Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Loic Poulain | 2364 | 99.96% | 1 | 50.00% |
Wei Yongjun | 1 | 0.04% | 1 | 50.00% |
Total | 2365 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ /* * Each of the CPU clusters (Power and Perf) on msm8996 are * clocked via 2 PLLs, a primary and alternate. There are also * 2 Mux'es, a primary and secondary all connected together * as shown below * * +-------+ * XO | | * +------------------>0 | * | | * PLL/2 | SMUX +----+ * +------->1 | | * | | | | * | +-------+ | +-------+ * | +---->0 | * | | | * +---------------+ | +----------->1 | CPU clk * |Primary PLL +----+ PLL_EARLY | | +------> * | +------+-----------+ +------>2 PMUX | * +---------------+ | | | | * | +------+ | +-->3 | * +--^+ ACD +-----+ | +-------+ * +---------------+ +------+ | * |Alt PLL | | * | +---------------------------+ * +---------------+ PLL_EARLY * * The primary PLL is what drives the CPU clk, except for times * when we are reprogramming the PLL itself (for rate changes) when * we temporarily switch to an alternate PLL. * * The primary PLL operates on a single VCO range, between 600MHz * and 3GHz. However the CPUs do support OPPs with frequencies * between 300MHz and 600MHz. In order to support running the CPUs * at those frequencies we end up having to lock the PLL at twice * the rate and drive the CPU clk via the PLL/2 output and SMUX. * * So for frequencies above 600MHz we follow the following path * Primary PLL --> PLL_EARLY --> PMUX(1) --> CPU clk * and for frequencies between 300MHz and 600MHz we follow * Primary PLL --> PLL/2 --> SMUX(1) --> PMUX(0) --> CPU clk * * ACD stands for Adaptive Clock Distribution and is used to * detect voltage droops. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <soc/qcom/kryo-l2-accessors.h> #include "clk-alpha-pll.h" #include "clk-regmap.h" enum _pmux_input { DIV_2_INDEX = 0, PLL_INDEX, ACD_INDEX, ALT_INDEX, NUM_OF_PMUX_INPUTS }; #define DIV_2_THRESHOLD 600000000 #define PWRCL_REG_OFFSET 0x0 #define PERFCL_REG_OFFSET 0x80000 #define MUX_OFFSET 0x40 #define ALT_PLL_OFFSET 0x100 #define SSSCTL_OFFSET 0x160 static const u8 prim_pll_regs[PLL_OFF_MAX_REGS] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_ALPHA_VAL] = 0x08, [PLL_OFF_USER_CTL] = 0x10, [PLL_OFF_CONFIG_CTL] = 0x18, [PLL_OFF_CONFIG_CTL_U] = 0x1c, [PLL_OFF_TEST_CTL] = 0x20, [PLL_OFF_TEST_CTL_U] = 0x24, [PLL_OFF_STATUS] = 0x28, }; static const u8 alt_pll_regs[PLL_OFF_MAX_REGS] = { [PLL_OFF_L_VAL] = 0x04, [PLL_OFF_ALPHA_VAL] = 0x08, [PLL_OFF_ALPHA_VAL_U] = 0x0c, [PLL_OFF_USER_CTL] = 0x10, [PLL_OFF_USER_CTL_U] = 0x14, [PLL_OFF_CONFIG_CTL] = 0x18, [PLL_OFF_TEST_CTL] = 0x20, [PLL_OFF_TEST_CTL_U] = 0x24, [PLL_OFF_STATUS] = 0x28, }; /* PLLs */ static const struct alpha_pll_config hfpll_config = { .l = 60, .config_ctl_val = 0x200d4aa8, .config_ctl_hi_val = 0x006, .pre_div_mask = BIT(12), .post_div_mask = 0x3 << 8, .post_div_val = 0x1 << 8, .main_output_mask = BIT(0), .early_output_mask = BIT(3), }; static struct clk_alpha_pll perfcl_pll = { .offset = PERFCL_REG_OFFSET, .regs = prim_pll_regs, .flags = SUPPORTS_DYNAMIC_UPDATE | SUPPORTS_FSM_MODE, .clkr.hw.init = &(struct clk_init_data){ .name = "perfcl_pll", .