Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jiang Liu | 592 | 50.60% | 11 | 39.29% |
Thomas Gleixner | 534 | 45.64% | 14 | 50.00% |
David Woodhouse | 36 | 3.08% | 1 | 3.57% |
Jake Oshins | 5 | 0.43% | 1 | 3.57% |
Nicolai Stange | 3 | 0.26% | 1 | 3.57% |
Total | 1170 | 28 |
// SPDX-License-Identifier: GPL-2.0-only /* * Support of MSI, HPET and DMAR interrupts. * * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo * Moved from arch/x86/kernel/apic/io_apic.c. * Jiang Liu <jiang.liu@linux.intel.com> * Convert to hierarchical irqdomain */ #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/pci.h> #include <linux/dmar.h> #include <linux/hpet.h> #include <linux/msi.h> #include <asm/irqdomain.h> #include <asm/hpet.h> #include <asm/hw_irq.h> #include <asm/apic.h> #include <asm/irq_remapping.h> #include <asm/xen/hypervisor.h> struct irq_domain *x86_pci_msi_default_domain __ro_after_init; static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg) { struct msi_msg msg[2] = { [1] = { }, }; __irq_msi_compose_msg(cfg, msg, false); irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg); } static int msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force) { struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd); struct irq_data *parent = irqd->parent_data; unsigned int cpu; int ret; /* Save the current configuration */ cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); old_cfg = *cfg; /* Allocate a new target vector */ ret = parent->chip->irq_set_affinity(parent, mask, force); if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) return ret; /* * For non-maskable and non-remapped MSI interrupts the migration * to a different destination CPU and a different vector has to be * done careful to handle the possible stray interrupt which can be * caused by the non-atomic update of the address/data pair. * * Direct update is possible when: * - The MSI is maskable (remapped MSI does not use this code path)). * The quirk bit is not set in this case. * - The new vector is the same as the old vector * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up) * - The interrupt is not yet started up * - The new destination CPU is the same as the old destination CPU */ if (!irqd_msi_nomask_quirk(irqd) || cfg->vector == old_cfg.vector || old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR || !irqd_is_started(irqd) || cfg->dest_apicid == old_cfg.dest_apicid) { irq_msi_update_msg(irqd, cfg); return ret; } /* * Paranoia: Validate that the interrupt target is the local * CPU. */ if (WARN_ON_ONCE(cpu != smp_processor_id())) { irq_msi_update_msg(irqd, cfg); return ret; } /* * Redirect the interrupt to the new vector on the current CPU * first. This might cause a spurious interrupt on this vector if * the device raises an interrupt right between this update and the * update to the final destination CPU. * * If the vector is in use then the installed device handler will * denote it as spurious which is no harm as this is a rare event * and interrupt handlers have to cope with spurious interrupts * anyway. If the vector is unused, then it is marked so it won't * trigger the 'No irq handler for vector' warning in * common_interrupt(). * * This requires to hold vector lock to prevent concurrent updates to * the affected vector. */ lock_vector_lock(); /* * Mark the new target vector on the local CPU if it is currently * unused. Reuse the VECTOR_RETRIGGERED state which is also used in * the CPU hotplug path for a similar purpose. This cannot be * undone here as the current CPU has interrupts disabled and * cannot handle the interrupt before the whole set_affinity() * section is done. In the CPU unplug case, the current CPU is * about to vanish and will not handle any interrupts anymore. The * vector is cleaned up when the CPU comes online again. */ if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector]))) this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED); /* Redirect it to the new vector on the local CPU temporarily */ old_cfg.vector = cfg->vector; irq_msi_update_msg(irqd, &old_cfg); /* Now transition it to the target CPU */ irq_msi_update_msg(irqd, cfg); /* * All interrupts after this point are now targeted at the new * vector/CPU. * * Drop vector lock before testing whether the temporary assignment * to the local CPU was hit by an interrupt raised in the device, * because the retrigger function acquires vector lock again. */ unlock_vector_lock(); /* * Check whether the transition raced with a device interrupt and * is pending in the local APICs IRR. It is safe to do this outside * of vector lock as the irq_desc::lock of this interrupt is still * held and interrupts are disabled: The check is not accessing the * underlying vector store. It's just checking the local APIC's * IRR. */ if (lapic_vector_set_in_irr(cfg->vector)) irq_data_get_irq_chip(irqd)->irq_retrigger(irqd); return ret; } /* * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices, * which implement the MSI or MSI-X Capability Structure. */ static struct irq_chip pci_msi_controller = { .name = "PCI-MSI", .irq_unmask = pci_msi_unmask_irq, .irq_mask = pci_msi_mask_irq, .irq_ack = irq_chip_ack_parent, .irq_retrigger = irq_chip_retrigger_hierarchy, .irq_set_affinity = msi_set_affinity, .