Contributors: 5
Author Tokens Token Proportion Commits Commit Proportion
Sukadev Bhattiprolu 1016 83.42% 8 36.36%
Haren Myneni 193 15.85% 11 50.00%
Cédric Le Goater 4 0.33% 1 4.55%
Christophe Leroy 3 0.25% 1 4.55%
Thomas Gleixner 2 0.16% 1 4.55%
Total 1218 22


/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright 2016-17 IBM Corp.
 */

#ifndef _VAS_H
#define _VAS_H
#include <linux/atomic.h>
#include <linux/idr.h>
#include <asm/vas.h>
#include <linux/io.h>
#include <linux/dcache.h>
#include <linux/mutex.h>
#include <linux/stringify.h>

/*
 * Overview of Virtual Accelerator Switchboard (VAS).
 *
 * VAS is a hardware "switchboard" that allows senders and receivers to
 * exchange messages with _minimal_ kernel involvment. The receivers are
 * typically NX coprocessor engines that perform compression or encryption
 * in hardware, but receivers can also be other software threads.
 *
 * Senders are user/kernel threads that submit compression/encryption or
 * other requests to the receivers. Senders must format their messages as
 * Coprocessor Request Blocks (CRB)s and submit them using the "copy" and
 * "paste" instructions which were introduced in Power9.
 *
 * A Power node can have (upto?) 8 Power chips. There is one instance of
 * VAS in each Power9 chip. Each instance of VAS has 64K windows or ports,
 * Senders and receivers must each connect to a separate window before they
 * can exchange messages through the switchboard.
 *
 * Each window is described by two types of window contexts:
 *
 *	Hypervisor Window Context (HVWC) of size VAS_HVWC_SIZE bytes
 *
 *	OS/User Window Context (UWC) of size VAS_UWC_SIZE bytes.
 *
 * A window context can be viewed as a set of 64-bit registers. The settings
 * in these registers configure/control/determine the behavior of the VAS
 * hardware when messages are sent/received through the window. The registers
 * in the HVWC are configured by the kernel while the registers in the UWC can
 * be configured by the kernel or by the user space application that is using
 * the window.
 *
 * The HVWCs for all windows on a specific instance of VAS are in a contiguous
 * range of hardware addresses or Base address region (BAR) referred to as the
 * HVWC BAR for the instance. Similarly the UWCs for all windows on an instance
 * are referred to as the UWC BAR for the instance.
 *
 * The two BARs for each instance are defined Power9 MMIO Ranges spreadsheet
 * and available to the kernel in the VAS node's "reg" property in the device
 * tree:
 *
 *	/proc/device-tree/vasm@.../reg
 *
 * (see vas_probe() for details on the reg property).
 *
 * The kernel maps the HVWC and UWC BAR regions into the kernel address
 * space (hvwc_map and uwc_map). The kernel can then access the window
 * contexts of a specific window using:
 *
 *	 hvwc = hvwc_map + winid * VAS_HVWC_SIZE.
 *	 uwc = uwc_map + winid * VAS_UWC_SIZE.
 *
 * where winid is the window index (0..64K).
 *
 * As mentioned, a window context is used to "configure" a window. Besides
 * this configuration address, each _send_ window also has a unique hardware
 * "paste" address that is used to submit requests/CRBs (see vas_paste_crb()).
 *
 * The hardware paste address for a window is computed using the "paste
 * base address" and "paste win id shift" reg properties in the VAS device
 * tree node using:
 *
 *	paste_addr = paste_base + ((winid << paste_win_id_shift))
 *
 * (again, see vas_probe() for ->paste_base_addr and ->paste_win_id_shift).
 *
 * The kernel maps this hardware address into the sender's address space
 * after which they can use the 'paste' instruction (new in Power9) to
 * send a message (submit a request aka CRB) to the coprocessor.
 *
 * NOTE: In the initial version, senders can only in-kernel drivers/threads.
 *	 Support for user space threads will be added in follow-on patches.
 *
 * TODO: Do we need to map the UWC into user address space so they can return
 *	 credits? Its NA for NX but may be needed for other receive windows.
 *
 */

#define VAS_WINDOWS_PER_CHIP		(64 << 10)

