Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Povišer | 1483 | 100.00% | 2 | 100.00% |
Total | 1483 | 2 |
// SPDX-License-Identifier: GPL-2.0-only OR MIT /* * Driver for an SoC block (Numerically Controlled Oscillator) * found on t8103 (M1) and other Apple chips * * Copyright (C) The Asahi Linux Contributors */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #define NCO_CHANNEL_STRIDE 0x4000 #define NCO_CHANNEL_REGSIZE 20 #define REG_CTRL 0 #define CTRL_ENABLE BIT(31) #define REG_DIV 4 #define DIV_FINE GENMASK(1, 0) #define DIV_COARSE GENMASK(12, 2) #define REG_INC1 8 #define REG_INC2 12 #define REG_ACCINIT 16 /* * Theory of operation (postulated) * * The REG_DIV register indirectly expresses a base integer divisor, roughly * corresponding to twice the desired ratio of input to output clock. This * base divisor is adjusted on a cycle-by-cycle basis based on the state of a * 32-bit phase accumulator to achieve a desired precise clock ratio over the * long term. * * Specifically an output clock cycle is produced after (REG_DIV divisor)/2 * or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top * bit of the 32-bit accumulator is set. The accumulator is incremented each * produced output cycle, by the value from either REG_INC1 or REG_INC2, which * of the two is selected depending again on the accumulator's current top bit. * * Because the NCO hardware implements counting of input clock cycles in part * in a Galois linear-feedback shift register, the higher bits of divisor * are programmed into REG_DIV by picking an appropriate LFSR state. See * applnco_compute_tables/applnco_div_translate for details on this. */ #define LFSR_POLY 0xa01 #define LFSR_INIT 0x7ff #define LFSR_LEN 11 #define LFSR_PERIOD ((1 << LFSR_LEN) - 1) #define LFSR_TBLSIZE (1 << LFSR_LEN) /* The minimal attainable coarse divisor (first value in table) */ #define COARSE_DIV_OFFSET 2 struct applnco_tables { u16 fwd[LFSR_TBLSIZE]; u16 inv[LFSR_TBLSIZE]; }; struct applnco_channel { void __iomem *base; struct applnco_tables *tbl; struct clk_hw hw; spinlock_t lock; }; #define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw) static void applnco_enable_nolock(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); u32 val; val = readl_relaxed(chan->base + REG_CTRL); writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL); } static void applnco_disable_nolock(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); u32 val; val = readl_relaxed(chan->base + REG_CTRL); writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL); } static int applnco_is_enabled(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0; } static void applnco_compute_tables(struct applnco_tables *tbl) { int i; u32 state = LFSR_INIT; /* * Go through the states of a Galois LFSR and build * a coarse divisor translation table. */ for (i = LFSR_PERIOD; i > 0; i--) { if (state & 1) state = (state >> 1) ^ (LFSR_POLY >> 1); else state = (state >> 1); tbl->fwd[i] = state; tbl->inv[state] = i; } /* Zero value is special-cased */ tbl->fwd[0] = 0; tbl->inv[0] = 0; } static bool applnco_div_out_of_range(unsigned int div) { unsigned int coarse = div / 4; return coarse < COARSE_DIV_OFFSET || coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE; } static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div) { unsigned int coarse = div / 4; if (WARN_ON(applnco_div_out_of_range(div))) return 0; return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) | FIELD_PREP(DIV_FINE, div % 4); } static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval) { unsigned int coarse, fine; coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET; fine = FIELD_GET(DIV_FINE, regval); return coarse * 4 + fine; } static int applnco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct applnco_channel *chan = to_applnco_channel(hw); unsigned long flags; u32 div, inc1, inc2; bool was_enabled; div = 2 * parent_rate / rate; inc1 = 2 * parent_rate - div * rate; inc2 = inc1 - rate; if (applnco_div_out_of_range(div)) return -EINVAL; div = applnco_div_translate(chan->tbl, div); spin_lock_irqsave(&chan->lock, flags); was_enabled = applnco_is_enabled(hw); applnco_disable_nolock(hw); writel_relaxed(div, chan->base + REG_DIV); writel_relaxed(inc1, chan->base + REG_INC1); writel_relaxed(inc2, chan->base + REG_INC2); /* Presumably a neutral initial value for accumulator */ writel_relaxed(1 << 31, chan->base + REG_ACCINIT); if (was_enabled) applnco_enable_nolock(hw); spin_unlock_irqrestore(&chan->lock, flags); return 0; } static unsigned long applnco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct applnco_channel *chan = to_applnco_channel(hw); u32 div, inc1, inc2, incbase; div = applnco_div_translate_inv(chan->tbl, readl_relaxed(chan->base + REG_DIV)); inc1 = readl_relaxed(chan->base + REG_INC1); inc2 = readl_relaxed(chan->base + REG_INC2); /* * We don't support wraparound of accumulator * nor the edge case of both increments being zero */ if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0)) return 0; /* Scale both sides of division by incbase to maintain precision */ incbase = inc1 - inc2; return div64_u64(((u64) parent_rate) * 2 * incbase, ((u64) div) * incbase + inc1); } static long applnco_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1; unsigned long hi = *parent_rate / COARSE_DIV_OFFSET; return clamp(rate, lo, hi); } static int applnco_enable(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); unsigned long flags; spin_lock_irqsave(&chan->lock, flags); applnco_enable_nolock(hw); spin_unlock_irqrestore(&chan->lock, flags); return 0; } static void applnco_disable(struct clk_hw *hw) { struct applnco_channel *chan = to_applnco_channel(hw); unsigned long flags; spin_lock_irqsave(&chan->lock, flags); applnco_disable_nolock(hw); spin_unlock_irqrestore(&chan->lock, flags); } static const struct clk_ops applnco_ops = { .set_rate = applnco_set_rate, .recalc_rate = applnco_recalc_rate, .round_rate = applnco_round_rate, .enable = applnco_enable, .disable = applnco_disable, .is_enabled = applnco_is_enabled, }; static int applnco_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct clk_parent_data pdata = { .index = 0 }; struct clk_init_data init; struct clk_hw_onecell_data *onecell_data; void __iomem *base; struct resource *res; struct applnco_tables *tbl; unsigned int nchannels; int ret, i; base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(base)) return PTR_ERR(base); if (resource_size(res) < NCO_CHANNEL_REGSIZE) return -EINVAL; nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE) / NCO_CHANNEL_STRIDE + 1; onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws, nchannels), GFP_KERNEL); if (!onecell_data) return -ENOMEM; onecell_data->num = nchannels; tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL); if (!tbl) return -ENOMEM; applnco_compute_tables(tbl); for (i = 0; i < nchannels; i++) { struct applnco_channel *chan; chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->base = base + NCO_CHANNEL_STRIDE * i; chan->tbl = tbl; spin_lock_init(&chan->lock); memset(&init, 0, sizeof(init)); init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s-%d", np->name, i); init.ops = &applnco_ops; init.parent_data = &pdata; init.num_parents = 1; init.flags = 0; chan->hw.init = &init; ret = devm_clk_hw_register(&pdev->dev, &chan->hw); if (ret) return ret; onecell_data->hws[i] = &chan->hw; } return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get, onecell_data); } static const struct of_device_id applnco_ids[] = { { .compatible = "apple,nco" }, { } }; MODULE_DEVICE_TABLE(of, applnco_ids); static struct platform_driver applnco_driver = { .driver = { .name = "apple-nco", .of_match_table = applnco_ids, }, .probe = applnco_probe, }; module_platform_driver(applnco_driver); MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>"); MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1