Contributors: 13
Author Tokens Token Proportion Commits Commit Proportion
John Crispin 1954 57.49% 9 25.71%
Hauke Mehrtens 1267 37.28% 12 34.29%
Aleksander Jan Bajkowski 72 2.12% 1 2.86%
Xiaoke Wang 43 1.27% 1 2.86%
Martin Blumenstingl 21 0.62% 3 8.57%
Liang He 15 0.44% 1 2.86%
Mathias Kresin 8 0.24% 2 5.71%
Martin Schiller 8 0.24% 1 2.86%
Felix Fietkau 4 0.12% 1 2.86%
Christoph Hellwig 3 0.09% 1 2.86%
Thomas Gleixner 2 0.06% 1 2.86%
Ralf Baechle 1 0.03% 1 2.86%
Masanari Iida 1 0.03% 1 2.86%
Total 3399 35


// SPDX-License-Identifier: GPL-2.0-only
/*
 *
 *  Copyright (C) 2011-2012 John Crispin <john@phrozen.org>
 *  Copyright (C) 2013-2015 Lantiq Beteiligungs-GmbH & Co.KG
 */

#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/clkdev.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>

#include <lantiq_soc.h>

#include "../clk.h"
#include "../prom.h"

/* clock control register for legacy */
#define CGU_IFCCR	0x0018
#define CGU_IFCCR_VR9	0x0024
/* system clock register for legacy */
#define CGU_SYS		0x0010
/* pci control register */
#define CGU_PCICR	0x0034
#define CGU_PCICR_VR9	0x0038
/* ephy configuration register */
#define CGU_EPHY	0x10

/* Legacy PMU register for ar9, ase, danube */
/* power control register */
#define PMU_PWDCR	0x1C
/* power status register */
#define PMU_PWDSR	0x20
/* power control register */
#define PMU_PWDCR1	0x24
/* power status register */
#define PMU_PWDSR1	0x28
/* power control register */
#define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
/* power status register */
#define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))


/* PMU register for ar10 and grx390 */

/* First register set */
#define PMU_CLK_SR	0x20 /* status */
#define PMU_CLK_CR_A	0x24 /* Enable */
#define PMU_CLK_CR_B	0x28 /* Disable */
/* Second register set */
#define PMU_CLK_SR1	0x30 /* status */
#define PMU_CLK_CR1_A	0x34 /* Enable */
#define PMU_CLK_CR1_B	0x38 /* Disable */
/* Third register set */
#define PMU_ANA_SR	0x40 /* status */
#define PMU_ANA_CR_A	0x44 /* Enable */
#define PMU_ANA_CR_B	0x48 /* Disable */

/* Status */
static u32 pmu_clk_sr[] = {
	PMU_CLK_SR,
	PMU_CLK_SR1,
	PMU_ANA_SR,
};

/* Enable */
static u32 pmu_clk_cr_a[] = {
	PMU_CLK_CR_A,
	PMU_CLK_CR1_A,
	PMU_ANA_CR_A,
};

/* Disable */
static u32 pmu_clk_cr_b[] = {
	PMU_CLK_CR_B,
	PMU_CLK_CR1_B,
	PMU_ANA_CR_B,
};

#define PWDCR_EN_XRX(x)		(pmu_clk_cr_a[(x)])
#define PWDCR_DIS_XRX(x)	(pmu_clk_cr_b[(x)])
#define PWDSR_XRX(x)		(pmu_clk_sr[(x)])

