Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nicholas Piggin | 4476 | 99.49% | 35 | 89.74% |
Fabiano Rosas | 22 | 0.49% | 3 | 7.69% |
Julia Lawall | 1 | 0.02% | 1 | 2.56% |
Total | 4499 | 39 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/kernel.h> #include <linux/kvm_host.h> #include <asm/asm-prototypes.h> #include <asm/dbell.h> #include <asm/ppc-opcode.h> #include "book3s_hv.h" static void load_spr_state(struct kvm_vcpu *vcpu, struct p9_host_os_sprs *host_os_sprs) { /* TAR is very fast */ mtspr(SPRN_TAR, vcpu->arch.tar); #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC) && current->thread.vrsave != vcpu->arch.vrsave) mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); #endif if (vcpu->arch.hfscr & HFSCR_EBB) { if (current->thread.ebbhr != vcpu->arch.ebbhr) mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); if (current->thread.ebbrr != vcpu->arch.ebbrr) mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); if (current->thread.bescr != vcpu->arch.bescr) mtspr(SPRN_BESCR, vcpu->arch.bescr); } if (cpu_has_feature(CPU_FTR_P9_TIDR) && current->thread.tidr != vcpu->arch.tid) mtspr(SPRN_TIDR, vcpu->arch.tid); if (host_os_sprs->iamr != vcpu->arch.iamr) mtspr(SPRN_IAMR, vcpu->arch.iamr); if (host_os_sprs->amr != vcpu->arch.amr) mtspr(SPRN_AMR, vcpu->arch.amr); if (vcpu->arch.uamor != 0) mtspr(SPRN_UAMOR, vcpu->arch.uamor); if (current->thread.fscr != vcpu->arch.fscr) mtspr(SPRN_FSCR, vcpu->arch.fscr); if (current->thread.dscr != vcpu->arch.dscr) mtspr(SPRN_DSCR, vcpu->arch.dscr); if (vcpu->arch.pspb != 0) mtspr(SPRN_PSPB, vcpu->arch.pspb); /* * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI] * clear (or hstate set appropriately to catch those registers * being clobbered if we take a MCE or SRESET), so those are done * later. */ if (!(vcpu->arch.ctrl & 1)) mtspr(SPRN_CTRLT, 0); } static void store_spr_state(struct kvm_vcpu *vcpu) { vcpu->arch.tar = mfspr(SPRN_TAR); #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); #endif if (vcpu->arch.hfscr & HFSCR_EBB) { vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); vcpu->arch.bescr = mfspr(SPRN_BESCR); } if (cpu_has_feature(CPU_FTR_P9_TIDR)) vcpu->arch.tid = mfspr(SPRN_TIDR); vcpu->arch.iamr = mfspr(SPRN_IAMR); vcpu->arch.amr = mfspr(SPRN_AMR); vcpu->arch.uamor = mfspr(SPRN_UAMOR); vcpu->arch.fscr = mfspr(SPRN_FSCR); vcpu->arch.dscr = mfspr(SPRN_DSCR); vcpu->arch.pspb = mfspr(SPRN_PSPB); vcpu->arch.ctrl = mfspr(SPRN_CTRLF); } /* Returns true if current MSR and/or guest MSR may have changed */ bool load_vcpu_state(struct kvm_vcpu *vcpu, struct p9_host_os_sprs *host_os_sprs) { bool ret = false; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (cpu_has_feature(CPU_FTR_TM) || cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) { unsigned long guest_msr = vcpu->arch.shregs.msr; if (MSR_TM_ACTIVE(guest_msr)) { kvmppc_restore_tm_hv(vcpu, guest_msr, true); ret = true; } else if (vcpu->arch.hfscr & HFSCR_TM) { mtspr(SPRN_TEXASR, vcpu->arch.texasr); mtspr(SPRN_TFHAR, vcpu->arch.tfhar); mtspr(SPRN_TFIAR, vcpu->arch.tfiar); } } #endif load_spr_state(vcpu, host_os_sprs); load_fp_state(&vcpu->arch.fp); #ifdef CONFIG_ALTIVEC load_vr_state(&vcpu->arch.vr); #endif return ret; } EXPORT_SYMBOL_GPL(load_vcpu_state); void store_vcpu_state(struct kvm_vcpu *vcpu) { store_spr_state(vcpu); store_fp_state(&vcpu->arch.fp); #ifdef CONFIG_ALTIVEC store_vr_state(&vcpu->arch.vr); #endif #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (cpu_has_feature(CPU_FTR_TM) || cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) { unsigned long guest_msr = vcpu->arch.shregs.msr; if (MSR_TM_ACTIVE(guest_msr)) { kvmppc_save_tm_hv(vcpu, guest_msr, true); } else if (vcpu->arch.hfscr & HFSCR_TM) { vcpu->arch.texasr = mfspr(SPRN_TEXASR); vcpu->arch.tfhar = mfspr(SPRN_TFHAR); vcpu->arch.tfiar = mfspr(SPRN_TFIAR); if (!vcpu->arch.nested) { vcpu->arch.load_tm++; /* see load_ebb comment */ if (!vcpu->arch.load_tm) vcpu->arch.hfscr &= ~HFSCR_TM; } } } #endif } EXPORT_SYMBOL_GPL(store_vcpu_state); void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs) { host_os_sprs->iamr = mfspr(SPRN_IAMR); host_os_sprs->amr = mfspr(SPRN_AMR); } EXPORT_SYMBOL_GPL(save_p9_host_os_sprs); /* vcpu guest regs must already be saved */ void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu, struct p9_host_os_sprs *host_os_sprs) { /* * current->thread.xxx registers must all be restored to host * values before a potential context switch, otherwise the context * switch itself will overwrite current->thread.xxx with the values * from the guest SPRs. */ mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); if (cpu_has_feature(CPU_FTR_P9_TIDR) && current->thread.tidr != vcpu->arch.tid) mtspr(SPRN_TIDR, current->thread.tidr); if (host_os_sprs->iamr != vcpu->arch.iamr) mtspr(SPRN_IAMR, host_os_sprs->iamr); if (vcpu->arch.uamor != 0) mtspr(SPRN_UAMOR, 0); if (host_os_sprs->amr != vcpu->arch.amr) mtspr(SPRN_AMR, host_os_sprs->amr); if (current->thread.fscr != vcpu->arch.fscr) mtspr(SPRN_FSCR, current->thread.fscr); if (current->thread.dscr != vcpu->arch.dscr) mtspr(SPRN_DSCR, current->thread.dscr); if (vcpu->arch.pspb != 0) mtspr(SPRN_PSPB, 0); /* Save guest CTRL register, set runlatch to 1 */ if (!(vcpu->arch.ctrl & 1)) mtspr(SPRN_CTRLT, 1); #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC) && vcpu->arch.vrsave != current->thread.vrsave) mtspr(SPRN_VRSAVE, current->thread.vrsave); #endif if (vcpu->arch.hfscr & HFSCR_EBB) { if (vcpu->arch.bescr != current->thread.bescr) mtspr(SPRN_BESCR, current->thread.bescr); if (vcpu->arch.ebbhr != current->thread.ebbhr) mtspr(SPRN_EBBHR, current->thread.ebbhr); if (vcpu->arch.ebbrr != current->thread.ebbrr) mtspr(SPRN_EBBRR, current->thread.ebbrr); if (!vcpu->arch.nested) { /* * This is like load_fp in context switching, turn off * the facility after it wraps the u8 to try avoiding * saving and restoring the registers each partition * switch. */ vcpu->arch.load_ebb++; if (!vcpu->arch.load_ebb) vcpu->arch.hfscr &= ~HFSCR_EBB; } } if (vcpu->arch.tar != current->thread.tar) mtspr(SPRN_TAR, current->thread.tar); } EXPORT_SYMBOL_GPL(restore_p9_host_os_sprs); #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING void accumulate_time(struct kvm_vcpu *vcpu, struct kvmhv_tb_accumulator *next) { struct kvmppc_vcore *vc = vcpu->arch.vcore; struct kvmhv_tb_accumulator *curr; u64 tb = mftb() - vc->tb_offset_applied; u64 prev_tb; u64 delta; u64 seq; curr = vcpu->arch.cur_activity; vcpu->arch.cur_activity = next; prev_tb = vcpu->arch.cur_tb_start; vcpu->arch.cur_tb_start = tb; if (!curr) return; delta = tb - prev_tb; seq = curr->seqcount; curr->seqcount = seq + 1; smp_wmb(); curr->tb_total += delta; if (seq == 0 || delta < curr->tb_min) curr->tb_min = delta; if (delta > curr->tb_max) curr->tb_max = delta; smp_wmb(); curr->seqcount = seq + 2; } EXPORT_SYMBOL_GPL(accumulate_time); #endif static inline u64 mfslbv(unsigned int idx) { u64 slbev; asm volatile("slbmfev %0,%1" : "=r" (slbev) : "r" (idx)); return slbev; } static inline u64 mfslbe(unsigned int idx) { u64 slbee; asm volatile("slbmfee %0,%1" : "=r" (slbee) : "r" (idx)); return slbee; } static inline void mtslb(u64 slbee, u64 slbev) { asm volatile("slbmte %0,%1" :: "r" (slbev), "r" (slbee)); } static inline void clear_slb_entry(unsigned int idx) { mtslb(idx, 0); } static inline void slb_clear_invalidate_partition(void) { clear_slb_entry(0); asm volatile(PPC_SLBIA(6)); } /* * Malicious or buggy radix guests may have inserted SLB entries * (only 0..3 because radix always runs with UPRT=1), so these must * be cleared here to avoid side-channels. slbmte is used rather * than slbia, as it won't clear cached translations. */ static void radix_clear_slb(void) { int i; for (i = 0; i < 4; i++) clear_slb_entry(i); } static void switch_mmu_to_guest_radix(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr) { struct kvm_nested_guest *nested = vcpu->arch.nested; u32 lpid; u32 pid; lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; pid = vcpu->arch.pid; /* * Prior memory accesses to host PID Q3 must be completed before we * start switching, and stores must be drained to avoid not-my-LPAR * logic (see switch_mmu_to_host). */ asm volatile("hwsync" ::: "memory"); isync(); mtspr(SPRN_LPID, lpid); mtspr(SPRN_LPCR, lpcr); mtspr(SPRN_PID, pid); /* * isync not required here because we are HRFID'ing to guest before * any guest context access, which is context synchronising. */ } static void switch_mmu_to_guest_hpt(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr) { u32 lpid; u32 pid; int i; lpid = kvm->arch.lpid; pid = vcpu->arch.pid; /* * See switch_mmu_to_guest_radix. ptesync should not be required here * even if the host is in HPT mode because speculative accesses would * not cause RC updates (we are in real mode). */ asm volatile("hwsync" ::: "memory"); isync(); mtspr(SPRN_LPID, lpid); mtspr(SPRN_LPCR, lpcr); mtspr(SPRN_PID, pid); for (i = 0; i < vcpu->arch.slb_max; i++) mtslb(vcpu->arch.slb[i].orige, vcpu->arch.slb[i].origv); /* * isync not required here, see switch_mmu_to_guest_radix. */ } static void switch_mmu_to_host(struct kvm *kvm, u32 pid) { u32 lpid = kvm->arch.host_lpid; u64 lpcr = kvm->arch.host_lpcr; /* * The guest has exited, so guest MMU context is no longer being * non-speculatively accessed, but a hwsync is needed before the * mtLPIDR / mtPIDR switch, in order to ensure all stores are drained, * so the not-my-LPAR tlbie logic does not overlook them. */ asm volatile("hwsync" ::: "memory"); isync(); mtspr(SPRN_PID, pid); mtspr(SPRN_LPID, lpid); mtspr(SPRN_LPCR, lpcr); /* * isync is not required after the switch, because mtmsrd with L=0 * is performed after this switch, which is context synchronising. */ if (!radix_enabled()) slb_restore_bolted_realmode(); } static void save_clear_host_mmu(struct kvm *kvm) { if (!radix_enabled()) { /* * Hash host could save and restore host SLB entries to * reduce SLB fault overheads of VM exits, but for now the * existing code clears all entries and restores just the * bolted ones when switching back to host. */ slb_clear_invalidate_partition(); } } static void save_clear_guest_mmu(struct kvm *kvm, struct kvm_vcpu *vcpu) { if (kvm_is_radix(kvm)) { radix_clear_slb(); } else { int i; int nr = 0; /* * This must run before switching to host (radix host can't * access all SLBs). */ for (i = 0; i < vcpu->arch.slb_nr; i++) { u64 slbee, slbev; slbee = mfslbe(i); if (slbee & SLB_ESID_V) { slbev = mfslbv(i); vcpu->arch.slb[nr].orige = slbee | i; vcpu->arch.slb[nr].origv = slbev; nr++; } } vcpu->arch.slb_max = nr; slb_clear_invalidate_partition(); } } static void flush_guest_tlb(struct kvm *kvm) { unsigned long rb, set; rb = PPC_BIT(52); /* IS = 2 */ if (kvm_is_radix(kvm)) { /* R=1 PRS=1 RIC=2 */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r" (rb), "i" (1), "i" (1), "i" (2), "r" (0) : "memory"); for (set = 1; set < kvm->arch.tlb_sets; ++set) { rb += PPC_BIT(51); /* increment set number */ /* R=1 PRS=1 RIC=0 */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r" (rb), "i" (1), "i" (1), "i" (0), "r" (0) : "memory"); } asm volatile("ptesync": : :"memory"); // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now. asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory"); } else { for (set = 0; set < kvm->arch.tlb_sets; ++set) { /* R=0 PRS=0 RIC=0 */ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) : : "r" (rb), "i" (0), "i" (0), "i" (0), "r" (0) : "memory"); rb += PPC_BIT(51); /* increment set number */ } asm volatile("ptesync": : :"memory"); // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now. asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory"); } } static void check_need_tlb_flush(struct kvm *kvm, int pcpu, struct kvm_nested_guest *nested) { cpumask_t *need_tlb_flush; bool all_set = true; int i; if (nested) need_tlb_flush = &nested->need_tlb_flush; else need_tlb_flush = &kvm->arch.need_tlb_flush; if (likely(!cpumask_test_cpu(pcpu, need_tlb_flush))) return; /* * Individual threads can come in here, but the TLB is shared between * the 4 threads in a core, hence invalidating on one thread * invalidates for all, so only invalidate the first time (if all bits * were set. The others must still execute a ptesync. * * If a race occurs and two threads do the TLB flush, that is not a * problem, just sub-optimal. */ for (i = cpu_first_tlb_thread_sibling(pcpu); i <= cpu_last_tlb_thread_sibling(pcpu); i += cpu_tlb_thread_sibling_step()) { if (!cpumask_test_cpu(i, need_tlb_flush)) { all_set = false; break; } } if (all_set) flush_guest_tlb(kvm); else asm volatile("ptesync" ::: "memory"); /* Clear the bit after the TLB flush */ cpumask_clear_cpu(pcpu, need_tlb_flush); } unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr) { unsigned long msr_needed = 0; msr &= ~MSR_EE; /* MSR bits may have been cleared by context switch so must recheck */ if (IS_ENABLED(CONFIG_PPC_FPU)) msr_needed |= MSR_FP; if (cpu_has_feature(CPU_FTR_ALTIVEC)) msr_needed |= MSR_VEC; if (cpu_has_feature(CPU_FTR_VSX)) msr_needed |= MSR_VSX; if ((cpu_has_feature(CPU_FTR_TM) || cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && (vcpu->arch.hfscr & HFSCR_TM)) msr_needed |= MSR_TM; /* * This could be combined with MSR[RI] clearing, but that expands * the unrecoverable window. It would be better to cover unrecoverable * with KVM bad interrupt handling rather than use MSR[RI] at all. * * Much more difficult and less worthwhile to combine with IR/DR * disable. */ if ((msr & msr_needed) != msr_needed) { msr |= msr_needed; __mtmsrd(msr, 0); } else { __hard_irq_disable(); } local_paca->irq_happened |= PACA_IRQ_HARD_DIS; return msr; } EXPORT_SYMBOL_GPL(kvmppc_msr_hard_disable_set_facilities); int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) { struct p9_host_os_sprs host_os_sprs; struct kvm *kvm = vcpu->kvm; struct kvm_nested_guest *nested = vcpu->arch.nested; struct kvmppc_vcore *vc = vcpu->arch.vcore; s64 hdec, dec; u64 purr, spurr; u64 *exsave; int trap; unsigned long msr; unsigned long host_hfscr; unsigned long host_ciabr; unsigned long host_dawr0; unsigned long host_dawrx0; unsigned long host_psscr; unsigned long host_hpsscr; unsigned long host_pidr; unsigned long host_dawr1; unsigned long host_dawrx1; unsigned long dpdes; hdec = time_limit - *tb; if (hdec < 0) return BOOK3S_INTERRUPT_HV_DECREMENTER; WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_HV); WARN_ON_ONCE(!