walk.nbytes < walk.total)) { int xts_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; skcipher_walk_abort(&walk); skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, xts_blocks * AES_BLOCK_SIZE, req->iv); req = &subreq; err = skcipher_walk_virt(&walk, req, false); } else { tail = 0; } for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) { int nbytes = walk.nbytes; if (walk.nbytes < walk.total) nbytes &= ~(AES_BLOCK_SIZE - 1); kernel_neon_begin(); aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key1.key_enc, rounds, nbytes, ctx->key2.key_enc, walk.iv, first); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } if (err || likely(!tail)) return err; dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_neon_begin(); aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key1.key_enc, rounds, walk.nbytes, ctx->key2.key_enc, walk.iv, first); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static int __maybe_unused xts_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key1.key_length / 4; int tail = req->cryptlen % AES_BLOCK_SIZE; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct scatterlist *src, *dst; struct skcipher_walk walk; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; err = skcipher_walk_virt(&walk, req, false); if (unlikely(tail > 0 && walk.nbytes < walk.total)) { int xts_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; skcipher_walk_abort(&walk); skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, xts_blocks * AES_BLOCK_SIZE, req->iv); req = &subreq; err = skcipher_walk_virt(&walk, req, false); } else { tail = 0; } for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) { int nbytes = walk.nbytes; if (walk.nbytes < walk.total) nbytes &= ~(AES_BLOCK_SIZE - 1); kernel_neon_begin(); aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key1.key_dec, rounds, nbytes, ctx->key2.key_enc, walk.iv, first); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } if (err || likely(!tail)) return err; dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_neon_begin(); aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key1.key_dec, rounds, walk.nbytes, ctx->key2.key_enc, walk.iv, first); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static struct skcipher_alg aes_algs[] = { { #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS) .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-" MODE, .cra_priority = PRIO, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = skcipher_aes_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-" MODE, .cra_priority = PRIO, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = skcipher_aes_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-" MODE, .cra_priority = PRIO, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, .setkey = skcipher_aes_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, { .base = { .cra_name = "xctr(aes)", .cra_driver_name = "xctr-aes-" MODE, .cra_priority = PRIO, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, .setkey = skcipher_aes_setkey, .encrypt = xctr_encrypt, .decrypt = xctr_encrypt, }, { .base = { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-" MODE, .cra_priority = PRIO, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx), .cra_module = THIS_MODULE, }, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .walksize = 2 * AES_BLOCK_SIZE, .setkey = xts_set_key, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, { #endif .base = { .cra_name = "cts(cbc(aes))", .cra_driver_name = "cts-cbc-aes-" MODE, .cra_priority = PRIO, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .walksize = 2 * AES_BLOCK_SIZE, .setkey = skcipher_aes_setkey, .encrypt = cts_cbc_encrypt, .decrypt = cts_cbc_decrypt, }, { .base = { .cra_name = "essiv(cbc(aes),sha256)", .cra_driver_name = "essiv-cbc-aes-sha256-" MODE, .cra_priority = PRIO + 1, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = essiv_cbc_set_key, .encrypt = essiv_cbc_encrypt, .decrypt = essiv_cbc_decrypt, .init = essiv_cbc_init_tfm, .exit = essiv_cbc_exit_tfm, } }; static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key, unsigned int key_len) { struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); return aes_expandkey(&ctx->key, in_key, key_len); } static void cmac_gf128_mul_by_x(be128 *y, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); y->a = cpu_to_be64((a << 1) | (b >> 63)); y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0)); } static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key, unsigned int key_len) { struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); be128 *consts = (be128 *)ctx->consts; int rounds = 6 + key_len / 4; int err; err = cbcmac_setkey(tfm, in_key, key_len); if (err) return err; /* encrypt the zero vector */ kernel_neon_begin(); aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc, rounds, 