Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mackerras | 958 | 17.60% | 37 | 21.14% |
Benjamin Herrenschmidt | 819 | 15.05% | 6 | 3.43% |
Alexander Graf | 705 | 12.95% | 25 | 14.29% |
Aneesh Kumar K.V | 664 | 12.20% | 8 | 4.57% |
Hollis Blanchard | 385 | 7.07% | 16 | 9.14% |
Scott Wood | 292 | 5.36% | 11 | 6.29% |
Suresh E. Warrier | 262 | 4.81% | 8 | 4.57% |
Mihai Caraman | 219 | 4.02% | 4 | 2.29% |
Cédric Le Goater | 186 | 3.42% | 4 | 2.29% |
Bharat Bhushan | 153 | 2.81% | 8 | 4.57% |
Alexey Kardashevskiy | 127 | 2.33% | 6 | 3.43% |
Nicholas Piggin | 124 | 2.28% | 7 | 4.00% |
Michael Ellerman | 110 | 2.02% | 4 | 2.29% |
David Gibson | 68 | 1.25% | 5 | 2.86% |
Suraj Jitindar Singh | 67 | 1.23% | 2 | 1.14% |
Sean Christopherson | 58 | 1.07% | 5 | 2.86% |
Bin Lu | 50 | 0.92% | 1 | 0.57% |
Michael Roth | 40 | 0.73% | 1 | 0.57% |
Simon Guo | 40 | 0.73% | 3 | 1.71% |
Jose Ricardo Ziviani | 32 | 0.59% | 1 | 0.57% |
Bharata B Rao | 20 | 0.37% | 2 | 1.14% |
Laurent Dufour | 18 | 0.33% | 1 | 0.57% |
Ravi Bangoria | 12 | 0.22% | 1 | 0.57% |
Paolo Bonzini | 12 | 0.22% | 1 | 0.57% |
Madhavan Srinivasan | 9 | 0.17% | 4 | 2.29% |
Fabiano Rosas | 9 | 0.17% | 1 | 0.57% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.57% |
Dan J Williams | 1 | 0.02% | 1 | 0.57% |
Takuya Yoshikawa | 1 | 0.02% | 1 | 0.57% |
Total | 5443 | 175 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * * Copyright IBM Corp. 2008 * * Authors: Hollis Blanchard <hollisb@us.ibm.com> */ #ifndef __POWERPC_KVM_PPC_H__ #define __POWERPC_KVM_PPC_H__ /* This file exists just so we can dereference kvm_vcpu, avoiding nested header * dependencies. */ #include <linux/mutex.h> #include <linux/timer.h> #include <linux/types.h> #include <linux/kvm_types.h> #include <linux/kvm_host.h> #include <linux/bug.h> #ifdef CONFIG_PPC_BOOK3S #include <asm/kvm_book3s.h> #else #include <asm/kvm_booke.h> #endif #ifdef CONFIG_KVM_BOOK3S_64_HANDLER #include <asm/paca.h> #include <asm/xive.h> #include <asm/cpu_has_feature.h> #endif /* * KVMPPC_INST_SW_BREAKPOINT is debug Instruction * for supporting software breakpoint. */ #define KVMPPC_INST_SW_BREAKPOINT 0x00dddd00 enum emulation_result { EMULATE_DONE, /* no further processing */ EMULATE_DO_MMIO, /* kvm_run filled with MMIO request */ EMULATE_FAIL, /* can't emulate this instruction */ EMULATE_AGAIN, /* something went wrong. go again */ EMULATE_EXIT_USER, /* emulation requires exit to user-space */ }; enum instruction_fetch_type { INST_GENERIC, INST_SC, /* system call */ }; enum xlate_instdata { XLATE_INST, /* translate instruction address */ XLATE_DATA /* translate data address */ }; enum xlate_readwrite { XLATE_READ, /* check for read permissions */ XLATE_WRITE /* check for write permissions */ }; extern int kvmppc_vcpu_run(struct kvm_vcpu *vcpu); extern int __kvmppc_vcpu_run(struct kvm_vcpu *vcpu); extern void kvmppc_handler_highmem(void); extern void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu); extern int kvmppc_handle_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian); extern int kvmppc_handle_loads(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian); extern int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian, int mmio_sign_extend); extern int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian); extern int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, unsigned int rs, unsigned int bytes, int is_default_endian); extern int kvmppc_handle_store(struct kvm_vcpu *vcpu, u64 val, unsigned int bytes, int is_default_endian); extern int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, int rs, unsigned int bytes, int is_default_endian); extern int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_fetch_type type, u32 *inst); extern int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data); extern int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data); extern int kvmppc_emulate_instruction(struct kvm_vcpu *vcpu); extern int kvmppc_emulate_loadstore(struct kvm_vcpu *vcpu); extern int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu); extern void kvmppc_emulate_dec(struct kvm_vcpu *vcpu); extern u32 kvmppc_get_dec(struct kvm_vcpu *vcpu, u64 tb); extern void kvmppc_decrementer_func(struct kvm_vcpu *vcpu); extern int kvmppc_sanity_check(struct