(vcpu->arch.shregs.msr & MSR_ME)); vcpu->arch.ceded = 0; /* Save MSR for restore, with EE clear. */ msr = mfmsr() & ~MSR_EE; host_hfscr = mfspr(SPRN_HFSCR); host_ciabr = mfspr(SPRN_CIABR); host_psscr = mfspr(SPRN_PSSCR_PR); if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) host_hpsscr = mfspr(SPRN_PSSCR); host_pidr = mfspr(SPRN_PID); if (dawr_enabled()) { host_dawr0 = mfspr(SPRN_DAWR0); host_dawrx0 = mfspr(SPRN_DAWRX0); if (cpu_has_feature(CPU_FTR_DAWR1)) { host_dawr1 = mfspr(SPRN_DAWR1); host_dawrx1 = mfspr(SPRN_DAWRX1); } } local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); save_p9_host_os_sprs(&host_os_sprs); msr = kvmppc_msr_hard_disable_set_facilities(vcpu, msr); if (lazy_irq_pending()) { trap = 0; goto out; } if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) msr = mfmsr(); /* MSR may have been updated */ if (vc->tb_offset) { u64 new_tb = *tb + vc->tb_offset; mtspr(SPRN_TBU40, new_tb); if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) { new_tb += 0x1000000; mtspr(SPRN_TBU40, new_tb); } *tb = new_tb; vc->tb_offset_applied = vc->tb_offset; } mtspr(SPRN_VTB, vc->vtb); mtspr(SPRN_PURR, vcpu->arch.purr); mtspr(SPRN_SPURR, vcpu->arch.spurr); if (vc->pcr) mtspr(SPRN_PCR, vc->pcr | PCR_MASK); if (vcpu->arch.doorbell_request) { vcpu->arch.doorbell_request = 0; mtspr(SPRN_DPDES, 1); } if (dawr_enabled()) { if (vcpu->arch.dawr0 != host_dawr0) mtspr(SPRN_DAWR0, vcpu->arch.dawr0); if (vcpu->arch.dawrx0 != host_dawrx0) mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0); if (cpu_has_feature(CPU_FTR_DAWR1)) { if (vcpu->arch.dawr1 != host_dawr1) mtspr(SPRN_DAWR1, vcpu->arch.dawr1); if (vcpu->arch.dawrx1 != host_dawrx1) mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1); } } if (vcpu->arch.ciabr != host_ciabr) mtspr(SPRN_CIABR, vcpu->arch.ciabr); if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) { mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); } else { if (vcpu->arch.psscr != host_psscr) mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); } mtspr(SPRN_HFSCR, vcpu->arch.hfscr); mtspr(SPRN_HSRR0, vcpu->arch.regs.nip); mtspr(SPRN_HSRR1, (vcpu->arch.shregs.msr & ~MSR_HV) | MSR_ME); /* * On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage * Interrupt (HDSI) the HDSISR is not be updated at all. * * To work around this we put a canary value into the HDSISR before * returning to a guest and then check for this canary when we take a * HDSI. If we find the canary on a HDSI, we know the hardware didn't * update the HDSISR. In this case we return to the guest to retake the * HDSI which should correctly update the HDSISR the second time HDSI * entry. * * The "radix prefetch bug" test can be used to test for this bug, as * it also exists fo DD2.1 and below. */ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) mtspr(SPRN_HDSISR, HDSISR_CANARY); mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); /* * It might be preferable to load_vcpu_state here, in order to get the * GPR/FP register loads executing in parallel with the previous mtSPR * instructions, but for now that can't be done because the TM handling * in load_vcpu_state can change some SPRs and vcpu state (nip, msr). * But TM could be split out if this would be a significant benefit. */ /* * MSR[RI] does not need to be cleared (and is not, for radix guests * with no prefetch bug), because in_guest is set. If we take a SRESET * or MCE with in_guest set but still in HV mode, then * kvmppc_p9_bad_interrupt handles the interrupt, which effectively * clears MSR[RI] and doesn't return. */ WRITE_ONCE(local_paca->kvm_hstate.in_guest, KVM_GUEST_MODE_HV_P9); barrier(); /* Open in_guest critical