1); kernel_neon_end(); cmac_gf128_mul_by_x(consts, consts); cmac_gf128_mul_by_x(consts + 1, consts); return 0; } static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key, unsigned int key_len) { static u8 const ks[3][AES_BLOCK_SIZE] = { { [0 ... AES_BLOCK_SIZE - 1] = 0x1 }, { [0 ... AES_BLOCK_SIZE - 1] = 0x2 }, { [0 ... AES_BLOCK_SIZE - 1] = 0x3 }, }; struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); int rounds = 6 + key_len / 4; u8 key[AES_BLOCK_SIZE]; int err; err = cbcmac_setkey(tfm, in_key, key_len); if (err) return err; kernel_neon_begin(); aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1); aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2); kernel_neon_end(); return cbcmac_setkey(tfm, key, sizeof(key)); } static int mac_init(struct shash_desc *desc) { struct mac_desc_ctx *ctx = shash_desc_ctx(desc); memset(ctx->dg, 0, AES_BLOCK_SIZE); ctx->len = 0; return 0; } static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks, u8 dg[], int enc_before, int enc_after) { int rounds = 6 + ctx->key_length / 4; if (crypto_simd_usable()) { int rem; do { kernel_neon_begin(); rem = aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before, enc_after); kernel_neon_end(); in += (blocks - rem) * AES_BLOCK_SIZE; blocks = rem; enc_before = 0; } while (blocks); } else { if (enc_before) aes_encrypt(ctx, dg, dg); while (blocks--) { crypto_xor(dg, in, AES_BLOCK_SIZE); in += AES_BLOCK_SIZE; if (blocks || enc_after) aes_encrypt(ctx, dg, dg); } } } static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len) { struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct mac_desc_ctx *ctx = shash_desc_ctx(desc); while (len > 0) { unsigned int l; if ((ctx->len % AES_BLOCK_SIZE) == 0 && (ctx->len + len) > AES_BLOCK_SIZE) { int blocks = len / AES_BLOCK_SIZE; len %= AES_BLOCK_SIZE; mac_do_update(&tctx->key, p, blocks, ctx->dg, (ctx->len != 0), (len != 0)); p += blocks * AES_BLOCK_SIZE; if (!len) { ctx->len = AES_BLOCK_SIZE; break; } ctx->len = 0; } l = min(len, AES_BLOCK_SIZE - ctx->len); if (l <= AES_BLOCK_SIZE) { crypto_xor(ctx->dg + ctx->len, p, l); ctx->len += l; len -= l; p += l; } } return 0; } static int cbcmac_final(struct shash_desc *desc, u8 *out) { struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct mac_desc_ctx *ctx = shash_desc_ctx(desc); mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0); memcpy(out, ctx->dg, AES_BLOCK_SIZE); return 0; } static int cmac_final(struct shash_desc *desc, u8 *out) { struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct mac_desc_ctx *ctx = shash_desc_ctx(desc); u8 *consts = tctx->consts; if (ctx->len != AES_BLOCK_SIZE) { ctx->dg[ctx->len] ^= 0x80; consts += AES_BLOCK_SIZE; } mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1); memcpy(out, ctx->dg, AES_BLOCK_SIZE); return 0; } static struct shash_alg mac_algs[] = { { .base.cra_name = "cmac(aes)", .base.cra_driver_name = "cmac-aes-" MODE, .base.cra_priority = PRIO, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) + 2 * AES_BLOCK_SIZE, .base.cra_module = THIS_MODULE, .digestsize = AES_BLOCK_SIZE, .init = mac_init, .update = mac_update, .final = cmac_final, .setkey = cmac_setkey, .descsize = sizeof(struct mac_desc_ctx), }, { .base.cra_name = "xcbc(aes)", .base.cra_driver_name = "xcbc-aes-" MODE, .base.cra_priority = PRIO, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) + 2 * AES_BLOCK_SIZE, .base.cra_module = THIS_MODULE, .digestsize = AES_BLOCK_SIZE, .init = mac_init, .update = mac_update, .final = cmac_final, .setkey = xcbc_setkey, .descsize = sizeof(struct mac_desc_ctx), }, { .base.cra_name = "cbcmac(aes)", .base.cra_driver_name = "cbcmac-aes-" MODE, .base.cra_priority = PRIO, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct mac_tfm_ctx), .base.cra_module = THIS_MODULE, .digestsize = AES_BLOCK_SIZE, .init = mac_init, .update = mac_update, .final = cbcmac_final, .setkey = cbcmac_setkey, .descsize = sizeof(struct mac_desc_ctx), } }; static void aes_exit(void) { crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs)); crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } static int __init aes_init(void) { int err; err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); if (err) return err; err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs)); if (err) goto unregister_ciphers; return 0; unregister_ciphers: crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); return err; } #ifdef USE_V8_CRYPTO_EXTENSIONS module_cpu_feature_match(AES, aes_init); #else module_init(aes_init); EXPORT_SYMBOL(neon_aes_ecb_encrypt); EXPORT_SYMBOL(neon_aes_cbc_encrypt); EXPORT_SYMBOL(neon_aes_ctr_encrypt); EXPORT_SYMBOL(neon_aes_xts_encrypt); EXPORT_SYMBOL(neon_aes_xts_decrypt); #endif module_exit(aes_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1