/*
 * Hypervisor and OS/USer Window Context sizes
 */
#define VAS_HVWC_SIZE			512
#define VAS_UWC_SIZE			PAGE_SIZE

/*
 * Initial per-process credits.
 * Max send window credits:    4K-1 (12-bits in VAS_TX_WCRED)
 *
 * TODO: Needs tuning for per-process credits
 */
#define VAS_TX_WCREDS_MAX		((4 << 10) - 1)
#define VAS_WCREDS_DEFAULT		(1 << 10)

/*
 * VAS Window Context Register Offsets and bitmasks.
 * See Section 3.1.4 of VAS Work book
 */
#define VAS_LPID_OFFSET			0x010
#define VAS_LPID			PPC_BITMASK(0, 11)

#define VAS_PID_OFFSET			0x018
#define VAS_PID_ID			PPC_BITMASK(0, 19)

#define VAS_XLATE_MSR_OFFSET		0x020
#define VAS_XLATE_MSR_DR		PPC_BIT(0)
#define VAS_XLATE_MSR_TA		PPC_BIT(1)
#define VAS_XLATE_MSR_PR		PPC_BIT(2)
#define VAS_XLATE_MSR_US		PPC_BIT(3)
#define VAS_XLATE_MSR_HV		PPC_BIT(4)
#define VAS_XLATE_MSR_SF		PPC_BIT(5)

#define VAS_XLATE_LPCR_OFFSET		0x028
#define VAS_XLATE_LPCR_PAGE_SIZE	PPC_BITMASK(0, 2)
#define VAS_XLATE_LPCR_ISL		PPC_BIT(3)
#define VAS_XLATE_LPCR_TC		PPC_BIT(4)
#define VAS_XLATE_LPCR_SC		PPC_BIT(5)

#define VAS_XLATE_CTL_OFFSET		0x030
#define VAS_XLATE_MODE			PPC_BITMASK(0, 1)

#define VAS_AMR_OFFSET			0x040
#define VAS_AMR				PPC_BITMASK(0, 63)

#define VAS_SEIDR_OFFSET		0x048
#define VAS_SEIDR			PPC_BITMASK(0, 63)

#define VAS_FAULT_TX_WIN_OFFSET		0x050
#define VAS_FAULT_TX_WIN		PPC_BITMASK(48, 63)

#define VAS_OSU_INTR_SRC_RA_OFFSET	0x060
#define VAS_OSU_INTR_SRC_RA		PPC_BITMASK(8, 63)

#define VAS_HV_INTR_SRC_RA_OFFSET	0x070
#define VAS_HV_INTR_SRC_RA		PPC_BITMASK(8, 63)

#define VAS_PSWID_OFFSET		0x078
#define VAS_PSWID_EA_HANDLE		PPC_BITMASK(0, 31)

#define VAS_SPARE1_OFFSET		0x080
#define VAS_SPARE2_OFFSET		0x088
#define VAS_SPARE3_OFFSET		0x090
#define VAS_SPARE4_OFFSET		0x130
#define VAS_SPARE5_OFFSET		0x160
#define VAS_SPARE6_OFFSET		0x188

#define VAS_LFIFO_BAR_OFFSET		0x0A0
#define VAS_LFIFO_BAR			PPC_BITMASK(8, 53)
#define VAS_PAGE_MIGRATION_SELECT	PPC_BITMASK(54, 56)

#define VAS_LDATA_STAMP_CTL_OFFSET	0x0A8
#define VAS_LDATA_STAMP			PPC_BITMASK(0, 1)
#define VAS_XTRA_WRITE			PPC_BIT(2)

#define VAS_LDMA_CACHE_CTL_OFFSET	0x0B0
#define VAS_LDMA_TYPE			PPC_BITMASK(0, 1)
#define VAS_LDMA_FIFO_DISABLE		PPC_BIT(2)

#define VAS_LRFIFO_PUSH_OFFSET		0x0B8
#define VAS_LRFIFO_PUSH			PPC_BITMASK(0, 15)

#define VAS_CURR_MSG_COUNT_OFFSET	0x0C0
#define VAS_CURR_MSG_COUNT		PPC_BITMASK(0, 7)