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP, }; int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, msi_alloc_info_t *arg) { init_irq_alloc_info(arg, NULL); if (to_pci_dev(dev)->msix_enabled) { arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; } else { arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; } return 0; } EXPORT_SYMBOL_GPL(pci_msi_prepare); static struct msi_domain_ops pci_msi_domain_ops = { .msi_prepare = pci_msi_prepare, }; static struct msi_domain_info pci_msi_domain_info = { .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_PCI_MSIX, .ops = &pci_msi_domain_ops, .chip = &pci_msi_controller, .handler = handle_edge_irq, .handler_name = "edge", }; struct irq_domain * __init native_create_pci_msi_domain(void) { struct fwnode_handle *fn; struct irq_domain *d; if (disable_apic) return NULL; fn = irq_domain_alloc_named_fwnode("PCI-MSI"); if (!fn) return NULL; d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info, x86_vector_domain); if (!d) { irq_domain_free_fwnode(fn); pr_warn("Failed to initialize PCI-MSI irqdomain.\n"); } else { d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK; } return d; } void __init x86_create_pci_msi_domain(void) { x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain(); } #ifdef CONFIG_IRQ_REMAP static struct irq_chip pci_msi_ir_controller = { .name = "IR-PCI-MSI", .irq_unmask = pci_msi_unmask_irq, .irq_mask = pci_msi_mask_irq, .irq_ack = irq_chip_ack_parent, .irq_retrigger = irq_chip_retrigger_hierarchy, .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP, }; static struct msi_domain_info pci_msi_ir_domain_info = { .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, .ops = &pci_msi_domain_ops, .chip = &pci_msi_ir_controller, .handler = handle_edge_irq, .handler_name = "edge", }; struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent, const char *name, int id) { struct fwnode_handle *fn; struct irq_domain *d; fn = irq_domain_alloc_named_id_fwnode(name, id); if (!fn) return NULL; d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent); if (!d) irq_domain_free_fwnode(fn); return d; } #endif #ifdef CONFIG_DMAR_TABLE /* * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the * high bits of the destination APIC ID. This can't be done in the general * case for MSIs as it would be targeting real memory above 4GiB not the * APIC. */ static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) { __irq_msi_compose_msg(irqd_cfg(data), msg, true); } static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg) { dmar_msi_write(data->irq, msg); } static struct irq_chip dmar_msi_controller = { .name = "DMAR-MSI", .irq_unmask = dmar_msi_unmask, .irq_mask = dmar_msi_mask, .irq_ack = irq_chip_ack_parent, .irq_set_affinity = msi_domain_set_affinity, .irq_retrigger = irq_chip_retrigger_hierarchy, .irq_compose_msi_msg = dmar_msi_compose_msg, .irq_write_msi_msg = dmar_msi_write_msg, .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP, }; static int dmar_msi_init(struct irq_domain *domain, struct msi_domain_info *info, unsigned int virq, irq_hw_number_t hwirq, msi_alloc_info_t *arg) { irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL, handle_edge_irq, arg->data, "edge"); return 0; } static struct msi_domain_ops dmar_msi_domain_ops = { .msi_init = dmar_msi_init, }; static struct msi_domain_info dmar_msi_domain_info = { .ops = &dmar_msi_domain_ops, .chip = &dmar_msi_controller, .flags = MSI_FLAG_USE_DEF_DOM_OPS, }; static struct irq_domain *dmar_get_irq_domain(void) { static struct irq_domain *dmar_domain; static DEFINE_MUTEX(dmar_lock); struct fwnode_handle *fn; mutex_lock(&dmar_lock); if (dmar_domain) goto out; fn = irq_domain_alloc_named_fwnode("DMAR-MSI"); if (fn) { dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info, x86_vector_domain); if (!dmar_domain) irq_domain_free_fwnode(fn); } out: mutex_unlock(&dmar_lock); return dmar_domain; } int dmar_alloc_hwirq(int id, int node, void *arg) { struct irq_domain *domain = dmar_get_irq_domain(); struct irq_alloc_info info; if (!domain) return -1; init_irq_alloc_info(&info, NULL); info.type = X86_IRQ_ALLOC_TYPE_DMAR; info.devid = id; info.hwirq = id; info.data = arg; return irq_domain_alloc_irqs(domain, 1, node, &info); } void dmar_free_hwirq(int irq) { irq_domain_free_irqs(irq, 1); } #endif bool arch_restore_msi_irqs(struct pci_dev *dev) { return xen_initdom_restore_msi(dev); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1