/* clock gates that we can en/disable */
#define PMU_USB0_P	BIT(0)
#define PMU_ASE_SDIO	BIT(2) /* ASE special */
#define PMU_PCI		BIT(4)
#define PMU_DMA		BIT(5)
#define PMU_USB0	BIT(6)
#define PMU_ASC0	BIT(7)
#define PMU_EPHY	BIT(7)	/* ase */
#define PMU_USIF	BIT(7) /* from vr9 until grx390 */
#define PMU_SPI		BIT(8)
#define PMU_DFE		BIT(9)
#define PMU_EBU		BIT(10)
#define PMU_STP		BIT(11)
#define PMU_GPT		BIT(12)
#define PMU_AHBS	BIT(13) /* vr9 */
#define PMU_FPI		BIT(14)
#define PMU_AHBM	BIT(15)
#define PMU_SDIO	BIT(16) /* danube, ar9, vr9 */
#define PMU_ASC1	BIT(17)
#define PMU_PPE_QSB	BIT(18)
#define PMU_PPE_SLL01	BIT(19)
#define PMU_DEU		BIT(20)
#define PMU_PPE_TC	BIT(21)
#define PMU_PPE_EMA	BIT(22)
#define PMU_PPE_DPLUM	BIT(23)
#define PMU_PPE_DP	BIT(23)
#define PMU_PPE_DPLUS	BIT(24)
#define PMU_USB1_P	BIT(26)
#define PMU_GPHY3	BIT(26) /* grx390 */
#define PMU_USB1	BIT(27)
#define PMU_SWITCH	BIT(28)
#define PMU_PPE_TOP	BIT(29)
#define PMU_GPHY0	BIT(29) /* ar10, xrx390 */
#define PMU_GPHY	BIT(30)
#define PMU_GPHY1	BIT(30) /* ar10, xrx390 */
#define PMU_PCIE_CLK	BIT(31)
#define PMU_GPHY2	BIT(31) /* ar10, xrx390 */

#define PMU1_PCIE_PHY	BIT(0)	/* vr9-specific,moved in ar10/grx390 */
#define PMU1_PCIE_CTL	BIT(1)
#define PMU1_PCIE_PDI	BIT(4)
#define PMU1_PCIE_MSI	BIT(5)
#define PMU1_CKE	BIT(6)
#define PMU1_PCIE1_CTL	BIT(17)
#define PMU1_PCIE1_PDI	BIT(20)
#define PMU1_PCIE1_MSI	BIT(21)
#define PMU1_PCIE2_CTL	BIT(25)
#define PMU1_PCIE2_PDI	BIT(26)
#define PMU1_PCIE2_MSI	BIT(27)

#define PMU_ANALOG_USB0_P	BIT(0)
#define PMU_ANALOG_USB1_P	BIT(1)
#define PMU_ANALOG_PCIE0_P	BIT(8)
#define PMU_ANALOG_PCIE1_P	BIT(9)
#define PMU_ANALOG_PCIE2_P	BIT(10)
#define PMU_ANALOG_DSL_AFE	BIT(16)
#define PMU_ANALOG_DCDC_2V5	BIT(17)
#define PMU_ANALOG_DCDC_1VX	BIT(18)
#define PMU_ANALOG_DCDC_1V0	BIT(19)

#define pmu_w32(x, y)	ltq_w32((x), pmu_membase + (y))
#define pmu_r32(x)	ltq_r32(pmu_membase + (x))

static void __iomem *pmu_membase;
void __iomem *ltq_cgu_membase;
void __iomem *ltq_ebu_membase;

static u32 ifccr = CGU_IFCCR;
static u32 pcicr = CGU_PCICR;

static DEFINE_SPINLOCK(g_pmu_lock);

/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_enable(unsigned int module)
{
	int retry = 1000000;

	spin_lock(&g_pmu_lock);
	pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
	do {} while (--retry && (pmu_r32(PMU_PWDSR) & module));
	spin_unlock(&g_pmu_lock);

	if (!retry)
		panic("activating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_enable);

/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_disable(unsigned int module)
{
	int retry = 1000000;

	spin_lock(&g_pmu_lock);
	pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
	do {} while (--retry && (!(pmu_r32(PMU_PWDSR) & module)));
	spin_unlock(&g_pmu_lock);

	if (!retry)
		pr_warn("deactivating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_disable);