kvm_vcpu *vcpu); extern int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu); extern void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu); /* Core-specific hooks */ extern void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr, unsigned int gtlb_idx); extern void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode); extern void kvmppc_mmu_switch_pid(struct kvm_vcpu *vcpu, u32 pid); extern int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr); extern int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr); extern gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index, gva_t eaddr); extern void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu); extern void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu); extern int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid, enum xlate_readwrite xlrw, struct kvmppc_pte *pte); extern int kvmppc_core_vcpu_create(struct kvm_vcpu *vcpu); extern void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu); extern int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu); extern int kvmppc_core_check_processor_compat(void); extern int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr); extern void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu); extern void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu); extern int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu); extern int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_machine_check(struct kvm_vcpu *vcpu, ulong flags); extern void kvmppc_core_queue_syscall(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags); extern void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_vec_unavail(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_vsx_unavail(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu); extern void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq); extern void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu, ulong dear_flags, ulong esr_flags); extern void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dear_flags, ulong esr_flags); extern void kvmppc_core_queue_itlb_miss(struct kvm_vcpu *vcpu); extern void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong esr_flags); extern void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu); extern int kvmppc_core_check_requests(struct kvm_vcpu *vcpu); extern int kvmppc_booke_init(void); extern void kvmppc_booke_exit(void); extern void kvmppc_core_destroy_mmu(struct kvm_vcpu *vcpu); extern int kvmppc_kvm_pv(struct kvm_vcpu *vcpu); extern void kvmppc_map_magic(struct kvm_vcpu *vcpu); extern int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order); extern void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info); extern long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order); extern void kvmppc_free_hpt(struct kvm_hpt_info *info); extern void kvmppc_rmap_reset(struct kvm *kvm); extern long kvmppc_prepare_vrma(struct kvm *kvm, struct kvm_userspace_memory_region *mem); extern void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, unsigned long porder); extern int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu); extern long kvm_spapr_tce_attach_iommu_group(struct kvm *kvm, int tablefd, struct iommu_group *grp); extern void kvm_spapr_tce_release_iommu_group(struct kvm *kvm, struct iommu_group *grp); extern int kvmppc_switch_mmu_to_hpt(struct kvm *kvm); extern int kvmppc_switch_mmu_to_radix(struct kvm *kvm); extern void kvmppc_setup_partition_table(struct kvm *kvm); extern long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm, struct kvm_create_spapr_tce_64 *args); #define kvmppc_ioba_validate(stt, ioba, npages) \ (iommu_tce_check_ioba((stt)->page_shift, (stt)->offset, \ (stt)->size, (ioba), (npages)) ? \ H_PARAMETER : H_SUCCESS) extern long kvmppc_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba, unsigned long tce); extern long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba, unsigned long tce_list, unsigned long npages); extern long kvmppc_h_stuff_tce(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba, unsigned long tce_value, unsigned long npages); extern long kvmppc_h_get_tce(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba); extern struct page *kvm_alloc_hpt_cma(unsigned