#define VAS_LNOTIFY_AFTER_COUNT_OFFSET	0x0C8
#define VAS_LNOTIFY_AFTER_COUNT		PPC_BITMASK(0, 7)

#define VAS_LRX_WCRED_OFFSET		0x0E0
#define VAS_LRX_WCRED			PPC_BITMASK(0, 15)

#define VAS_LRX_WCRED_ADDER_OFFSET	0x190
#define VAS_LRX_WCRED_ADDER		PPC_BITMASK(0, 15)

#define VAS_TX_WCRED_OFFSET		0x0F0
#define VAS_TX_WCRED			PPC_BITMASK(4, 15)

#define VAS_TX_WCRED_ADDER_OFFSET	0x1A0
#define VAS_TX_WCRED_ADDER		PPC_BITMASK(4, 15)

#define VAS_LFIFO_SIZE_OFFSET		0x100
#define VAS_LFIFO_SIZE			PPC_BITMASK(0, 3)

#define VAS_WINCTL_OFFSET		0x108
#define VAS_WINCTL_OPEN			PPC_BIT(0)
#define VAS_WINCTL_REJ_NO_CREDIT	PPC_BIT(1)
#define VAS_WINCTL_PIN			PPC_BIT(2)
#define VAS_WINCTL_TX_WCRED_MODE	PPC_BIT(3)
#define VAS_WINCTL_RX_WCRED_MODE	PPC_BIT(4)
#define VAS_WINCTL_TX_WORD_MODE		PPC_BIT(5)
#define VAS_WINCTL_RX_WORD_MODE		PPC_BIT(6)
#define VAS_WINCTL_RSVD_TXBUF		PPC_BIT(7)
#define VAS_WINCTL_THRESH_CTL		PPC_BITMASK(8, 9)
#define VAS_WINCTL_FAULT_WIN		PPC_BIT(10)
#define VAS_WINCTL_NX_WIN		PPC_BIT(11)

#define VAS_WIN_STATUS_OFFSET		0x110
#define VAS_WIN_BUSY			PPC_BIT(1)

#define VAS_WIN_CTX_CACHING_CTL_OFFSET	0x118
#define VAS_CASTOUT_REQ			PPC_BIT(0)
#define VAS_PUSH_TO_MEM			PPC_BIT(1)
#define VAS_WIN_CACHE_STATUS		PPC_BIT(4)

#define VAS_TX_RSVD_BUF_COUNT_OFFSET	0x120
#define VAS_RXVD_BUF_COUNT		PPC_BITMASK(58, 63)

#define VAS_LRFIFO_WIN_PTR_OFFSET	0x128
#define VAS_LRX_WIN_ID			PPC_BITMASK(0, 15)

/*
 * Local Notification Control Register controls what happens in _response_
 * to a paste command and hence applies only to receive windows.
 */
#define VAS_LNOTIFY_CTL_OFFSET		0x138
#define VAS_NOTIFY_DISABLE		PPC_BIT(0)
#define VAS_INTR_DISABLE		PPC_BIT(1)
#define VAS_NOTIFY_EARLY		PPC_BIT(2)
#define VAS_NOTIFY_OSU_INTR		PPC_BIT(3)

#define VAS_LNOTIFY_PID_OFFSET		0x140
#define VAS_LNOTIFY_PID			PPC_BITMASK(0, 19)

#define VAS_LNOTIFY_LPID_OFFSET		0x148
#define VAS_LNOTIFY_LPID		PPC_BITMASK(0, 11)

#define VAS_LNOTIFY_TID_OFFSET		0x150
#define VAS_LNOTIFY_TID			PPC_BITMASK(0, 15)

#define VAS_LNOTIFY_SCOPE_OFFSET	0x158
#define VAS_LNOTIFY_MIN_SCOPE		PPC_BITMASK(0, 1)
#define VAS_LNOTIFY_MAX_SCOPE		PPC_BITMASK(2, 3)

#define VAS_NX_UTIL_OFFSET		0x1B0
#define VAS_NX_UTIL			PPC_BITMASK(0, 63)