/* enable a hw clock */
static int cgu_enable(struct clk *clk)
{
	ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
	return 0;
}

/* disable a hw clock */
static void cgu_disable(struct clk *clk)
{
	ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
}

/* enable a clock gate */
static int pmu_enable(struct clk *clk)
{
	int retry = 1000000;

	if (of_machine_is_compatible("lantiq,ar10")
	    || of_machine_is_compatible("lantiq,grx390")) {
		pmu_w32(clk->bits, PWDCR_EN_XRX(clk->module));
		do {} while (--retry &&
			     (!(pmu_r32(PWDSR_XRX(clk->module)) & clk->bits)));

	} else {
		spin_lock(&g_pmu_lock);
		pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
				PWDCR(clk->module));
		do {} while (--retry &&
			     (pmu_r32(PWDSR(clk->module)) & clk->bits));
		spin_unlock(&g_pmu_lock);
	}

	if (!retry)
		panic("activating PMU module failed!");

	return 0;
}

/* disable a clock gate */
static void pmu_disable(struct clk *clk)
{
	int retry = 1000000;

	if (of_machine_is_compatible("lantiq,ar10")
	    || of_machine_is_compatible("lantiq,grx390")) {
		pmu_w32(clk->bits, PWDCR_DIS_XRX(clk->module));
		do {} while (--retry &&
			     (pmu_r32(PWDSR_XRX(clk->module)) & clk->bits));
	} else {
		spin_lock(&g_pmu_lock);
		pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
				PWDCR(clk->module));
		do {} while (--retry &&
			     (!(pmu_r32(PWDSR(clk->module)) & clk->bits)));
		spin_unlock(&g_pmu_lock);
	}

	if (!retry)
		pr_warn("deactivating PMU module failed!");
}

/* the pci enable helper */
static int pci_enable(struct clk *clk)
{
	unsigned int val = ltq_cgu_r32(ifccr);
	/* set bus clock speed */
	if (of_machine_is_compatible("lantiq,ar9") ||
			of_machine_is_compatible("lantiq,vr9")) {
		val &= ~0x1f00000;
		if (clk->rate == CLOCK_33M)
			val |= 0xe00000;
		else
			val |= 0x700000; /* 62.5M */
	} else {
		val &= ~0xf00000;
		if (clk->rate == CLOCK_33M)
			val |= 0x800000;
		else
			val |= 0x400000; /* 62.5M */
	}
	ltq_cgu_w32(val, ifccr);
	pmu_enable(clk);
	return 0;
}

/* enable the external clock as a source */
static int pci_ext_enable(struct clk *clk)
{
	ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
	ltq_cgu_w32((1 << 30), pcicr);
	return 0;
}

/* disable the external clock as a source */
static void pci_ext_disable(struct clk *clk)
{
	ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
	ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
}

/* enable a clockout source */
static int clkout_enable(struct clk *clk)
{
	int i;

	/* get the correct rate */
	for (i = 0; i < 4; i++) {
		if (clk->rates[i] == clk->rate) {
			int shift = 14 - (2 * clk->module);
			int enable = 7 - clk->module;
			unsigned int val = ltq_cgu_r32(ifccr);

			val &= ~(3 << shift);
			val |= i << shift;
			val |= enable;
			ltq_cgu_w32(val, ifccr);
			return 0;
		}
	}
	return -1;
}

/* manage the clock gates via PMU */
static void clkdev_add_pmu(const char *dev, const char *con, bool deactivate,
			   unsigned int module, unsigned int bits)
{
	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);

	if (!clk)
		return;
	clk->cl.dev_id = dev;
	clk->cl.con_id = con;
	clk->cl.clk = clk;
	clk->enable = pmu_enable;
	clk->disable = pmu_disable;
	clk->module = module;
	clk->bits = bits;
	if (deactivate) {
		/*
		 * Disable it during the initialization. Module should enable
		 * when used
		 */
		pmu_disable(clk);
	}
	clkdev_add(&clk->cl);
}