long nr_pages); extern void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages); extern int kvmppc_core_init_vm(struct kvm *kvm); extern void kvmppc_core_destroy_vm(struct kvm *kvm); extern void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); extern int kvmppc_core_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change); extern void kvmppc_core_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change); extern int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info); extern void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot); extern int kvmppc_bookehv_init(void); extern void kvmppc_bookehv_exit(void); extern int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu); extern int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *); extern long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, struct kvm_ppc_resize_hpt *rhpt); extern long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, struct kvm_ppc_resize_hpt *rhpt); int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq); extern int kvm_vm_ioctl_rtas_define_token(struct kvm *kvm, void __user *argp); extern int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu); extern void kvmppc_rtas_tokens_free(struct kvm *kvm); extern int kvmppc_xics_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority); extern int kvmppc_xics_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority); extern int kvmppc_xics_int_on(struct kvm *kvm, u32 irq); extern int kvmppc_xics_int_off(struct kvm *kvm, u32 irq); void kvmppc_core_dequeue_debug(struct kvm_vcpu *vcpu); void kvmppc_core_queue_debug(struct kvm_vcpu *vcpu); union kvmppc_one_reg { u32 wval; u64 dval; vector128 vval; u64 vsxval[2]; u32 vsx32val[4]; u16 vsx16val[8]; u8 vsx8val[16]; struct { u64 addr; u64 length; } vpaval; u64 xive_timaval[2]; }; struct kvmppc_ops { struct module *owner; int (*get_sregs)(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int (*set_sregs)(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int (*get_one_reg)(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val); int (*set_one_reg)(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val); void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); void (*vcpu_put)(struct kvm_vcpu *vcpu); void (*inject_interrupt)(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags); void (*set_msr)(struct kvm_vcpu *vcpu, u64 msr); int (*vcpu_run)(struct kvm_vcpu *vcpu); int (*vcpu_create)(struct kvm_vcpu *vcpu); void (*vcpu_free)(struct kvm_vcpu *vcpu); int (*check_requests)(struct kvm_vcpu *vcpu); int (*get_dirty_log)(struct kvm *kvm, struct kvm_dirty_log *log); void (*flush_memslot)(struct kvm *kvm, struct kvm_memory_slot *memslot); int (*prepare_memory_region)(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change); void (*commit_memory_region)(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change); bool (*unmap_gfn_range)(struct kvm *kvm, struct kvm_gfn_range *range); bool (*age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range); bool (*test_age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range); bool (*set_spte_gfn)(struct kvm *kvm, struct kvm_gfn_range *range); void (*free_memslot)(struct kvm_memory_slot *slot); int (*init_vm)(struct kvm *kvm); void (*destroy_vm)(struct kvm *kvm); int (*get_smmu_info)(struct kvm *kvm, struct kvm_ppc_smmu_info *info); int (*emulate_op)(struct kvm_vcpu *vcpu, unsigned int inst, int *advance); int (*emulate_mtspr)(struct kvm_vcpu *vcpu, int sprn, ulong spr_val); int (*emulate_mfspr)(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val); void (*fast_vcpu_kick)(struct kvm_vcpu *vcpu); long (*arch_vm_ioctl)(struct file *filp, unsigned int ioctl, unsigned long arg); int (*hcall_implemented)(unsigned long hcall); int (*irq_bypass_add_producer)(struct irq_bypass_consumer *, struct irq_bypass_producer *); void (*irq_bypass_del_producer)(struct irq_bypass_consumer *, struct irq_bypass_producer *); int (*configure_mmu)(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg); int (*get_rmmu_info)(struct kvm *kvm, struct kvm_ppc_rmmu_info *info); int (*set_smt_mode)(struct kvm *kvm, unsigned long mode, unsigned long flags); void (*giveup_ext)(struct kvm_vcpu *vcpu, ulong msr); int (*enable_nested)(struct kvm *kvm); int (*load_from_eaddr)(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, int size); int (*store_to_eaddr)(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, int size); int (*enable_svm)(struct kvm *kvm); int (*svm_off)(struct kvm *kvm); int (*enable_dawr1)(struct kvm *kvm); bool (*hash_v3_possible)(void); int (*create_vm_debugfs)(struct kvm *kvm); int (*create_vcpu_debugfs)(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); }; extern struct kvmppc_ops *kvmppc_hv_ops; extern struct kvmppc_ops *kvmppc_pr_ops; static inline int kvmppc_get_last_inst(struct kvm_vcpu *vcpu, enum instruction_fetch_type type, u32 *inst) { int ret = EMULATE_DONE; u32 fetched_inst; /* Load the instruction manually if it failed to do so in the * exit path */ if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) ret = kvmppc_load_last_inst(vcpu, type, &vcpu->arch.last_inst); /* Write fetch_failed unswapped if the fetch failed */ if (ret == EMULATE_DONE) fetched_inst = kvmppc_need_byteswap(vcpu) ? swab32(vcpu->arch.last_inst) : vcpu->arch.last_inst; else fetched_inst = vcpu->arch.last_inst; *inst = fetched_inst; return ret; } static inline bool is_kvmppc_hv_enabled(struct kvm *kvm) { return kvm->arch.kvm_ops == kvmppc_hv_ops; } extern int kvmppc_hwrng_present(void); /* * Cuts out inst bits with ordering according to spec. * That means the leftmost bit is zero. All given bits are included. */ static inline u32 kvmppc_get_field(u64 inst, int msb, int lsb) { u32 r; u32 mask; BUG_ON(msb > lsb); mask = (1 << (lsb - msb + 1)) - 1; r = (inst >> (63 - lsb)) & mask; return r; } /* * Replaces inst bits with ordering according to spec. */ static inline u32 kvmppc_set_field(u64 inst, int msb, int lsb, int value) { u32 r; u32 mask; BUG_ON(msb > lsb); mask = ((1 << (lsb - msb + 1)) - 1) << (63 - lsb); r = (inst & ~mask) | ((value << (63 - lsb)) & mask); return r; } #define one_reg_size(id) \ (1ul << (((id) & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT)) #define get_reg_val(id, reg) ({ \ union kvmppc_one_reg __u; \ switch (one_reg_size(id)) { \ case 4: __u.wval = (reg); break; \ case 8: __u.dval = (reg); break; \ default: BUG(); \ } \ __u; \ }) #define set_reg_val(id, val) ({ \ u64 __v; \ switch (one_reg_size(id)) { \ case 4: __v = (val).wval; break; \ case 8: __v = (val).dval; break; \ default: BUG(); \ } \ __v; \ }) int kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg); int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg); int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *); int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *); void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid); struct openpic; #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE extern void kvm_cma_reserve(void) __init; static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr) { paca_ptrs[cpu]->kvm_hstate.xics_phys = (void __iomem *)addr; } static inline void kvmppc_set_xive_tima(int cpu, unsigned long phys_addr, void __iomem *virt_addr) { paca_ptrs[cpu]->kvm_hstate.xive_tima_phys = (void __iomem *)phys_addr; paca_ptrs[cpu]->kvm_hstate.xive_tima_virt = virt_addr; } static inline u32 kvmppc_get_xics_latch(void) { u32 xirr; xirr = get_paca()->kvm_hstate.saved_xirr; get_paca()->kvm_hstate.saved_xirr = 0; return xirr; } /* * To avoid the need to unnecessarily exit fully to the host kernel, an IPI to * a CPU thread that's running/napping inside of a guest is by default regarded * as a request to wake the CPU (if needed) and continue execution within the * guest, potentially to process new state like externally-generated * interrupts or IPIs sent from within the guest itself (e.g. H_PROD/H_IPI). * * To force an exit to the host kernel, kvmppc_set_host_ipi() must be called * prior to issuing the IPI to set the corresponding 'host_ipi' flag in the * target CPU's PACA. To avoid unnecessary exits to the host, this flag should * be immediately cleared via kvmppc_clear_host_ipi() by the IPI handler on * the receiving side prior to processing the IPI work. * * NOTE: * * We currently issue an smp_mb() at the beginning of kvmppc_set_host_ipi(). * This is to guard against sequences such as the following: * * CPU * X: smp_muxed_ipi_set_message(): * X: smp_mb() * X: message[RESCHEDULE] = 1 * X: doorbell_global_ipi(42): * X: kvmppc_set_host_ipi(42) * X: ppc_msgsnd_sync()/smp_mb() * X: ppc_msgsnd() -> 42 * 42: doorbell_exception(): // from CPU X * 42: ppc_msgsync() * 105: smp_muxed_ipi_set_message(): * 105: smb_mb() * // STORE DEFERRED DUE TO RE-ORDERING * --105: message[CALL_FUNCTION] = 1 * | 105: doorbell_global_ipi(42): * | 105: kvmppc_set_host_ipi(42) * | 42: kvmppc_clear_host_ipi(42) * | 42: smp_ipi_demux_relaxed() * | 42: // returns to executing guest * | // RE-ORDERED STORE COMPLETES * ->105: message[CALL_FUNCTION] = 1 * 105: ppc_msgsnd_sync()/smp_mb() * 105: ppc_msgsnd() -> 42 * 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored * 105: // hangs waiting on 42 to process messages/call_single_queue * * We also issue an smp_mb() at the end of kvmppc_clear_host_ipi(). This is * to guard against sequences such as the following (as well as to create * a read-side pairing with the barrier in kvmppc_set_host_ipi()): * * CPU * X: smp_muxed_ipi_set_message(): * X: smp_mb() * X: message[RESCHEDULE] = 1 * X: doorbell_global_ipi(42): * X: kvmppc_set_host_ipi(42) * X: ppc_msgsnd_sync()/smp_mb() * X: ppc_msgsnd() -> 42 * 42: doorbell_exception(): // from CPU X * 42: ppc_msgsync() * // STORE DEFERRED DUE TO RE-ORDERING * -- 42: kvmppc_clear_host_ipi(42) * | 42: smp_ipi_demux_relaxed() * | 105: smp_muxed_ipi_set_message(): * | 105: smb_mb() * | 105: message[CALL_FUNCTION] = 1 * | 105: doorbell_global_ipi(42): * | 105: kvmppc_set_host_ipi(42) * | // RE-ORDERED STORE COMPLETES * -> 42: kvmppc_clear_host_ipi(42) * 42: // returns to executing guest * 105: ppc_msgsnd_sync()/smp_mb() * 105: ppc_msgsnd() -> 42 * 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored * 105: // hangs waiting on 42 to process messages/call_single_queue */ static inline void kvmppc_set_host_ipi(int cpu) { /* * order stores of IPI messages vs. setting of host_ipi flag * * pairs with the barrier in kvmppc_clear_host_ipi() */ smp_mb(); paca_ptrs[cpu]->kvm_hstate.host_ipi = 1; } static inline void kvmppc_clear_host_ipi(int cpu) { paca_ptrs[cpu]->kvm_hstate.host_ipi = 0; /* * order clearing of host_ipi flag vs. processing of IPI messages * * pairs with the barrier in kvmppc_set_host_ipi() */ smp_mb(); } static inline void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu) { vcpu->kvm->arch.kvm_ops->fast_vcpu_kick(vcpu); } extern void kvm_hv_vm_activated(void); extern void kvm_hv_vm_deactivated(void); extern bool kvm_hv_mode_active(void); extern void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu); #else static inline void __init kvm_cma_reserve(void) {} static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr) {} static inline void kvmppc_set_xive_tima(int cpu, unsigned long phys_addr, void __iomem *virt_addr) {} static inline u32 kvmppc_get_xics_latch(void) { return 0; } static inline void kvmppc_set_host_ipi(int cpu) {} static inline void kvmppc_clear_host_ipi(int cpu) {} static inline void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu) { kvm_vcpu_kick(vcpu); } static inline bool kvm_hv_mode_active(void) { return false; } #endif #ifdef CONFIG_PPC_PSERIES static inline bool kvmhv_on_pseries(void) { return !cpu_has_feature(CPU_FTR_HVMODE); } #else static inline bool kvmhv_on_pseries(void) { return false; } #endif #ifdef CONFIG_KVM_XICS static inline int kvmppc_xics_enabled(struct kvm_vcpu *vcpu) { return vcpu->arch.irq_type == KVMPPC_IRQ_XICS; } static inline struct kvmppc_passthru_irqmap *kvmppc_get_passthru_irqmap( struct kvm *kvm) { if (kvm && kvm_irq_bypass) return kvm->arch.pimap; return NULL; } extern void kvmppc_alloc_host_rm_ops(void); extern void kvmppc_free_host_rm_ops(void); extern void kvmppc_free_pimap(struct kvm *kvm); extern int kvmppc_xics_rm_complete(struct kvm_vcpu *vcpu, u32 hcall); extern void kvmppc_xics_free_icp(struct kvm_vcpu *vcpu); extern int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 cmd); extern int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req); extern u64 kvmppc_xics_get_icp(struct kvm_vcpu *vcpu); extern int kvmppc_xics_set_icp(struct kvm_vcpu *vcpu, u64 icpval); extern int kvmppc_xics_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu); extern void kvmppc_xics_ipi_action(void); extern void kvmppc_xics_set_mapped(struct kvm *kvm, unsigned long