Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Brown | 866 | 57.01% | 18 | 39.13% |
Dave P Martin | 449 | 29.56% | 17 | 36.96% |
Mark Rutland | 70 | 4.61% | 2 | 4.35% |
Catalin Marinas | 70 | 4.61% | 1 | 2.17% |
Ard Biesheuvel | 33 | 2.17% | 2 | 4.35% |
Marc Zyngier | 10 | 0.66% | 1 | 2.17% |
Xiaofei Tan | 9 | 0.59% | 1 | 2.17% |
Julien Grall | 7 | 0.46% | 2 | 4.35% |
Will Deacon | 3 | 0.20% | 1 | 2.17% |
Thomas Gleixner | 2 | 0.13% | 1 | 2.17% |
Total | 1519 | 46 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_FP_H #define __ASM_FP_H #include <asm/errno.h> #include <asm/ptrace.h> #include <asm/processor.h> #include <asm/sigcontext.h> #include <asm/sysreg.h> #ifndef __ASSEMBLY__ #include <linux/bitmap.h> #include <linux/build_bug.h> #include <linux/bug.h> #include <linux/cache.h> #include <linux/init.h> #include <linux/stddef.h> #include <linux/types.h> #ifdef CONFIG_COMPAT /* Masks for extracting the FPSR and FPCR from the FPSCR */ #define VFP_FPSCR_STAT_MASK 0xf800009f #define VFP_FPSCR_CTRL_MASK 0x07f79f00 /* * The VFP state has 32x64-bit registers and a single 32-bit * control/status register. */ #define VFP_STATE_SIZE ((32 * 8) + 4) #endif /* * When we defined the maximum SVE vector length we defined the ABI so * that the maximum vector length included all the reserved for future * expansion bits in ZCR rather than those just currently defined by * the architecture. While SME follows a similar pattern the fact that * it includes a square matrix means that any allocations that attempt * to cover the maximum potential vector length (such as happen with * the regset used for ptrace) end up being extremely large. Define * the much lower actual limit for use in such situations. */ #define SME_VQ_MAX 16 struct task_struct; extern void fpsimd_save_state(struct user_fpsimd_state *state); extern void fpsimd_load_state(struct user_fpsimd_state *state); extern void fpsimd_thread_switch(struct task_struct *next); extern void fpsimd_flush_thread(void); extern void fpsimd_signal_preserve_current_state(void); extern void fpsimd_preserve_current_state(void); extern void fpsimd_restore_current_state(void); extern void fpsimd_update_current_state(struct user_fpsimd_state const *state); extern void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *state, void *sve_state, unsigned int sve_vl, void *za_state, unsigned int sme_vl, u64 *svcr); extern void fpsimd_flush_task_state(struct task_struct *target); extern void fpsimd_save_and_flush_cpu_state(void); static inline bool thread_sm_enabled(struct thread_struct *thread) { return system_supports_sme() && (thread->svcr & SVCR_SM_MASK); } static inline bool thread_za_enabled(struct thread_struct *thread) { return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK); } /* Maximum VL that SVE/SME VL-agnostic software can transparently support */ #define VL_ARCH_MAX 0x100 /* Offset of FFR in the SVE register dump */ static inline size_t sve_ffr_offset(int vl) { return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET; } static inline void *sve_pffr(struct thread_struct *thread) { unsigned int vl; if (system_supports_sme() && thread_sm_enabled(thread)) vl = thread_get_sme_vl(thread); else vl = thread_get_sve_vl(thread); return (char *)thread->sve_state + sve_ffr_offset(vl); } extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr); extern void sve_load_state(void const *state, u32 const *pfpsr, int restore_ffr); extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1); extern unsigned int sve_get_vl(void); extern void sve_set_vq(unsigned long vq_minus_1); extern void sme_set_vq(unsigned long vq_minus_1); extern void za_save_state(void *state); extern void za_load_state(void const *state); struct arm64_cpu_capabilities; extern void sve_kernel_enable(const struct arm64_cpu_capabilities *__unused); extern void sme_kernel_enable(const struct arm64_cpu_capabilities *__unused); extern void fa64_kernel_enable(const struct arm64_cpu_capabilities *__unused); extern u64 read_zcr_features(void); extern u64 read_smcr_features(void); /* * Helpers to translate bit indices in sve_vq_map to VQ values (and * vice versa). This allows find_next_bit() to be used to find the * _maximum_ VQ not exceeding a certain value. */ static inline unsigned int __vq_to_bit(unsigned int vq) { return SVE_VQ_MAX - vq; } static inline unsigned int __bit_to_vq(unsigned int bit) { return SVE_VQ_MAX - bit; } struct vl_info { enum vec_type type; const char *name; /* For display purposes */ /* Minimum supported vector length across all CPUs */ int min_vl; /* Maximum supported vector length across all CPUs */ int max_vl; int max_virtualisable_vl; /* * Set of available vector lengths, * where length vq encoded as bit __vq_to_bit(vq): */ DECLARE_BITMAP(vq_map, SVE_VQ_MAX); /* Set of vector lengths present on at least one cpu: */ DECLARE_BITMAP(vq_partial_map, SVE_VQ_MAX); }; #ifdef CONFIG_ARM64_SVE extern void sve_alloc(struct task_struct *task, bool flush); extern void fpsimd_release_task(struct task_struct *task); extern void fpsimd_sync_to_sve(struct task_struct *task); extern void fpsimd_force_sync_to_sve(struct task_struct *task); extern void sve_sync_to_fpsimd(struct task_struct *task); extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task); extern int vec_set_vector_length(struct task_struct *task, enum vec_type type, unsigned long vl, unsigned long flags); extern int sve_set_current_vl(unsigned