/* manage the clock generator */
static void clkdev_add_cgu(const char *dev, const char *con,
					unsigned int bits)
{
	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);

	if (!clk)
		return;
	clk->cl.dev_id = dev;
	clk->cl.con_id = con;
	clk->cl.clk = clk;
	clk->enable = cgu_enable;
	clk->disable = cgu_disable;
	clk->bits = bits;
	clkdev_add(&clk->cl);
}

/* pci needs its own enable function as the setup is a bit more complex */
static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};

static void clkdev_add_pci(void)
{
	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
	struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);

	/* main pci clock */
	if (clk) {
		clk->cl.dev_id = "17000000.pci";
		clk->cl.con_id = NULL;
		clk->cl.clk = clk;
		clk->rate = CLOCK_33M;
		clk->rates = valid_pci_rates;
		clk->enable = pci_enable;
		clk->disable = pmu_disable;
		clk->module = 0;
		clk->bits = PMU_PCI;
		clkdev_add(&clk->cl);
	}

	/* use internal/external bus clock */
	if (clk_ext) {
		clk_ext->cl.dev_id = "17000000.pci";
		clk_ext->cl.con_id = "external";
		clk_ext->cl.clk = clk_ext;
		clk_ext->enable = pci_ext_enable;
		clk_ext->disable = pci_ext_disable;
		clkdev_add(&clk_ext->cl);
	}
}

/* xway socs can generate clocks on gpio pins */
static unsigned long valid_clkout_rates[4][5] = {
	{CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
	{CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
	{CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
	{CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
};

static void clkdev_add_clkout(void)
{
	int i;

	for (i = 0; i < 4; i++) {
		struct clk *clk;
		char *name;

		name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
		if (!name)
			continue;
		sprintf(name, "clkout%d", i);

		clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
		if (!clk) {
			kfree(name);
			continue;
		}
		clk->cl.dev_id = "1f103000.cgu";
		clk->cl.con_id = name;
		clk->cl.clk = clk;
		clk->rate = 0;
		clk->rates = valid_clkout_rates[i];
		clk->enable = clkout_enable;
		clk->module = i;
		clkdev_add(&clk->cl);
	}
}

/* bring up all register ranges that we need for basic system control */
void __init ltq_soc_init(void)
{
	struct resource res_pmu, res_cgu, res_ebu;
	struct device_node *np_pmu =
			of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
	struct device_node *np_cgu =
			of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
	struct device_node *np_ebu =
			of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");

	/* check if all the core register ranges are available */
	if (!np_pmu || !np_cgu || !np_ebu)
		panic("Failed to load core nodes from devicetree");

	if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
			of_address_to_resource(np_cgu, 0, &res_cgu) ||
			of_address_to_resource(np_ebu, 0, &res_ebu))
		panic("Failed to get core resources");

	of_node_put(np_pmu);
	of_node_put(np_cgu);
	of_node_put(np_ebu);

	if (!request_mem_region(res_pmu.start, resource_size(&res_pmu),
				res_pmu.name) ||
		!request_mem_region(res_cgu.start, resource_size(&res_cgu),
				res_cgu.name) ||
		!request_mem_region(res_ebu.start, resource_size(&res_ebu),
				res_ebu.name))
		pr_err("Failed to request core resources");

	pmu_membase = ioremap(res_pmu.start, resource_size(&res_pmu));
	ltq_cgu_membase = ioremap(res_cgu.start,
						resource_size(&res_cgu));
	ltq_ebu_membase = ioremap(res_ebu.start,
						resource_size(&res_ebu));
	if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
		panic("Failed to remap core resources");

	/* make sure to unprotect the memory region where flash is located */
	ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);

