Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Schwidefsky | 980 | 22.89% | 38 | 19.00% |
Heiko Carstens | 693 | 16.18% | 46 | 23.00% |
Alexander Egorenkov | 509 | 11.89% | 7 | 3.50% |
Linus Torvalds | 306 | 7.15% | 4 | 2.00% |
Michael Holzheu | 300 | 7.01% | 13 | 6.50% |
Vasily Gorbik | 268 | 6.26% | 17 | 8.50% |
Philipp Hachtmann | 251 | 5.86% | 3 | 1.50% |
Alexander Gordeev | 195 | 4.55% | 11 | 5.50% |
Mike Rapoport | 140 | 3.27% | 7 | 3.50% |
Sven Schnelle | 87 | 2.03% | 6 | 3.00% |
Hongjie Yang | 83 | 1.94% | 1 | 0.50% |
Peter Oberparleiter | 77 | 1.80% | 4 | 2.00% |
Linus Torvalds (pre-git) | 69 | 1.61% | 1 | 0.50% |
Hendrik Brueckner | 49 | 1.14% | 4 | 2.00% |
Collin Walling | 45 | 1.05% | 2 | 1.00% |
Gerald Schaefer | 43 | 1.00% | 4 | 2.00% |
Frank Munzert | 20 | 0.47% | 1 | 0.50% |
Christian Bornträger | 18 | 0.42% | 3 | 1.50% |
Heinz Graalfs | 17 | 0.40% | 1 | 0.50% |
Andrew Morton | 16 | 0.37% | 1 | 0.50% |
Jason A. Donenfeld | 15 | 0.35% | 1 | 0.50% |
Carsten Otte | 14 | 0.33% | 1 | 0.50% |
Mikhail Zaslonko | 12 | 0.28% | 1 | 0.50% |
Anshuman Khandual | 11 | 0.26% | 1 | 0.50% |
Christian Ehrhardt | 8 | 0.19% | 1 | 0.50% |
Ingo Molnar | 6 | 0.14% | 2 | 1.00% |
Valentin Schneider | 6 | 0.14% | 1 | 0.50% |
Niklas Schnelle | 6 | 0.14% | 1 | 0.50% |
Kefeng Wang | 6 | 0.14% | 1 | 0.50% |
Tejun Heo | 5 | 0.12% | 1 | 0.50% |
Sebastian Ott | 5 | 0.12% | 2 | 1.00% |
David Hildenbrand | 4 | 0.09% | 3 | 1.50% |
Toshi Kani | 4 | 0.09% | 1 | 0.50% |
Christoph Hellwig | 3 | 0.07% | 3 | 1.50% |
Al Viro | 3 | 0.07% | 1 | 0.50% |
Valentin Vidic | 2 | 0.05% | 1 | 0.50% |
Masahiro Yamada | 2 | 0.05% | 1 | 0.50% |
Arnaldo Carvalho de Melo | 2 | 0.05% | 1 | 0.50% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.50% |
Philipp Rudo | 1 | 0.02% | 1 | 0.50% |
Total | 4282 | 200 |
// SPDX-License-Identifier: GPL-2.0 /* * S390 version * Copyright IBM Corp. 1999, 2012 * Author(s): Hartmut Penner (hp@de.ibm.com), * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "arch/i386/kernel/setup.c" * Copyright (C) 1995, Linus Torvalds */ /* * This file handles the architecture-dependent parts of initialization */ #define KMSG_COMPONENT "setup" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/errno.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/cpu.h> #include <linux/kernel.h> #include <linux/memblock.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/random.h> #include <linux/user.h> #include <linux/tty.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/root_dev.h> #include <linux/console.h> #include <linux/kernel_stat.h> #include <linux/dma-map-ops.h> #include <linux/device.h> #include <linux/notifier.h> #include <linux/pfn.h> #include <linux/ctype.h> #include <linux/reboot.h> #include <linux/topology.h> #include <linux/kexec.h> #include <linux/crash_dump.h> #include <linux/memory.h> #include <linux/compat.h> #include <linux/start_kernel.h> #include <linux/hugetlb.h> #include <linux/kmemleak.h> #include <asm/boot_data.h> #include <asm/ipl.h> #include <asm/facility.h> #include <asm/smp.h> #include <asm/mmu_context.h> #include <asm/cpcmd.h> #include <asm/lowcore.h> #include <asm/nmi.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/ptrace.h> #include <asm/sections.h> #include <asm/ebcdic.h> #include <asm/diag.h> #include <asm/os_info.h> #include <asm/sclp.h> #include <asm/stacktrace.h> #include <asm/sysinfo.h> #include <asm/numa.h> #include <asm/alternative.h> #include <asm/nospec-branch.h> #include <asm/mem_detect.h> #include <asm/uv.h> #include <asm/asm-offsets.h> #include "entry.h" /* * Machine setup.. */ unsigned int console_mode = 0; EXPORT_SYMBOL(console_mode); unsigned int console_devno = -1; EXPORT_SYMBOL(console_devno); unsigned