long arg); extern int sve_get_current_vl(void); static inline void sve_user_disable(void) { sysreg_clear_set(cpacr_el1, CPACR_EL1_ZEN_EL0EN, 0); } static inline void sve_user_enable(void) { sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_ZEN_EL0EN); } #define sve_cond_update_zcr_vq(val, reg) \ do { \ u64 __zcr = read_sysreg_s((reg)); \ u64 __new = __zcr & ~ZCR_ELx_LEN_MASK; \ __new |= (val) & ZCR_ELx_LEN_MASK; \ if (__zcr != __new) \ write_sysreg_s(__new, (reg)); \ } while (0) /* * Probing and setup functions. * Calls to these functions must be serialised with one another. */ enum vec_type; extern void __init vec_init_vq_map(enum vec_type type); extern void vec_update_vq_map(enum vec_type type); extern int vec_verify_vq_map(enum vec_type type); extern void __init sve_setup(void); extern __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX]; static inline void write_vl(enum vec_type type, u64 val) { u64 tmp; switch (type) { #ifdef CONFIG_ARM64_SVE case ARM64_VEC_SVE: tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK; write_sysreg_s(tmp | val, SYS_ZCR_EL1); break; #endif #ifdef CONFIG_ARM64_SME case ARM64_VEC_SME: tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK; write_sysreg_s(tmp | val, SYS_SMCR_EL1); break; #endif default: WARN_ON_ONCE(1); break; } } static inline int vec_max_vl(enum vec_type type) { return vl_info[type].max_vl; } static inline int vec_max_virtualisable_vl(enum vec_type type) { return vl_info[type].max_virtualisable_vl; } static inline int sve_max_vl(void) { return vec_max_vl(ARM64_VEC_SVE); } static inline int sve_max_virtualisable_vl(void) { return vec_max_virtualisable_vl(ARM64_VEC_SVE); } /* Ensure vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX before calling this function */ static inline bool vq_available(enum vec_type type, unsigned int vq) { return test_bit(__vq_to_bit(vq), vl_info[type].vq_map); } static inline bool sve_vq_available(unsigned int vq) { return vq_available(ARM64_VEC_SVE, vq); } size_t sve_state_size(struct task_struct const *task); #else /* ! CONFIG_ARM64_SVE */ static inline void sve_alloc(struct task_struct *task, bool flush) { } static inline void fpsimd_release_task(struct task_struct *task) { } static inline void sve_sync_to_fpsimd(struct task_struct *task) { } static inline void sve_sync_from_fpsimd_zeropad(struct task_struct *task) { } static inline int sve_max_virtualisable_vl(void) { return 0; } static inline int sve_set_current_vl(unsigned long arg) { return -EINVAL; } static inline int sve_get_current_vl(void) { return -EINVAL; } static inline int sve_max_vl(void) { return -EINVAL; } static inline bool sve_vq_available(unsigned int vq) { return false; } static inline void sve_user_disable(void) { BUILD_BUG(); } static inline void sve_user_enable(void) { BUILD_BUG(); } #define sve_cond_update_zcr_vq(val, reg) do { } while (0) static inline void vec_init_vq_map(enum vec_type t) { } static inline void vec_update_vq_map(enum vec_type t) { } static inline int vec_verify_vq_map(enum vec_type t) { return 0; } static inline void sve_setup(void) { } static inline size_t sve_state_size(struct task_struct const *task) { return 0; } #endif /* ! CONFIG_ARM64_SVE */ #ifdef CONFIG_ARM64_SME static inline void sme_user_disable(void) { sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0); } static inline void sme_user_enable(void) { sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN); } static inline void sme_smstart_sm(void) { asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr")); } static inline void sme_smstop_sm(void) { asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr")); } static inline void sme_smstop(void) { asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr")); } extern void __init sme_setup(void); static inline int sme_max_vl(void) { return vec_max_vl(ARM64_VEC_SME); } static inline int sme_max_virtualisable_vl(void) { return vec_max_virtualisable_vl(ARM64_VEC_SME); } extern void sme_alloc(struct task_struct *task); extern unsigned int sme_get_vl(void); extern int sme_set_current_vl(unsigned long arg); extern int sme_get_current_vl(void); /* * Return how many bytes of memory are required to store the full SME * specific state (currently just ZA) for task, given task's currently * configured vector length. */ static inline size_t za_state_size(struct task_struct const *task) { unsigned int vl = task_get_sme_vl(task); return ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl)); } #else static inline void sme_user_disable(void) { BUILD_BUG(); } static inline void sme_user_enable(void) { BUILD_BUG(); } static inline void sme_smstart_sm(void) { } static inline void sme_smstop_sm(void) { } static inline void sme_smstop(void) { } static inline void sme_alloc(struct task_struct *task) { } static inline void sme_setup(void) { } static inline unsigned int sme_get_vl(void) { return 0; } static inline int sme_max_vl(void) { return 0; } static inline int sme_max_virtualisable_vl(void) { return 0; } static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; } static inline int sme_get_current_vl(void) { return -EINVAL; } static inline size_t za_state_size(struct task_struct const *task) { return 0; } #endif /* ! CONFIG_ARM64_SME */ /* For use by EFI runtime services calls only */ extern void __efi_fpsimd_begin(void); extern void __efi_fpsimd_end(void); #endif #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1