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .ops = &clk_alpha_pll_huayra_ops, }, }; static struct clk_alpha_pll pwrcl_pll = { .offset = PWRCL_REG_OFFSET, .regs = prim_pll_regs, .flags = SUPPORTS_DYNAMIC_UPDATE | SUPPORTS_FSM_MODE, .clkr.hw.init = &(struct clk_init_data){ .name = "pwrcl_pll", .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .ops = &clk_alpha_pll_huayra_ops, }, }; static const struct pll_vco alt_pll_vco_modes[] = { VCO(3, 250000000, 500000000), VCO(2, 500000000, 750000000), VCO(1, 750000000, 1000000000), VCO(0, 1000000000, 2150400000), }; static const struct alpha_pll_config altpll_config = { .l = 16, .vco_val = 0x3 << 20, .vco_mask = 0x3 << 20, .config_ctl_val = 0x4001051b, .post_div_mask = 0x3 << 8, .post_div_val = 0x1 << 8, .main_output_mask = BIT(0), .early_output_mask = BIT(3), }; static struct clk_alpha_pll perfcl_alt_pll = { .offset = PERFCL_REG_OFFSET + ALT_PLL_OFFSET, .regs = alt_pll_regs, .vco_table = alt_pll_vco_modes, .num_vco = ARRAY_SIZE(alt_pll_vco_modes), .flags = SUPPORTS_OFFLINE_REQ | SUPPORTS_FSM_MODE, .clkr.hw.init = &(struct clk_init_data) { .name = "perfcl_alt_pll", .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .ops = &clk_alpha_pll_hwfsm_ops, }, }; static struct clk_alpha_pll pwrcl_alt_pll = { .offset = PWRCL_REG_OFFSET + ALT_PLL_OFFSET, .regs = alt_pll_regs, .vco_table = alt_pll_vco_modes, .num_vco = ARRAY_SIZE(alt_pll_vco_modes), .flags = SUPPORTS_OFFLINE_REQ | SUPPORTS_FSM_MODE, .clkr.hw.init = &(struct clk_init_data) { .name = "pwrcl_alt_pll", .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .ops = &clk_alpha_pll_hwfsm_ops, }, }; struct clk_cpu_8996_mux { u32 reg; u8 shift; u8 width; struct notifier_block nb; struct clk_hw *pll; struct clk_hw *pll_div_2; struct clk_regmap clkr; }; static int cpu_clk_notifier_cb(struct notifier_block *nb, unsigned long event, void *data); #define to_clk_cpu_8996_mux_nb(_nb) \ container_of(_nb, struct clk_cpu_8996_mux, nb) static inline struct clk_cpu_8996_mux *to_clk_cpu_8996_mux_hw(struct clk_hw *hw) { return container_of(to_clk_regmap(hw), struct clk_cpu_8996_mux, clkr); } static u8 clk_cpu_8996_mux_get_parent(struct clk_hw *hw) { struct clk_regmap *clkr = to_clk_regmap(hw); struct clk_cpu_8996_mux *cpuclk = to_clk_cpu_8996_mux_hw(hw); u32 mask = GENMASK(cpuclk->width - 1, 0); u32 val; regmap_read(clkr->regmap, cpuclk->reg, &val); val >>= cpuclk->shift; return val & mask; } static int clk_cpu_8996_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_regmap *clkr = to_clk_regmap(hw); struct clk_cpu_8996_mux *cpuclk = to_clk_cpu_8996_mux_hw(hw); u32 mask = GENMASK(cpuclk->width + cpuclk->shift - 1, cpuclk->shift); u32 val; val = index; val <<= cpuclk->shift; return regmap_update_bits(clkr->regmap, cpuclk->reg, mask, val); } static int clk_cpu_8996_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_cpu_8996_mux *cpuclk = to_clk_cpu_8996_mux_hw(hw); struct clk_hw *parent = cpuclk->pll; if (cpuclk->pll_div_2 && req->rate < DIV_2_THRESHOLD) { if (req->rate < (DIV_2_THRESHOLD / 2)) return -EINVAL; parent = cpuclk->pll_div_2; } req->best_parent_rate = clk_hw_round_rate(parent, req->rate); req->best_parent_hw = parent; return 0; } static const struct clk_ops clk_cpu_8996_mux_ops = { .set_parent = clk_cpu_8996_mux_set_parent, .get_parent = clk_cpu_8996_mux_get_parent, .determine_rate = clk_cpu_8996_mux_determine_rate, }; static struct clk_cpu_8996_mux pwrcl_smux = { .reg = PWRCL_REG_OFFSET + MUX_OFFSET, .shift = 2, .width = 2, .clkr.hw.init = &(struct clk_init_data) { .name = "pwrcl_smux", .parent_names = (const char *[]){ "xo", "pwrcl_pll_main", }, .num_parents = 2, .ops = &clk_cpu_8996_mux_ops, .flags = CLK_SET_RATE_PARENT, }, }; static struct clk_cpu_8996_mux perfcl_smux = { .reg = PERFCL_REG_OFFSET + MUX_OFFSET, .shift = 2, .width = 2, .clkr.hw.init = &(struct clk_init_data) { .name = "perfcl_smux", .parent_names = (const char *[]){ "xo", "perfcl_pll_main", }, .num_parents = 2, .ops = &clk_cpu_8996_mux_ops, .flags = CLK_SET_RATE_PARENT, }, }; static struct clk_cpu_8996_mux pwrcl_pmux = { .reg = PWRCL_REG_OFFSET + MUX_OFFSET, .shift = 0, .width = 2, .pll = &pwrcl_pll.clkr.hw, .pll_div_2 = &pwrcl_smux.clkr.hw, .nb.notifier_call = cpu_clk_notifier_cb, .clkr.hw.init = &(struct clk_init_data) { .name = "pwrcl_pmux", .parent_names = (const char *[]){ "pwrcl_smux", "pwrcl_pll", "pwrcl_pll_acd", "pwrcl_alt_pll", }, .num_parents = 4, .ops = &clk_cpu_8996_mux_ops, /* CPU clock is critical and should never be gated */ .flags = CLK_SET_RATE_PARENT | CLK_IS_CRITICAL, }, }; static struct clk_cpu_8996_mux perfcl_pmux = { .reg = PERFCL_REG_OFFSET + MUX_OFFSET, .shift = 0, .width = 2, .pll = &perfcl_pll.clkr.hw, .pll_div_2 = &perfcl_smux.clkr.hw, .nb.notifier_call = cpu_clk_notifier_cb, .clkr.hw.init = &(struct clk_init_data) { .name = "perfcl_pmux", .parent_names = (const char *[]){ "perfcl_smux", "perfcl_pll", "perfcl_pll_acd", "perfcl_alt_pll", }, .num_parents = 4, .ops = &clk_cpu_8996_mux_ops, /* CPU clock is critical and should never be gated */ .flags = CLK_SET_RATE_PARENT | CLK_IS_CRITICAL, }, }; static const struct regmap_config cpu_msm8996_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x80210, .fast_io = true, .val_format_endian = REGMAP_ENDIAN_LITTLE, }; static struct clk_regmap *cpu_msm8996_clks[] = { &perfcl_pll.clkr, &pwrcl_pll.clkr, &perfcl_alt_pll.clkr, &pwrcl_alt_pll.clkr, &perfcl_smux.clkr, &pwrcl_smux.clkr, &perfcl_pmux.clkr, &pwrcl_pmux.clkr, }; static int qcom_cpu_clk_msm8996_register_clks(struct device *dev, struct regmap *regmap) { int i, ret; perfcl_smux.pll = clk_hw_register_fixed_factor(dev, "perfcl_pll_main", "perfcl_pll", CLK_SET_RATE_PARENT, 1, 2); if (IS_ERR(perfcl_smux.pll)) { dev_err(dev, "Failed to initialize perfcl_pll_main\n"); return PTR_ERR(perfcl_smux.pll); } pwrcl_smux.pll = clk_hw_register_fixed_factor(dev, "pwrcl_pll_main", "pwrcl_pll", CLK_SET_RATE_PARENT, 1, 2); if (IS_ERR(pwrcl_smux.pll)) { dev_err(dev, "Failed to initialize pwrcl_pll_main\n"); clk_hw_unregister(perfcl_smux.pll); return PTR_ERR(pwrcl_smux.pll); } for (i = 0; i < ARRAY_SIZE(cpu_msm8996_clks); i++) { ret = devm_clk_register_regmap(dev, cpu_msm8996_clks[i]); if (ret) { clk_hw_unregister(perfcl_smux.pll); clk_hw_unregister(pwrcl_smux.pll); return ret; } } clk_alpha_pll_configure(&perfcl_pll, regmap, &hfpll_config); clk_alpha_pll_configure(&pwrcl_pll, regmap, &hfpll_config); clk_alpha_pll_configure(&perfcl_alt_pll, regmap, &altpll_config); clk_alpha_pll_configure(&pwrcl_alt_pll, regmap, &altpll_config); /* Enable alt PLLs */ clk_prepare_enable(pwrcl_alt_pll.clkr.hw.clk); clk_prepare_enable(perfcl_alt_pll.clkr.hw.clk); clk_notifier_register(pwrcl_pmux.clkr.hw.clk, &pwrcl_pmux.nb); clk_notifier_register(perfcl_pmux.clkr.hw.clk, &perfcl_pmux.nb); return ret; } static int