guest_irq, unsigned long host_irq); extern void kvmppc_xics_clr_mapped(struct kvm *kvm, unsigned long guest_irq, unsigned long host_irq); extern long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu, __be32 xirr, struct kvmppc_irq_map *irq_map, struct kvmppc_passthru_irqmap *pimap, bool *again); extern int kvmppc_xics_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status); extern int h_ipi_redirect; #else static inline struct kvmppc_passthru_irqmap *kvmppc_get_passthru_irqmap( struct kvm *kvm) { return NULL; } static inline void kvmppc_alloc_host_rm_ops(void) {} static inline void kvmppc_free_host_rm_ops(void) {} static inline void kvmppc_free_pimap(struct kvm *kvm) {} static inline int kvmppc_xics_rm_complete(struct kvm_vcpu *vcpu, u32 hcall) { return 0; } static inline int kvmppc_xics_enabled(struct kvm_vcpu *vcpu) { return 0; } static inline void kvmppc_xics_free_icp(struct kvm_vcpu *vcpu) { } static inline int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 cmd) { return 0; } static inline int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req) { return 0; } #endif #ifdef CONFIG_KVM_XIVE /* * Below the first "xive" is the "eXternal Interrupt Virtualization Engine" * ie. P9 new interrupt controller, while the second "xive" is the legacy * "eXternal Interrupt Vector Entry" which is the configuration of an * interrupt on the "xics" interrupt controller on P8 and earlier. Those * two function consume or produce a legacy "XIVE" state from the * new "XIVE" interrupt controller. */ extern int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority); extern int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority); extern int kvmppc_xive_int_on(struct kvm *kvm, u32 irq); extern int kvmppc_xive_int_off(struct kvm *kvm, u32 irq); extern int kvmppc_xive_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu); extern void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu); extern int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, unsigned long host_irq); extern int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, unsigned long host_irq); extern u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu); extern int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval); extern int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status); extern void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu); extern void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu); extern bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu); static inline int kvmppc_xive_enabled(struct kvm_vcpu *vcpu) { return vcpu->arch.irq_type == KVMPPC_IRQ_XIVE; } extern int kvmppc_xive_native_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu); extern void kvmppc_xive_native_cleanup_vcpu(struct kvm_vcpu *vcpu); extern int kvmppc_xive_native_get_vp(struct kvm_vcpu *vcpu, union kvmppc_one_reg *val); extern int kvmppc_xive_native_set_vp(struct kvm_vcpu *vcpu, union kvmppc_one_reg *val); extern bool kvmppc_xive_native_supported(void); #else static inline int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority) { return -1; } static inline int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority) { return -1; } static inline int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) { return -1; } static inline int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) { return -1; } static inline int kvmppc_xive_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu) { return -EBUSY; } static inline void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) { } static inline int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, struct irq_desc *host_desc) { return -ENODEV; } static inline int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, struct irq_desc *host_desc) { return -ENODEV; } static inline u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) { return 0; } static inline int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) { return -ENOENT; } static inline int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status) { return -ENODEV; } static inline void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) { } static inline void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu) { } static inline bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu) { return true; } static inline int kvmppc_xive_enabled(struct kvm_vcpu *vcpu) { return 0; } static inline int kvmppc_xive_native_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu) { return -EBUSY; } static inline void kvmppc_xive_native_cleanup_vcpu(struct kvm_vcpu *vcpu) { } static inline int kvmppc_xive_native_get_vp(struct kvm_vcpu *vcpu, union kvmppc_one_reg *val) { return 0; } static inline int kvmppc_xive_native_set_vp(struct kvm_vcpu *vcpu, union kvmppc_one_reg *val) { return -ENOENT; } #endif /* CONFIG_KVM_XIVE */ #if defined(CONFIG_PPC_POWERNV) && defined(CONFIG_KVM_BOOK3S_64_HANDLER) static inline bool xics_on_xive(void) { return xive_enabled() && cpu_has_feature(CPU_FTR_HVMODE); } #else static inline bool xics_on_xive(void) { return false; } #endif /* * Prototypes for functions called only from assembler code. * Having prototypes reduces sparse errors. */ long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba, unsigned long tce); long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba, unsigned long tce_list, unsigned long npages); long kvmppc_rm_h_stuff_tce(struct kvm_vcpu *vcpu, unsigned long liobn, unsigned long ioba, unsigned long tce_value, unsigned long npages); long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, unsigned int yield_count); long kvmppc_rm_h_random(struct kvm_vcpu *vcpu); void kvmhv_commence_exit(int trap); void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu); void kvmppc_subcore_enter_guest(void); void kvmppc_subcore_exit_guest(void); long kvmppc_realmode_hmi_handler(void); long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu); long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags, long pte_index, unsigned long pteh, unsigned long ptel); long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index, unsigned long avpn); long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu); long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index, unsigned long avpn); long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index); long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index); long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index); long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long dest, unsigned long src); long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, unsigned long slb_v, unsigned int status, bool data); void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu); /* * Host-side operations we want to set up while running in real * mode in the guest operating on the xics. * Currently only VCPU wakeup is supported. */ union kvmppc_rm_state { unsigned long raw; struct { u32 in_host; u32 rm_action; }; }; struct kvmppc_host_rm_core { union kvmppc_rm_state rm_state; void *rm_data; char pad[112]; }; struct kvmppc_host_rm_ops { struct kvmppc_host_rm_core *rm_core; void (*vcpu_kick)(struct kvm_vcpu *vcpu); }; extern struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; static inline unsigned long kvmppc_get_epr(struct kvm_vcpu *vcpu) { #ifdef CONFIG_KVM_BOOKE_HV return mfspr(SPRN_GEPR); #elif defined(CONFIG_BOOKE) return vcpu->arch.epr; #else return 0; #endif } static inline void kvmppc_set_epr(struct kvm_vcpu *vcpu, u32 epr) { #ifdef CONFIG_KVM_BOOKE_HV mtspr(SPRN_GEPR, epr); #elif defined(CONFIG_BOOKE) vcpu->arch.epr = epr; #endif } #ifdef CONFIG_KVM_MPIC void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu); int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu); void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu); #else static inline void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu) { } static inline int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu) { return -EINVAL; } static inline void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu) { } #endif /* CONFIG_KVM_MPIC */ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu, struct kvm_config_tlb *cfg); int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu, struct kvm_dirty_tlb *cfg); long kvmppc_alloc_lpid(void); void kvmppc_free_lpid(long lpid); void kvmppc_init_lpid(unsigned long nr_lpids); static inline void kvmppc_mmu_flush_icache(kvm_pfn_t pfn) { struct page *page; /* * We can only access pages that the kernel maps * as memory. Bail out