	/* add our generic xway clocks */
	clkdev_add_pmu("10000000.fpi", NULL, 0, 0, PMU_FPI);
	clkdev_add_pmu("1e100a00.gptu", NULL, 1, 0, PMU_GPT);
	clkdev_add_pmu("1e100bb0.stp", NULL, 1, 0, PMU_STP);
	clkdev_add_pmu("1e100c00.serial", NULL, 0, 0, PMU_ASC1);
	clkdev_add_pmu("1e104100.dma", NULL, 1, 0, PMU_DMA);
	clkdev_add_pmu("1e100800.spi", NULL, 1, 0, PMU_SPI);
	clkdev_add_pmu("1e105300.ebu", NULL, 0, 0, PMU_EBU);
	clkdev_add_clkout();

	/* add the soc dependent clocks */
	if (of_machine_is_compatible("lantiq,vr9")) {
		ifccr = CGU_IFCCR_VR9;
		pcicr = CGU_PCICR_VR9;
	} else {
		clkdev_add_pmu("1e180000.etop", NULL, 1, 0, PMU_PPE);
	}

	if (!of_machine_is_compatible("lantiq,ase"))
		clkdev_add_pci();

	if (of_machine_is_compatible("lantiq,grx390") ||
	    of_machine_is_compatible("lantiq,ar10")) {
		clkdev_add_pmu("1e108000.switch", "gphy0", 0, 0, PMU_GPHY0);
		clkdev_add_pmu("1e108000.switch", "gphy1", 0, 0, PMU_GPHY1);
		clkdev_add_pmu("1e108000.switch", "gphy2", 0, 0, PMU_GPHY2);
		clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 2, PMU_ANALOG_USB0_P);
		clkdev_add_pmu("1f203034.usb2-phy", "phy", 1, 2, PMU_ANALOG_USB1_P);
		/* rc 0 */
		clkdev_add_pmu("1f106800.phy", "phy", 1, 2, PMU_ANALOG_PCIE0_P);
		clkdev_add_pmu("1d900000.pcie", "msi", 1, 1, PMU1_PCIE_MSI);
		clkdev_add_pmu("1f106800.phy", "pdi", 1, 1, PMU1_PCIE_PDI);
		clkdev_add_pmu("1d900000.pcie", "ctl", 1, 1, PMU1_PCIE_CTL);
		/* rc 1 */
		clkdev_add_pmu("1f700400.phy", "phy", 1, 2, PMU_ANALOG_PCIE1_P);
		clkdev_add_pmu("19000000.pcie", "msi", 1, 1, PMU1_PCIE1_MSI);
		clkdev_add_pmu("1f700400.phy", "pdi", 1, 1, PMU1_PCIE1_PDI);
		clkdev_add_pmu("19000000.pcie", "ctl", 1, 1, PMU1_PCIE1_CTL);
	}