section */ /* * Hash host, hash guest, or radix guest with prefetch bug, all have * to disable the MMU before switching to guest MMU state. */ if (!radix_enabled() || !kvm_is_radix(kvm) || cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) __mtmsrd(msr & ~(MSR_IR|MSR_DR|MSR_RI), 0); save_clear_host_mmu(kvm); if (kvm_is_radix(kvm)) switch_mmu_to_guest_radix(kvm, vcpu, lpcr); else switch_mmu_to_guest_hpt(kvm, vcpu, lpcr); /* TLBIEL uses LPID=LPIDR, so run this after setting guest LPID */ check_need_tlb_flush(kvm, vc->pcpu, nested); /* * P9 suppresses the HDEC exception when LPCR[HDICE] = 0, * so set guest LPCR (with HDICE) before writing HDEC. */ mtspr(SPRN_HDEC, hdec); mtspr(SPRN_DEC, vcpu->arch.dec_expires - *tb); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM tm_return_to_guest: #endif mtspr(SPRN_DAR, vcpu->arch.shregs.dar); mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); switch_pmu_to_guest(vcpu, &host_os_sprs); accumulate_time(vcpu, &vcpu->arch.in_guest); kvmppc_p9_enter_guest(vcpu); accumulate_time(vcpu, &vcpu->arch.guest_exit); switch_pmu_to_host(vcpu, &host_os_sprs); /* XXX: Could get these from r11/12 and paca exsave instead */ vcpu->arch.shregs.srr0 = mfspr(SPRN_SRR0); vcpu->arch.shregs.srr1 = mfspr(SPRN_SRR1); vcpu->arch.shregs.dar = mfspr(SPRN_DAR); vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); /* 0x2 bit for HSRR is only used by PR and P7/8 HV paths, clear it */ trap = local_paca->kvm_hstate.scratch0 & ~0x2; if (likely(trap > BOOK3S_INTERRUPT_MACHINE_CHECK)) exsave = local_paca->exgen; else if (trap == BOOK3S_INTERRUPT_SYSTEM_RESET) exsave = local_paca->exnmi; else /* trap == 0x200 */ exsave = local_paca->exmc; vcpu->arch.regs.gpr[1] = local_paca->kvm_hstate.scratch1; vcpu->arch.regs.gpr[3] = local_paca->kvm_hstate.scratch2; /* * After reading machine check regs (DAR, DSISR, SRR0/1) and hstate * scratch (which we need to move into exsave to make re-entrant vs * SRESET/MCE), register state is protected from reentrancy. However * timebase, MMU, among other state is still set to guest, so don't * enable MSR[RI] here. It gets enabled at the end, after in_guest * is cleared. * * It is possible an NMI could come in here, which is why it is * important to save the above state early so it can be debugged. */ vcpu->arch.regs.gpr[9] = exsave[EX_R9/sizeof(u64)]; vcpu->arch.regs.gpr[10] = exsave[EX_R10/sizeof(u64)]; vcpu->arch.regs.gpr[11] = exsave[EX_R11/sizeof(u64)]; vcpu->arch.regs.gpr[12] = exsave[EX_R12/sizeof(u64)]; vcpu->arch.regs.gpr[13] = exsave[EX_R13/sizeof(u64)]; vcpu->arch.ppr = exsave[EX_PPR/sizeof(u64)]; vcpu->arch.cfar = exsave[EX_CFAR/sizeof(u64)]; vcpu->arch.regs.ctr = exsave[EX_CTR/sizeof(u64)]; vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; if (unlikely(trap == BOOK3S_INTERRUPT_MACHINE_CHECK)) { vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)]; vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)]; kvmppc_realmode_machine_check(vcpu); } else if (unlikely(trap == BOOK3S_INTERRUPT_HMI)) { kvmppc_p9_realmode_hmi_handler(vcpu); } else if (trap == BOOK3S_INTERRUPT_H_EMUL_ASSIST) { vcpu->arch.emul_inst = mfspr(SPRN_HEIR); } else if (trap == BOOK3S_INTERRUPT_H_DATA_STORAGE) { vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)]; vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)]; vcpu->arch.fault_gpa = mfspr(SPRN_ASDR); } else if (trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { vcpu->arch.fault_gpa = mfspr(SPRN_ASDR); } else if (trap == BOOK3S_INTERRUPT_H_FAC_UNAVAIL) { vcpu->arch.hfscr = mfspr(SPRN_HFSCR); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* * Softpatch