for unmapped ones. */ if (!pfn_valid(pfn)) return; /* Clear i-cache for new pages */ page = pfn_to_page(pfn); if (!test_bit(PG_dcache_clean, &page->flags)) { flush_dcache_icache_page(page); set_bit(PG_dcache_clean, &page->flags); } } /* * Shared struct helpers. The shared struct can be little or big endian, * depending on the guest endianness. So expose helpers to all of them. */ static inline bool kvmppc_shared_big_endian(struct kvm_vcpu *vcpu) { #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) /* Only Book3S_64 PR supports bi-endian for now */ return vcpu->arch.shared_big_endian; #elif defined(CONFIG_PPC_BOOK3S_64) && defined(__LITTLE_ENDIAN__) /* Book3s_64 HV on little endian is always little endian */ return false; #else return true; #endif } #define SPRNG_WRAPPER_GET(reg, bookehv_spr) \ static inline ulong kvmppc_get_##reg(struct kvm_vcpu *vcpu) \ { \ return mfspr(bookehv_spr); \ } \ #define SPRNG_WRAPPER_SET(reg, bookehv_spr) \ static inline void kvmppc_set_##reg(struct kvm_vcpu *vcpu, ulong val) \ { \ mtspr(bookehv_spr, val); \ } \ #define SHARED_WRAPPER_GET(reg, size) \ static inline u##size kvmppc_get_##reg(struct kvm_vcpu *vcpu) \ { \ if (kvmppc_shared_big_endian(vcpu)) \ return be##size##_to_cpu(vcpu->arch.shared->reg); \ else \ return le##size##_to_cpu(vcpu->arch.shared->reg); \ } \ #define SHARED_WRAPPER_SET(reg, size) \ static inline void kvmppc_set_##reg(struct kvm_vcpu *vcpu, u##size val) \ { \ if (kvmppc_shared_big_endian(vcpu)) \ vcpu->arch.shared->reg = cpu_to_be##size(val); \ else \ vcpu->arch.shared->reg = cpu_to_le##size(val); \ } \ #define SHARED_WRAPPER(reg, size) \ SHARED_WRAPPER_GET(reg, size) \ SHARED_WRAPPER_SET(reg, size) \ #define SPRNG_WRAPPER(reg, bookehv_spr) \ SPRNG_WRAPPER_GET(reg, bookehv_spr) \ SPRNG_WRAPPER_SET(reg, bookehv_spr) \ #ifdef CONFIG_KVM_BOOKE_HV #define SHARED_SPRNG_WRAPPER(reg, size, bookehv_spr) \ SPRNG_WRAPPER(reg, bookehv_spr) \ #else #define SHARED_SPRNG_WRAPPER(reg, size, bookehv_spr) \ SHARED_WRAPPER(reg, size) \ #endif SHARED_WRAPPER(critical, 64) SHARED_SPRNG_WRAPPER(sprg0, 64, SPRN_GSPRG0) SHARED_SPRNG_WRAPPER(sprg1, 64, SPRN_GSPRG1) SHARED_SPRNG_WRAPPER(sprg2, 64, SPRN_GSPRG2) SHARED_SPRNG_WRAPPER(sprg3, 64, SPRN_GSPRG3) SHARED_SPRNG_WRAPPER(srr0, 64, SPRN_GSRR0) SHARED_SPRNG_WRAPPER(srr1, 64, SPRN_GSRR1) SHARED_SPRNG_WRAPPER(dar, 64, SPRN_GDEAR) SHARED_SPRNG_WRAPPER(esr, 64, SPRN_GESR) SHARED_WRAPPER_GET(msr, 64) static inline void kvmppc_set_msr_fast(struct kvm_vcpu *vcpu, u64 val) { if (kvmppc_shared_big_endian(vcpu)) vcpu->arch.shared->msr = cpu_to_be64(val); else vcpu->arch.shared->msr = cpu_to_le64(val); } SHARED_WRAPPER(dsisr, 32) SHARED_WRAPPER(int_pending, 32) SHARED_WRAPPER(sprg4, 64) SHARED_WRAPPER(sprg5, 64) SHARED_WRAPPER(sprg6, 64) SHARED_WRAPPER(sprg7, 64) static inline u32 kvmppc_get_sr(struct kvm_vcpu *vcpu, int nr) { if (kvmppc_shared_big_endian(vcpu)) return be32_to_cpu(vcpu->arch.shared->sr[nr]); else return le32_to_cpu(vcpu->arch.shared->sr[nr]); } static inline void kvmppc_set_sr(struct kvm_vcpu *vcpu, int nr, u32 val) { if (kvmppc_shared_big_endian(vcpu)) vcpu->arch.shared->sr[nr] = cpu_to_be32(val); else vcpu->arch.shared->sr[nr] = cpu_to_le32(val); } /* * Please call after prepare_to_enter. This function puts the lazy ee and irq * disabled tracking state back to normal mode, without actually enabling * interrupts. */ static inline void kvmppc_fix_ee_before_entry(void) { trace_hardirqs_on(); #ifdef CONFIG_PPC64 /* * To avoid races, the caller must have gone directly from having * interrupts fully-enabled to hard-disabled. */ WARN_ON(local_paca->irq_happened != PACA_IRQ_HARD_DIS); /* Only need to enable IRQs by hard enabling them after this */ local_paca->irq_happened = 0; irq_soft_mask_set(IRQS_ENABLED); #endif } static inline ulong kvmppc_get_ea_indexed(struct kvm_vcpu *vcpu, int ra, int rb) { ulong ea; ulong msr_64bit = 0; ea = kvmppc_get_gpr(vcpu, rb); if (ra) ea += kvmppc_get_gpr(vcpu, ra); #if defined(CONFIG_PPC_BOOK3E_64) msr_64bit = MSR_CM; #elif defined(CONFIG_PPC_BOOK3S_64) msr_64bit = MSR_SF; #endif if (!(kvmppc_get_msr(vcpu) & msr_64bit)) ea = (uint32_t)ea; return ea; } extern void xics_wake_cpu(int cpu); #endif /* __POWERPC_KVM_PPC_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1