int console_irq = -1; EXPORT_SYMBOL(console_irq); /* * Some code and data needs to stay below 2 GB, even when the kernel would be * relocated above 2 GB, because it has to use 31 bit addresses. * Such code and data is part of the .amode31 section. */ unsigned long __amode31_ref __samode31 = (unsigned long)&_samode31; unsigned long __amode31_ref __eamode31 = (unsigned long)&_eamode31; unsigned long __amode31_ref __stext_amode31 = (unsigned long)&_stext_amode31; unsigned long __amode31_ref __etext_amode31 = (unsigned long)&_etext_amode31; struct exception_table_entry __amode31_ref *__start_amode31_ex_table = _start_amode31_ex_table; struct exception_table_entry __amode31_ref *__stop_amode31_ex_table = _stop_amode31_ex_table; /* * Control registers CR2, CR5 and CR15 are initialized with addresses * of tables that must be placed below 2G which is handled by the AMODE31 * sections. * Because the AMODE31 sections are relocated below 2G at startup, * the content of control registers CR2, CR5 and CR15 must be updated * with new addresses after the relocation. The initial initialization of * control registers occurs in head64.S and then gets updated again after AMODE31 * relocation. We must access the relevant AMODE31 tables indirectly via * pointers placed in the .amode31.refs linker section. Those pointers get * updated automatically during AMODE31 relocation and always contain a valid * address within AMODE31 sections. */ static __amode31_data u32 __ctl_duct_amode31[16] __aligned(64); static __amode31_data u64 __ctl_aste_amode31[8] __aligned(64) = { [1] = 0xffffffffffffffff }; static __amode31_data u32 __ctl_duald_amode31[32] __aligned(128) = { 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0, 0x80000000, 0, 0, 0 }; static __amode31_data u32 __ctl_linkage_stack_amode31[8] __aligned(64) = { 0, 0, 0x89000000, 0, 0, 0, 0x8a000000, 0 }; static u64 __amode31_ref *__ctl_aste = __ctl_aste_amode31; static u32 __amode31_ref *__ctl_duald = __ctl_duald_amode31; static u32 __amode31_ref *__ctl_linkage_stack = __ctl_linkage_stack_amode31; static u32 __amode31_ref *__ctl_duct = __ctl_duct_amode31; int __bootdata(noexec_disabled); unsigned long __bootdata(ident_map_size); struct mem_detect_info __bootdata(mem_detect); struct initrd_data __bootdata(initrd_data); unsigned long __bootdata_preserved(__kaslr_offset); unsigned long __bootdata(__amode31_base); unsigned int __bootdata_preserved(zlib_dfltcc_support); EXPORT_SYMBOL(zlib_dfltcc_support); u64 __bootdata_preserved(stfle_fac_list[16]); EXPORT_SYMBOL(stfle_fac_list); u64 __bootdata_preserved(alt_stfle_fac_list[16]); struct oldmem_data __bootdata_preserved(oldmem_data); unsigned long VMALLOC_START; EXPORT_SYMBOL(VMALLOC_START); unsigned long VMALLOC_END; EXPORT_SYMBOL(VMALLOC_END); struct page *vmemmap; EXPORT_SYMBOL(vmemmap); unsigned long vmemmap_size; unsigned long MODULES_VADDR; unsigned long MODULES_END; /* An array with a pointer to the lowcore of every CPU. */ struct lowcore *lowcore_ptr[NR_CPUS]; EXPORT_SYMBOL(lowcore_ptr); DEFINE_STATIC_KEY_FALSE(cpu_has_bear); /* * The Write Back bit position in the physaddr is given by the SLPC PCI. * Leaving the mask zero always uses write through which is safe */ unsigned long mio_wb_bit_mask __ro_after_init; /* * This is set up by the setup-routine at boot-time * for S390 need to find out, what we have to setup * using address 0x10400 ... */ #include <asm/setup.h> /* * condev= and conmode= setup parameter. */ static int __init condev_setup(char *str) { int vdev; vdev = simple_strtoul(str, &str, 0); if (vdev >= 0 && vdev < 65536) { console_devno = vdev; console_irq = -1; } return 1; } __setup("condev=", condev_setup); static void __init