/* SE: Side effects */
#define VAS_NX_UTIL_SE_OFFSET		0x1B8
#define VAS_NX_UTIL_SE			PPC_BITMASK(0, 63)

#define VAS_NX_UTIL_ADDER_OFFSET	0x180
#define VAS_NX_UTIL_ADDER		PPC_BITMASK(32, 63)

/*
 * VREG(x):
 * Expand a register's short name (eg: LPID) into two parameters:
 *	- the register's short name in string form ("LPID"), and
 *	- the name of the macro (eg: VAS_LPID_OFFSET), defining the
 *	  register's offset in the window context
 */
#define VREG_SFX(n, s)	__stringify(n), VAS_##n##s
#define VREG(r)		VREG_SFX(r, _OFFSET)

/*
 * Local Notify Scope Control Register. (Receive windows only).
 */
enum vas_notify_scope {
	VAS_SCOPE_LOCAL,
	VAS_SCOPE_GROUP,
	VAS_SCOPE_VECTORED_GROUP,
	VAS_SCOPE_UNUSED,
};

/*
 * Local DMA Cache Control Register (Receive windows only).
 */
enum vas_dma_type {
	VAS_DMA_TYPE_INJECT,
	VAS_DMA_TYPE_WRITE,
};

/*
 * Local Notify Scope Control Register. (Receive windows only).
 * Not applicable to NX receive windows.
 */
enum vas_notify_after_count {
	VAS_NOTIFY_AFTER_256 = 0,
	VAS_NOTIFY_NONE,
	VAS_NOTIFY_AFTER_2
};

/*
 * NX can generate an interrupt for multiple faults and expects kernel
 * to process all of them. So read all valid CRB entries until find the
 * invalid one. So use pswid which is pasted by NX and ccw[0] (reserved
 * bit in BE) to check valid CRB. CCW[0] will not be touched by user
 * space. Application gets CRB formt error if it updates this bit.
 *
 * Invalidate FIFO during allocation and process all entries from last
 * successful read until finds invalid pswid and ccw[0] values.
 * After reading each CRB entry from fault FIFO, the kernel invalidate
 * it by updating pswid with FIFO_INVALID_ENTRY and CCW[0] with
 * CCW0_INVALID.
 */
#define FIFO_INVALID_ENTRY	0xffffffff
#define CCW0_INVALID		1

/*
 * One per instance of VAS. Each instance will have a separate set of
 * receive windows, one per coprocessor type.
 *
 * See also function header of set_vinst_win() for details on ->windows[]
 * and ->rxwin[] tables.
 */
struct vas_instance {
	int vas_id;
	struct ida ida;
	struct list_head node;
	struct platform_device *pdev;

	u64 hvwc_bar_start;
	u64 uwc_bar_start;
	u64 paste_base_addr;
	u64 paste_win_id_shift;

	u64 irq_port;
	int virq;
	int fault_crbs;
	int fault_fifo_size;
	int fifo_in_progress;	/* To wake up thread or return IRQ_HANDLED */
	spinlock_t fault_lock;	/* Protects fifo_in_progress update */
	void *fault_fifo;
	struct pnv_vas_window *fault_win; /* Fault window */

	struct mutex mutex;
	struct pnv_vas_window *rxwin[VAS_COP_TYPE_MAX];
	struct pnv_vas_window *windows[VAS_WINDOWS_PER_CHIP];

	char *name;
	char *dbgname;
	struct dentry *dbgdir;
};

/*
 * In-kernel state a VAS window on PowerNV. One per window.
 */
struct pnv_vas_window {
	struct vas_window vas_win;
	/* Fields common to send and receive windows */
	struct vas_instance *vinst;
	bool tx_win;		/* True if send window */
	bool nx_win;		/* True if NX window */
	bool user_win;		/* True if user space window */
	void *hvwc_map;		/* HV window context */
	void *uwc_map;		/* OS/User window context */

	/* Fields applicable only to send windows */
	void *paste_kaddr;
	char *paste_addr_name;
	struct pnv_vas_window *rxwin;

	/* Fields applicable only to receive windows */
	atomic_t num_txwins;
};