qcom_cpu_clk_msm8996_unregister_clks(void) { int ret = 0; ret = clk_notifier_unregister(pwrcl_pmux.clkr.hw.clk, &pwrcl_pmux.nb); if (ret) return ret; ret = clk_notifier_unregister(perfcl_pmux.clkr.hw.clk, &perfcl_pmux.nb); if (ret) return ret; clk_hw_unregister(perfcl_smux.pll); clk_hw_unregister(pwrcl_smux.pll); return 0; } #define CPU_AFINITY_MASK 0xFFF #define PWRCL_CPU_REG_MASK 0x3 #define PERFCL_CPU_REG_MASK 0x103 #define L2ACDCR_REG 0x580ULL #define L2ACDTD_REG 0x581ULL #define L2ACDDVMRC_REG 0x584ULL #define L2ACDSSCR_REG 0x589ULL static DEFINE_SPINLOCK(qcom_clk_acd_lock); static void __iomem *base; static void qcom_cpu_clk_msm8996_acd_init(void __iomem *base) { u64 hwid; unsigned long flags; spin_lock_irqsave(&qcom_clk_acd_lock, flags); hwid = read_cpuid_mpidr() & CPU_AFINITY_MASK; kryo_l2_set_indirect_reg(L2ACDTD_REG, 0x00006a11); kryo_l2_set_indirect_reg(L2ACDDVMRC_REG, 0x000e0f0f); kryo_l2_set_indirect_reg(L2ACDSSCR_REG, 0x00000601); if (PWRCL_CPU_REG_MASK == (hwid | PWRCL_CPU_REG_MASK)) { writel(0xf, base + PWRCL_REG_OFFSET + SSSCTL_OFFSET); kryo_l2_set_indirect_reg(L2ACDCR_REG, 0x002c5ffd); } if (PERFCL_CPU_REG_MASK == (hwid | PERFCL_CPU_REG_MASK)) { kryo_l2_set_indirect_reg(L2ACDCR_REG, 0x002c5ffd); writel(0xf, base + PERFCL_REG_OFFSET + SSSCTL_OFFSET); } spin_unlock_irqrestore(&qcom_clk_acd_lock, flags); } static int cpu_clk_notifier_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_cpu_8996_mux *cpuclk = to_clk_cpu_8996_mux_nb(nb); struct clk_notifier_data *cnd = data; int ret; switch (event) { case PRE_RATE_CHANGE: ret = clk_cpu_8996_mux_set_parent(&cpuclk->clkr.hw, ALT_INDEX); qcom_cpu_clk_msm8996_acd_init(base); break; case POST_RATE_CHANGE: if (cnd->new_rate < DIV_2_THRESHOLD) ret = clk_cpu_8996_mux_set_parent(&cpuclk->clkr.hw, DIV_2_INDEX); else ret = clk_cpu_8996_mux_set_parent(&cpuclk->clkr.hw, ACD_INDEX); break; default: ret = 0; break; } return notifier_from_errno(ret); }; static int qcom_cpu_clk_msm8996_driver_probe(struct platform_device *pdev) { struct regmap *regmap; struct clk_hw_onecell_data *data; struct device *dev = &pdev->dev; int ret; data = devm_kzalloc(dev, struct_size(data, hws, 2), GFP_KERNEL); if (!data) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); regmap = devm_regmap_init_mmio(dev, base, &cpu_msm8996_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); ret = qcom_cpu_clk_msm8996_register_clks(dev, regmap); if (ret) return ret; qcom_cpu_clk_msm8996_acd_init(base); data->hws[0] = &pwrcl_pmux.clkr.hw; data->hws[1] = &perfcl_pmux.clkr.hw; data->num = 2; return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, data); } static int qcom_cpu_clk_msm8996_driver_remove(struct platform_device *pdev) { return qcom_cpu_clk_msm8996_unregister_clks(); } static const struct of_device_id qcom_cpu_clk_msm8996_match_table[] = { { .compatible = "qcom,msm8996-apcc" }, {} }; MODULE_DEVICE_TABLE(of, qcom_cpu_clk_msm8996_match_table); static struct platform_driver qcom_cpu_clk_msm8996_driver = { .probe = qcom_cpu_clk_msm8996_driver_probe, .remove = qcom_cpu_clk_msm8996_driver_remove, .driver = { .name = "qcom-msm8996-apcc", .of_match_table = qcom_cpu_clk_msm8996_match_table, }, }; module_platform_driver(qcom_cpu_clk_msm8996_driver); MODULE_DESCRIPTION("QCOM MSM8996 CPU Clock Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1