set_preferred_console(void) { if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP) add_preferred_console("ttyS", 0, NULL); else if (CONSOLE_IS_3270) add_preferred_console("tty3270", 0, NULL); else if (CONSOLE_IS_VT220) add_preferred_console("ttysclp", 0, NULL); else if (CONSOLE_IS_HVC) add_preferred_console("hvc", 0, NULL); } static int __init conmode_setup(char *str) { #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE) if (!strcmp(str, "hwc") || !strcmp(str, "sclp")) SET_CONSOLE_SCLP; #endif #if defined(CONFIG_TN3215_CONSOLE) if (!strcmp(str, "3215")) SET_CONSOLE_3215; #endif #if defined(CONFIG_TN3270_CONSOLE) if (!strcmp(str, "3270")) SET_CONSOLE_3270; #endif set_preferred_console(); return 1; } __setup("conmode=", conmode_setup); static void __init conmode_default(void) { char query_buffer[1024]; char *ptr; if (MACHINE_IS_VM) { cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL); console_devno = simple_strtoul(query_buffer + 5, NULL, 16); ptr = strstr(query_buffer, "SUBCHANNEL ="); console_irq = simple_strtoul(ptr + 13, NULL, 16); cpcmd("QUERY TERM", query_buffer, 1024, NULL); ptr = strstr(query_buffer, "CONMODE"); /* * Set the conmode to 3215 so that the device recognition * will set the cu_type of the console to 3215. If the * conmode is 3270 and we don't set it back then both * 3215 and the 3270 driver will try to access the console * device (3215 as console and 3270 as normal tty). */ cpcmd("TERM CONMODE 3215", NULL, 0, NULL); if (ptr == NULL) { #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE) SET_CONSOLE_SCLP; #endif return; } if (str_has_prefix(ptr + 8, "3270")) { #if defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #elif defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE) SET_CONSOLE_SCLP; #endif } else if (str_has_prefix(ptr + 8, "3215")) { #if defined(CONFIG_TN3215_CONSOLE) SET_CONSOLE_3215; #elif defined(CONFIG_TN3270_CONSOLE) SET_CONSOLE_3270; #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE) SET_CONSOLE_SCLP; #endif } } else if (MACHINE_IS_KVM) { if (sclp.has_vt220 && IS_ENABLED(CONFIG_SCLP_VT220_CONSOLE)) SET_CONSOLE_VT220; else if (sclp.has_linemode && IS_ENABLED(CONFIG_SCLP_CONSOLE)) SET_CONSOLE_SCLP; else SET_CONSOLE_HVC; } else { #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE) SET_CONSOLE_SCLP; #endif } } #ifdef CONFIG_CRASH_DUMP static void __init setup_zfcpdump(void) { if (!is_ipl_type_dump()) return; if (oldmem_data.start) return; strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev"); console_loglevel = 2; } #else static inline void setup_zfcpdump(void) {} #endif /* CONFIG_CRASH_DUMP */ /* * Reboot, halt and power_off stubs. They just call _machine_restart, * _machine_halt or _machine_power_off. */ void machine_restart(char *command) { if ((!in_interrupt() && !in_atomic()) || oops_in_progress) /* * Only unblank the console if we are called in enabled * context or a bust_spinlocks cleared the way for us. */ console_unblank(); _machine_restart(command); } void machine_halt(void) { if (!in_interrupt() || oops_in_progress) /* * Only unblank the console if we are called in enabled * context or a bust_spinlocks cleared the way for us. */ console_unblank(); _machine_halt(); } void machine_power_off(void) { if (!in_interrupt() || oops_in_progress) /* * Only unblank the console if we are called in enabled * context or a bust_spinlocks cleared the way for us. */ console_unblank(); _machine_power_off(); } /* * Dummy power off function. */ void (*pm_power_off)(void) = machine_power_off; EXPORT_SYMBOL_GPL(pm_power_off); void *restart_stack; unsigned long stack_alloc(void) { #ifdef CONFIG_VMAP_STACK void *ret; ret = __vmalloc_node(THREAD_SIZE, THREAD_SIZE, THREADINFO_GFP, NUMA_NO_NODE, __builtin_return_address(0)); kmemleak_not_leak(ret); return (unsigned long)ret; #else return __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); #endif } void stack_free(unsigned long stack) { #ifdef CONFIG_VMAP_STACK vfree((void *) stack); #else free_pages(stack, THREAD_SIZE_ORDER); #endif } int __init arch_early_irq_init(void) { unsigned long stack; stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER); if (!stack) panic("Couldn't allocate async stack"); S390_lowcore.async_stack = stack + STACK_INIT_OFFSET; return 0; } void __init arch_call_rest_init(void) { unsigned long stack; stack = stack_alloc(); if (!stack) panic("Couldn't allocate kernel stack"); current->stack = (void *) stack; #ifdef CONFIG_VMAP_STACK current->stack_vm_area = (void *) stack; #endif set_task_stack_end_magic(current); stack += STACK_INIT_OFFSET; S390_lowcore.kernel_stack = stack; call_on_stack_noreturn(rest_init, stack); } static void __init setup_lowcore_dat_off(void) { unsigned long int_psw_mask = PSW_KERNEL_BITS; unsigned long mcck_stack; struct lowcore *lc; if (IS_ENABLED(CONFIG_KASAN)) int_psw_mask |= PSW_MASK_DAT; /* * Setup lowcore for boot cpu */ BUILD_BUG_ON(sizeof(struct lowcore) != LC_PAGES * PAGE_SIZE); lc = memblock_alloc_low(sizeof(*lc), sizeof(*lc)); if (!lc) panic("%s: Failed to allocate %zu bytes align=%zx\n", __func__, sizeof(*lc), sizeof(*lc)); lc->restart_psw.mask = PSW_KERNEL_BITS; lc->restart_psw.addr = (unsigned long) restart_int_handler; lc->external_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK; lc->external_new_psw.addr = (unsigned long) ext_int_handler; lc->svc_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK; lc->svc_new_psw.addr = (unsigned long) system_call; lc->program_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK; lc->program_new_psw.addr = (unsigned long) pgm_check_handler; lc->mcck_new_psw.mask = PSW_KERNEL_BITS; lc->mcck_new_psw.addr = (unsigned long) mcck_int_handler; lc->io_new_psw.mask = int_psw_mask | PSW_MASK_MCHECK; lc->io_new_psw.addr = (unsigned long) io_int_handler; lc->clock_comparator = clock_comparator_max; lc->nodat_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); lc->current_task = (unsigned long)&init_task; lc->lpp = LPP_MAGIC; lc->machine_flags = S390_lowcore.machine_flags; lc->preempt_count = S390_lowcore.preempt_count; nmi_alloc_mcesa_early(&lc->mcesad); lc->sys_enter_timer = S390_lowcore.sys_enter_timer; lc->exit_timer = S390_lowcore.exit_timer; lc->user_timer = S390_lowcore.user_timer; lc->system_timer = S390_lowcore.system_timer; lc->steal_timer = S390_lowcore.steal_timer; lc->last_update_timer = S390_lowcore.last_update_timer; lc->last_update_clock = S390_lowcore.last_update_clock; /* * Allocate the global restart stack which is the same for * all CPUs in cast *one* of them does a PSW restart. */ restart_stack = memblock_alloc(THREAD_SIZE, THREAD_SIZE); if (!restart_stack) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, THREAD_SIZE, THREAD_SIZE); restart_stack += STACK_INIT_OFFSET; /* * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant * restart data to the absolute zero lowcore. This is necessary if * PSW restart is done on an offline CPU that has lowcore zero. */ lc->restart_stack = (unsigned long) restart_stack; lc->restart_fn = (unsigned long) do_restart; lc->restart_data = 0; lc->restart_source = -1U; put_abs_lowcore(restart_stack, lc->restart_stack); put_abs_lowcore(restart_fn, lc->restart_fn); put_abs_lowcore(restart_data, lc->restart_data); put_abs_lowcore(restart_source, lc->restart_source); put_abs_lowcore(restart_psw, lc->restart_psw); put_abs_lowcore(mcesad, lc->mcesad); mcck_stack = (unsigned long)memblock_alloc(THREAD_SIZE, THREAD_SIZE); if (!mcck_stack) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, THREAD_SIZE, THREAD_SIZE); lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET; lc->spinlock_lockval = arch_spin_lockval(0); lc->spinlock_index = 0; arch_spin_lock_setup(0); lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW); lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW); lc->preempt_count = PREEMPT_DISABLED; set_prefix(__pa(lc)); lowcore_ptr[0] = lc; } static void __init setup_lowcore_dat_on(void) { struct lowcore *lc = lowcore_ptr[0]; int cr; __ctl_clear_bit(0, 28); S390_lowcore.external_new_psw.mask |= PSW_MASK_DAT; S390_lowcore.svc_new_psw.mask |= PSW_MASK_DAT; S390_lowcore.program_new_psw.mask |= PSW_MASK_DAT; S390_lowcore.io_new_psw.mask |= PSW_MASK_DAT; __ctl_set_bit(0, 28); __ctl_store(S390_lowcore.cregs_save_area, 0, 15); put_abs_lowcore(restart_flags, RESTART_FLAG_CTLREGS); put_abs_lowcore(program_new_psw, lc->program_new_psw); for (cr = 0; cr < ARRAY_SIZE(lc->cregs_save_area); cr++) put_abs_lowcore(cregs_save_area[cr], lc->cregs_save_area[cr]); } static struct resource code_resource = { .name = "Kernel code", .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, }; static struct resource data_resource = { .name = "Kernel data", .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, }; static struct resource bss_resource = { .name = "Kernel bss", .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, }; static struct resource __initdata *standard_resources[] = { &code_resource, &data_resource, &bss_resource, }; static void __init setup_resources(void) { struct resource *res, *std_res, *sub_res; phys_addr_t start, end; int j; u64 i; code_resource.start = (unsigned long) _text; code_resource.end = (unsigned long) _etext - 1; data_resource.start = (unsigned long) _etext; data_resource.end = (unsigned long) _edata - 1; bss_resource.start = (unsigned long) __bss_start; bss_resource.end = (unsigned long) __bss_stop - 1; for_each_mem_range(i, &start, &end) { res = memblock_alloc(sizeof(*res), 8); if (!res) panic("%s: Failed to allocate %zu bytes align=0x%x\n", __func__, sizeof(*res), 8); res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; res->name = "System RAM"; res->start = start; /* * In memblock, end points to the first byte after the * range while in resourses, end points to the last byte in * the range. */ res->end = end - 1; request_resource(&iomem_resource, res); for (j = 0; j < ARRAY_SIZE(standard_resources); j++) { std_res = standard_resources[j]; if (std_res->start < res->start || std_res->start > res->end) continue; if (std_res->end > res->end) { sub_res = memblock_alloc(sizeof(*sub_res), 8); if (!sub_res) panic("%s: Failed to allocate %zu bytes align=0x%x\n", __func__, sizeof(*sub_res), 8); *sub_res = *std_res; sub_res->end = res->end; std_res->start = res->end + 1; request_resource(res, sub_res); } else { request_resource(res, std_res); } } } #ifdef CONFIG_CRASH_DUMP /* * Re-add removed crash kernel memory as reserved memory. This makes * sure it will be mapped with the identity mapping and struct pages * will be created, so it can be resized later on. * However add it later since the crash kernel resource should not be * part of the System RAM resource. */ if (crashk_res.end) { memblock_add_node(crashk_res.start, resource_size(&crashk_res), 0, MEMBLOCK_NONE); memblock_reserve(crashk_res.start, resource_size(&crashk_res)); insert_resource(&iomem_resource, &crashk_res); } #endif } static void __init setup_memory_end(void) { memblock_remove(ident_map_size, PHYS_ADDR_MAX - ident_map_size); max_pfn = max_low_pfn = PFN_DOWN(ident_map_size); pr_notice("The maximum memory size is %luMB\n", ident_map_size >> 