interrupt for transactional memory emulation cases * on POWER9 DD2.2. This is early in the guest exit path - we * haven't saved registers or done a treclaim yet. */ } else if (trap == BOOK3S_INTERRUPT_HV_SOFTPATCH) { vcpu->arch.emul_inst = mfspr(SPRN_HEIR); /* * The cases we want to handle here are those where the guest * is in real suspend mode and is trying to transition to * transactional mode. */ if (!local_paca->kvm_hstate.fake_suspend && (vcpu->arch.shregs.msr & MSR_TS_S)) { if (kvmhv_p9_tm_emulation_early(vcpu)) { /* * Go straight back into the guest with the * new NIP/MSR as set by TM emulation. */ mtspr(SPRN_HSRR0, vcpu->arch.regs.nip); mtspr(SPRN_HSRR1, vcpu->arch.shregs.msr); goto tm_return_to_guest; } } #endif } /* Advance host PURR/SPURR by the amount used by guest */ purr = mfspr(SPRN_PURR); spurr = mfspr(SPRN_SPURR); local_paca->kvm_hstate.host_purr += purr - vcpu->arch.purr; local_paca->kvm_hstate.host_spurr += spurr - vcpu->arch.spurr; vcpu->arch.purr = purr; vcpu->arch.spurr = spurr; vcpu->arch.ic = mfspr(SPRN_IC); vcpu->arch.pid = mfspr(SPRN_PID); vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); dpdes = mfspr(SPRN_DPDES); if (dpdes) vcpu->arch.doorbell_request = 1; vc->vtb = mfspr(SPRN_VTB); dec = mfspr(SPRN_DEC); if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ dec = (s32) dec; *tb = mftb(); vcpu->arch.dec_expires = dec + *tb; if (vc->tb_offset_applied) { u64 new_tb = *tb - vc->tb_offset_applied; mtspr(SPRN_TBU40, new_tb); if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) { new_tb += 0x1000000; mtspr(SPRN_TBU40, new_tb); } *tb = new_tb; vc->tb_offset_applied = 0; } save_clear_guest_mmu(kvm, vcpu); switch_mmu_to_host(kvm, host_pidr); /* * Enable MSR here in order to have facilities enabled to save * guest registers. This enables MMU (if we were in realmode), so * only switch MMU on after the MMU is switched to host, to avoid * the P9_RADIX_PREFETCH_BUG or hash guest context. */ if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM) && vcpu->arch.shregs.msr & MSR_TS_MASK) msr |= MSR_TS_S; __mtmsrd(msr, 0); store_vcpu_state(vcpu); mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr); mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr); if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) { /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ mtspr(SPRN_PSSCR, host_hpsscr | (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); } mtspr(SPRN_HFSCR, host_hfscr); if (vcpu->arch.ciabr != host_ciabr) mtspr(SPRN_CIABR, host_ciabr); if (dawr_enabled()) { if (vcpu->arch.dawr0 != host_dawr0) mtspr(SPRN_DAWR0, host_dawr0); if (vcpu->arch.dawrx0 != host_dawrx0) mtspr(SPRN_DAWRX0, host_dawrx0); if (cpu_has_feature(CPU_FTR_DAWR1)) { if (vcpu->arch.dawr1 != host_dawr1) mtspr(SPRN_DAWR1, host_dawr1); if (vcpu->arch.dawrx1 != host_dawrx1) mtspr(SPRN_DAWRX1, host_dawrx1); } } if (dpdes) mtspr(SPRN_DPDES, 0); if (vc->pcr) mtspr(SPRN_PCR, PCR_MASK); /* HDEC must be at least as large as DEC, so decrementer_max fits */ mtspr(SPRN_HDEC, decrementer_max); timer_rearm_host_dec(*tb); restore_p9_host_os_sprs(vcpu, &host_os_sprs); barrier(); /* Close in_guest critical section */ WRITE_ONCE(local_paca->kvm_hstate.in_guest, KVM_GUEST_MODE_NONE); /* Interrupts are recoverable at this point */ /* * cp_abort is required if the processor supports local copy-paste * to clear the copy buffer that was under control of the guest. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) asm volatile(PPC_CP_ABORT); out: return trap; } EXPORT_SYMBOL_GPL(kvmhv_vcpu_entry_p9);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1