	if (of_machine_is_compatible("lantiq,ase")) {
		if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
			clkdev_add_static(CLOCK_266M, CLOCK_133M,
						CLOCK_133M, CLOCK_266M);
		else
			clkdev_add_static(CLOCK_133M, CLOCK_133M,
						CLOCK_133M, CLOCK_133M);
		clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
		clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e180000.etop", "ppe", 1, 0, PMU_PPE);
		clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY);
		clkdev_add_pmu("1e180000.etop", "ephy", 1, 0, PMU_EPHY);
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_ASE_SDIO);
		clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
	} else if (of_machine_is_compatible("lantiq,grx390")) {
		clkdev_add_static(ltq_grx390_cpu_hz(), ltq_grx390_fpi_hz(),
				  ltq_grx390_fpi_hz(), ltq_grx390_pp32_hz());
		clkdev_add_pmu("1e108000.switch", "gphy3", 0, 0, PMU_GPHY3);
		clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
		clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1);
		/* rc 2 */
		clkdev_add_pmu("1f106a00.pcie", "phy", 1, 2, PMU_ANALOG_PCIE2_P);
		clkdev_add_pmu("1a800000.pcie", "msi", 1, 1, PMU1_PCIE2_MSI);
		clkdev_add_pmu("1f106a00.pcie", "pdi", 1, 1, PMU1_PCIE2_PDI);
		clkdev_add_pmu("1a800000.pcie", "ctl", 1, 1, PMU1_PCIE2_CTL);
		clkdev_add_pmu("1e10b308.eth", NULL, 0, 0, PMU_SWITCH | PMU_PPE_DP);
		clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
		clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
	} else if (of_machine_is_compatible("lantiq,ar10")) {
		clkdev_add_static(ltq_ar10_cpu_hz(), ltq_ar10_fpi_hz(),
				  ltq_ar10_fpi_hz(), ltq_ar10_pp32_hz());
		clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0);
		clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1);
		clkdev_add_pmu("1e10b308.eth", NULL, 0, 0, PMU_SWITCH |
			       PMU_PPE_DP | PMU_PPE_TC);
		clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
		clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
		clkdev_add_pmu("1e116000.mei", "afe", 1, 2, PMU_ANALOG_DSL_AFE);
		clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
	} else if (of_machine_is_compatible("lantiq,vr9")) {
		clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
				ltq_vr9_fpi_hz(), ltq_vr9_pp32_hz());
		clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0 | PMU_AHBM);
		clkdev_add_pmu("1f203034.usb2-phy", "phy", 1, 0, PMU_USB1_P);
		clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1 | PMU_AHBM);
		clkdev_add_pmu("1f106800.phy", "phy", 1, 1, PMU1_PCIE_PHY);
		clkdev_add_pmu("1d900000.pcie", "bus", 1, 0, PMU_PCIE_CLK);
		clkdev_add_pmu("1d900000.pcie", "msi", 1, 1, PMU1_PCIE_MSI);
		clkdev_add_pmu("1f106800.phy", "pdi", 1, 1, PMU1_PCIE_PDI);
		clkdev_add_pmu("1d900000.pcie", "ctl", 1, 1, PMU1_PCIE_CTL);
		clkdev_add_pmu(NULL, "ahb", 1, 0, PMU_AHBM | PMU_AHBS);

		clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
		clkdev_add_pmu("1e10b308.eth", NULL, 0, 0,
				PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM |
				PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
				PMU_PPE_QSB | PMU_PPE_TOP);
		clkdev_add_pmu("1e108000.switch", "gphy0", 0, 0, PMU_GPHY);
		clkdev_add_pmu("1e108000.switch", "gphy1", 0, 0, PMU_GPHY);
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
		clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
		clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
	} else if (of_machine_is_compatible("lantiq,ar9")) {
		clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
				ltq_ar9_fpi_hz(), CLOCK_250M);
		clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0 | PMU_AHBM);
		clkdev_add_pmu("1f203034.usb2-phy", "phy", 1, 0, PMU_USB1_P);
		clkdev_add_pmu("1e106000.usb", "otg", 1, 0, PMU_USB1 | PMU_AHBM);
		clkdev_add_pmu("1e180000.etop", "switch", 1, 0, PMU_SWITCH);
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
		clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
		clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
		clkdev_add_pmu("1e100400.serial", NULL, 1, 0, PMU_ASC0);
	} else {
		clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
				ltq_danube_fpi_hz(), ltq_danube_pp32_hz());
		clkdev_add_pmu("1e101000.usb", "otg", 1, 0, PMU_USB0 | PMU_AHBM);
		clkdev_add_pmu("1f203018.usb2-phy", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
		clkdev_add_pmu("1e103100.deu", NULL, 1, 0, PMU_DEU);
		clkdev_add_pmu("1e116000.mei", "dfe", 1, 0, PMU_DFE);
		clkdev_add_pmu("1e100400.serial", NULL, 1, 0, PMU_ASC0);
	}
}