20); } #ifdef CONFIG_CRASH_DUMP /* * When kdump is enabled, we have to ensure that no memory from the area * [0 - crashkernel memory size] is set offline - it will be exchanged with * the crashkernel memory region when kdump is triggered. The crashkernel * memory region can never get offlined (pages are unmovable). */ static int kdump_mem_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct memory_notify *arg = data; if (action != MEM_GOING_OFFLINE) return NOTIFY_OK; if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res))) return NOTIFY_BAD; return NOTIFY_OK; } static struct notifier_block kdump_mem_nb = { .notifier_call = kdump_mem_notifier, }; #endif /* * Reserve memory for kdump kernel to be loaded with kexec */ static void __init reserve_crashkernel(void) { #ifdef CONFIG_CRASH_DUMP unsigned long long crash_base, crash_size; phys_addr_t low, high; int rc; rc = parse_crashkernel(boot_command_line, ident_map_size, &crash_size, &crash_base); crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN); crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN); if (rc || crash_size == 0) return; if (memblock.memory.regions[0].size < crash_size) { pr_info("crashkernel reservation failed: %s\n", "first memory chunk must be at least crashkernel size"); return; } low = crash_base ?: oldmem_data.start; high = low + crash_size; if (low >= oldmem_data.start && high <= oldmem_data.start + oldmem_data.size) { /* The crashkernel fits into OLDMEM, reuse OLDMEM */ crash_base = low; } else { /* Find suitable area in free memory */ low = max_t(unsigned long, crash_size, sclp.hsa_size); high = crash_base ? crash_base + crash_size : ULONG_MAX; if (crash_base && crash_base < low) { pr_info("crashkernel reservation failed: %s\n", "crash_base too low"); return; } low = crash_base ?: low; crash_base = memblock_phys_alloc_range(crash_size, KEXEC_CRASH_MEM_ALIGN, low, high); } if (!crash_base) { pr_info("crashkernel reservation failed: %s\n", "no suitable area found"); return; } if (register_memory_notifier(&kdump_mem_nb)) { memblock_phys_free(crash_base, crash_size); return; } if (!oldmem_data.start && MACHINE_IS_VM) diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; memblock_remove(crash_base, crash_size); pr_info("Reserving %lluMB of memory at %lluMB " "for crashkernel (System RAM: %luMB)\n", crash_size >> 20, crash_base >> 20, (unsigned long)memblock.memory.total_size >> 20); os_info_crashkernel_add(crash_base, crash_size); #endif } /* * Reserve the initrd from being used by memblock */ static void __init reserve_initrd(void) { #ifdef CONFIG_BLK_DEV_INITRD if (!initrd_data.start || !initrd_data.size) return; initrd_start = (unsigned long)__va(initrd_data.start); initrd_end = initrd_start + initrd_data.size; memblock_reserve(initrd_data.start, initrd_data.size); #endif } /* * Reserve the memory area used to pass the certificate lists */ static void __init reserve_certificate_list(void) { if (ipl_cert_list_addr) memblock_reserve(ipl_cert_list_addr, ipl_cert_list_size); } static void __init reserve_mem_detect_info(void) { unsigned long start, size; get_mem_detect_reserved(&start, &size); if (size) memblock_reserve(start, size); } static void __init free_mem_detect_info(void) { unsigned long start, size; get_mem_detect_reserved(&start, &size); if (size) memblock_phys_free(start, size); } static const char * __init get_mem_info_source(void) { switch (mem_detect.info_source) { case MEM_DETECT_SCLP_STOR_INFO: return "sclp storage info"; case MEM_DETECT_DIAG260: return "diag260"; case MEM_DETECT_SCLP_READ_INFO: return "sclp read info"; case MEM_DETECT_BIN_SEARCH: return "binary search"; } return "none"; } static void __init memblock_add_mem_detect_info(void) { unsigned