/*
 * Container for the hardware state of a window. One per-window.
 *
 * A VAS Window context is a 512-byte area in the hardware that contains
 * a set of 64-bit registers. Individual bit-fields in these registers
 * determine the configuration/operation of the hardware. struct vas_winctx
 * is a container for the register fields in the window context.
 */
struct vas_winctx {
	u64 rx_fifo;
	int rx_fifo_size;
	int wcreds_max;
	int rsvd_txbuf_count;

	bool user_win;
	bool nx_win;
	bool fault_win;
	bool rsvd_txbuf_enable;
	bool pin_win;
	bool rej_no_credit;
	bool tx_wcred_mode;
	bool rx_wcred_mode;
	bool tx_word_mode;
	bool rx_word_mode;
	bool data_stamp;
	bool xtra_write;
	bool notify_disable;
	bool intr_disable;
	bool fifo_disable;
	bool notify_early;
	bool notify_os_intr_reg;

	int lpid;
	int pidr;		/* value from SPRN_PID, not linux pid */
	int lnotify_lpid;
	int lnotify_pid;
	int lnotify_tid;
	u32 pswid;
	int rx_win_id;
	int fault_win_id;
	int tc_mode;

	u64 irq_port;

	enum vas_dma_type dma_type;
	enum vas_notify_scope min_scope;
	enum vas_notify_scope max_scope;
	enum vas_notify_after_count notify_after_count;
};

extern struct mutex vas_mutex;

extern struct vas_instance *find_vas_instance(int vasid);
extern void vas_init_dbgdir(void);
extern void vas_instance_init_dbgdir(struct vas_instance *vinst);
extern void vas_window_init_dbgdir(struct pnv_vas_window *win);
extern void vas_window_free_dbgdir(struct pnv_vas_window *win);
extern int vas_setup_fault_window(struct vas_instance *vinst);
extern irqreturn_t vas_fault_thread_fn(int irq, void *data);
extern irqreturn_t vas_fault_handler(int irq, void *dev_id);
extern void vas_return_credit(struct pnv_vas_window *window, bool tx);
extern struct pnv_vas_window *vas_pswid_to_window(struct vas_instance *vinst,
						uint32_t pswid);
extern void vas_win_paste_addr(struct pnv_vas_window *window, u64 *addr,
				int *len);

static inline int vas_window_pid(struct vas_window *window)
{
	return pid_vnr(window->task_ref.pid);
}

static inline void vas_log_write(struct pnv_vas_window *win, char *name,
			void *regptr, u64 val)
{
	if (val)
		pr_debug("%swin #%d: %s reg %p, val 0x%016llx\n",
				win->tx_win ? "Tx" : "Rx", win->vas_win.winid,
				name, regptr, val);
}

static inline void write_uwc_reg(struct pnv_vas_window *win, char *name,
			s32 reg, u64 val)
{
	void *regptr;

	regptr = win->uwc_map + reg;
	vas_log_write(win, name, regptr, val);

	out_be64(regptr, val);
}

static inline void write_hvwc_reg(struct pnv_vas_window *win, char *name,
			s32 reg, u64 val)
{
	void *regptr;

	regptr = win->hvwc_map + reg;
	vas_log_write(win, name, regptr, val);

	out_be64(regptr, val);
}

static inline u64 read_hvwc_reg(struct pnv_vas_window *win,
			char *name __maybe_unused, s32 reg)
{
	return in_be64(win->hvwc_map+reg);
}

/*
 * Encode/decode the Partition Send Window ID (PSWID) for a window in
 * a way that we can uniquely identify any window in the system. i.e.
 * we should be able to locate the 'struct vas_window' given the PSWID.
 *
 *	Bits	Usage
 *	0:7	VAS id (8 bits)
 *	8:15	Unused, 0 (3 bits)
 *	16:31	Window id (16 bits)
 */
static inline u32 encode_pswid(int vasid, int winid)
{
	return ((u32)winid | (vasid << (31 - 7)));
}

static inline void decode_pswid(u32 pswid, int *vasid, int *winid)
{
	if (vasid)
		*vasid = pswid >> (31 - 7) & 0xFF;

	if (winid)
		*winid = pswid & 0xFFFF;
}
#endif /* _VAS_H */