long start, end; int i; pr_debug("physmem info source: %s (%hhd)\n", get_mem_info_source(), mem_detect.info_source); /* keep memblock lists close to the kernel */ memblock_set_bottom_up(true); for_each_mem_detect_block(i, &start, &end) { memblock_add(start, end - start); memblock_physmem_add(start, end - start); } memblock_set_bottom_up(false); memblock_set_node(0, ULONG_MAX, &memblock.memory, 0); } /* * Check for initrd being in usable memory */ static void __init check_initrd(void) { #ifdef CONFIG_BLK_DEV_INITRD if (initrd_data.start && initrd_data.size && !memblock_is_region_memory(initrd_data.start, initrd_data.size)) { pr_err("The initial RAM disk does not fit into the memory\n"); memblock_phys_free(initrd_data.start, initrd_data.size); initrd_start = initrd_end = 0; } #endif } /* * Reserve memory used for lowcore/command line/kernel image. */ static void __init reserve_kernel(void) { memblock_reserve(0, STARTUP_NORMAL_OFFSET); memblock_reserve(OLDMEM_BASE, sizeof(unsigned long)); memblock_reserve(OLDMEM_SIZE, sizeof(unsigned long)); memblock_reserve(__amode31_base, __eamode31 - __samode31); memblock_reserve(__pa(sclp_early_sccb), EXT_SCCB_READ_SCP); memblock_reserve(__pa(_stext), _end - _stext); } static void __init setup_memory(void) { phys_addr_t start, end; u64 i; /* * Init storage key for present memory */ for_each_mem_range(i, &start, &end) storage_key_init_range(start, end); psw_set_key(PAGE_DEFAULT_KEY); } static void __init relocate_amode31_section(void) { unsigned long amode31_size = __eamode31 - __samode31; long amode31_offset = __amode31_base - __samode31; long *ptr; pr_info("Relocating AMODE31 section of size 0x%08lx\n", amode31_size); /* Move original AMODE31 section to the new one */ memmove((void *)__amode31_base, (void *)__samode31, amode31_size); /* Zero out the old AMODE31 section to catch invalid accesses within it */ memset((void *)__samode31, 0, amode31_size); /* Update all AMODE31 region references */ for (ptr = _start_amode31_refs; ptr != _end_amode31_refs; ptr++) *ptr += amode31_offset; } /* This must be called after AMODE31 relocation */ static void __init setup_cr(void) { union ctlreg2 cr2; union ctlreg5 cr5; union ctlreg15 cr15; __ctl_duct[1] = (unsigned long)__ctl_aste; __ctl_duct[2] = (unsigned long)__ctl_aste; __ctl_duct[4] = (unsigned long)__ctl_duald; /* Update control registers CR2, CR5 and CR15 */ __ctl_store(cr2.val, 2, 2); __ctl_store(cr5.val, 5, 5); __ctl_store(cr15.val, 15, 15); cr2.ducto = (unsigned long)__ctl_duct >> 6; cr5.pasteo = (unsigned long)__ctl_duct >> 6; cr15.lsea = (unsigned long)__ctl_linkage_stack >> 3; __ctl_load(cr2.val, 2, 2); __ctl_load(cr5.val, 5, 5); __ctl_load(cr15.val, 15, 15); } /* * Add system information as device randomness */ static void __init setup_randomness(void) { struct sysinfo_3_2_2 *vmms; vmms = memblock_alloc(PAGE_SIZE, PAGE_SIZE); if (!vmms) panic("Failed to allocate memory for sysinfo structure\n"); if (stsi(vmms, 3, 2, 2) == 0 && vmms->count) add_device_randomness(&vmms->vm, sizeof(vmms->vm[0]) * vmms->count); memblock_free(vmms, PAGE_SIZE); if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG)) static_branch_enable(&s390_arch_random_available); } /* * Find the correct size for the task_struct. This depends on * the size of the struct fpu at the end of the thread_struct * which is embedded in the task_struct. */ static void __init setup_task_size(void) { int task_size = sizeof(struct task_struct); if (!MACHINE_HAS_VX) { task_size -= sizeof(__vector128) * __NUM_VXRS; task_size += sizeof(freg_t) * __NUM_FPRS; } arch_task_struct_size = task_size; } /* * Issue diagnose 318 to set the control program name and * version codes. */ static void __init setup_control_program_code(void) { union diag318_info diag318_info = { .cpnc = CPNC_LINUX, .cpvc = 0, }; if (!sclp.has_diag318) return; diag_stat_inc(DIAG_STAT_X318); asm volatile("diag %0,0,0x318\n" : : "d" (diag318_info.val)); } /* * Print the component list from the IPL report */ static void __init log_component_list(void) { struct ipl_rb_component_entry *ptr, *end; char *str; if (!early_ipl_comp_list_addr) return; if (ipl_block.hdr.flags & IPL_PL_FLAG_SIPL) pr_info("Linux is running with Secure-IPL enabled\n"); else pr_info("Linux is running with Secure-IPL disabled\n"); ptr = (void *) early_ipl_comp_list_addr; end = (void *) ptr + early_ipl_comp_list_size; pr_info("The IPL report contains the following components:\n"); while (ptr < end) { if (ptr->flags & IPL_RB_COMPONENT_FLAG_SIGNED) { if (ptr->flags & IPL_RB_COMPONENT_FLAG_VERIFIED) str = "signed, verified"; else str = "signed, verification failed"; } else { str = "not signed"; } pr_info("%016llx - %016llx (%s)\n", ptr->addr, ptr->addr + ptr->len, str); ptr++; } } /* * Setup function called from init/main.c just after the banner * was printed. */ void __init setup_arch(char **cmdline_p) { /* * print what head.S has found out about the machine */ if (MACHINE_IS_VM) pr_info("Linux is running as a z/VM " "guest operating system in 64-bit mode\n"); else if (MACHINE_IS_KVM) pr_info("Linux is running under KVM in 64-bit mode\n"); else if (MACHINE_IS_LPAR) pr_info("Linux is running natively in 64-bit mode\n"); else pr_info("Linux is running as a guest in 64-bit mode\n"); log_component_list(); /* Have one command line that is parsed and saved in /proc/cmdline */ /* boot_command_line has been already set up in early.c */ *cmdline_p = boot_command_line; ROOT_DEV = Root_RAM0; setup_initial_init_mm(_text, _etext, _edata, _end); if (IS_ENABLED(CONFIG_EXPOLINE_AUTO)) nospec_auto_detect(); jump_label_init(); parse_early_param(); #ifdef CONFIG_CRASH_DUMP /* Deactivate elfcorehdr= kernel parameter */ elfcorehdr_addr = ELFCORE_ADDR_MAX; #endif os_info_init(); setup_ipl(); setup_task_size(); setup_control_program_code(); /* Do some memory reservations *before* memory is added to memblock */ reserve_kernel(); reserve_initrd(); reserve_certificate_list(); reserve_mem_detect_info(); memblock_set_current_limit(ident_map_size); memblock_allow_resize(); /* Get information about *all* installed memory */ memblock_add_mem_detect_info(); free_mem_detect_info(); setup_memory_end(); memblock_dump_all(); setup_memory(); relocate_amode31_section(); setup_cr(); setup_uv(); dma_contiguous_reserve(ident_map_size); vmcp_cma_reserve(); if (MACHINE_HAS_EDAT2) hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); check_initrd(); reserve_crashkernel(); #ifdef CONFIG_CRASH_DUMP /* * Be aware that smp_save_dump_cpus() triggers a system reset. * Therefore CPU and device initialization should be done afterwards. */ smp_save_dump_cpus(); #endif setup_resources(); setup_lowcore_dat_off(); smp_fill_possible_mask(); cpu_detect_mhz_feature(); cpu_init(); numa_setup(); smp_detect_cpus(); topology_init_early(); if (test_facility(193)) static_branch_enable(&cpu_has_bear); /* * Create kernel page tables and switch to virtual addressing. */ paging_init(); /* * After paging_init created the kernel page table, the new PSWs * in lowcore can now run with DAT enabled. */ setup_lowcore_dat_on(); /* Setup default console */ conmode_default(); set_preferred_console(); apply_alternative_instructions(); if (IS_ENABLED(CONFIG_EXPOLINE)) nospec_init_branches(); /* Setup zfcp/nvme dump support */ setup_zfcpdump(); /* Add system specific data to the random pool */ setup_randomness(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1