Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tom Lendacky | 1066 | 77.30% | 2 | 16.67% |
Gary R Hook | 161 | 11.68% | 4 | 33.33% |
Ard Biesheuvel | 107 | 7.76% | 2 | 16.67% |
Herbert Xu | 40 | 2.90% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.15% | 1 | 8.33% |
Mikulas Patocka | 2 | 0.15% | 1 | 8.33% |
Marek Vašut | 1 | 0.07% | 1 | 8.33% |
Total | 1379 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support * * Copyright (C) 2013,2017 Advanced Micro Devices, Inc. * * Author: Gary R Hook <gary.hook@amd.com> * Author: Tom Lendacky <thomas.lendacky@amd.com> */ #include <linux/module.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/scatterlist.h> #include <crypto/aes.h> #include <crypto/xts.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include "ccp-crypto.h" struct ccp_aes_xts_def { const char *name; const char *drv_name; }; static const struct ccp_aes_xts_def aes_xts_algs[] = { { .name = "xts(aes)", .drv_name = "xts-aes-ccp", }, }; struct ccp_unit_size_map { unsigned int size; u32 value; }; static struct ccp_unit_size_map xts_unit_sizes[] = { { .size = 16, .value = CCP_XTS_AES_UNIT_SIZE_16, }, { .size = 512, .value = CCP_XTS_AES_UNIT_SIZE_512, }, { .size = 1024, .value = CCP_XTS_AES_UNIT_SIZE_1024, }, { .size = 2048, .value = CCP_XTS_AES_UNIT_SIZE_2048, }, { .size = 4096, .value = CCP_XTS_AES_UNIT_SIZE_4096, }, }; static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret) { struct skcipher_request *req = skcipher_request_cast(async_req); struct ccp_aes_req_ctx *rctx = skcipher_request_ctx(req); if (ret) return ret; memcpy(req->iv, rctx->iv, AES_BLOCK_SIZE); return 0; } static int ccp_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); unsigned int ccpversion = ccp_version(); int ret; ret = xts_verify_key(tfm, key, key_len); if (ret) return ret; /* Version 3 devices support 128-bit keys; version 5 devices can * accommodate 128- and 256-bit keys. */ switch (key_len) { case AES_KEYSIZE_128 * 2: memcpy(ctx->u.aes.key, key, key_len); break; case AES_KEYSIZE_256 * 2: if (ccpversion > CCP_VERSION(3, 0)) memcpy(ctx->u.aes.key, key, key_len); break; } ctx->u.aes.key_len = key_len / 2; sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); return crypto_skcipher_setkey(ctx->u.aes.tfm_skcipher, key, key_len); } static int ccp_aes_xts_crypt(struct skcipher_request *req, unsigned int encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); struct ccp_aes_req_ctx *rctx = skcipher_request_ctx(req); unsigned int ccpversion = ccp_version(); unsigned int fallback = 0; unsigned int unit; u32 unit_size; int ret; if (!ctx->u.aes.key_len) return -EINVAL; if (!req->iv) return -EINVAL; /* Check conditions under which the CCP can fulfill a request. The * device can handle input plaintext of a length that is a multiple * of the unit_size, bug the crypto implementation only supports * the unit_size being equal to the input length. This limits the * number of scenarios we can handle. */ unit_size = CCP_XTS_AES_UNIT_SIZE__LAST; for (unit = 0; unit < ARRAY_SIZE(xts_unit_sizes); unit++) { if (req->cryptlen == xts_unit_sizes[unit].size) { unit_size = unit; break; } } /* The CCP has restrictions on block sizes. Also, a version 3 device * only supports AES-128 operations; version 5 CCPs support both * AES-128 and -256 operations. */ if (unit_size == CCP_XTS_AES_UNIT_SIZE__LAST) fallback = 1; if ((ccpversion < CCP_VERSION(5, 0)) && (ctx->u.aes.key_len != AES_KEYSIZE_128)) fallback = 1; if ((ctx->u.aes.key_len != AES_KEYSIZE_128) && (ctx->u.aes.key_len != AES_KEYSIZE_256)) fallback = 1; if (fallback) { /* Use the fallback to process the request for any * unsupported unit sizes or key sizes */ skcipher_request_set_tfm(&rctx->fallback_req, ctx->u.aes.tfm_skcipher); skcipher_request_set_callback(&rctx->fallback_req, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst, req->cryptlen, req->iv); ret = encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) : crypto_skcipher_decrypt(&rctx->fallback_req); return ret; } memcpy(rctx->iv, req->iv, AES_BLOCK_SIZE); sg_init_one(&rctx->iv_sg, rctx->iv, AES_BLOCK_SIZE); memset(&rctx->cmd, 0, sizeof(rctx->cmd)); INIT_LIST_HEAD(&rctx->cmd.entry); rctx->cmd.engine = CCP_ENGINE_XTS_AES_128; rctx->cmd.u.xts.type = CCP_AES_TYPE_128; rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT : CCP_AES_ACTION_DECRYPT; rctx->cmd.u.xts.unit_size = unit_size; rctx->cmd.u.xts.key = &ctx->u.aes.key_sg; rctx->cmd.u.xts.key_len = ctx->u.aes.key_len; rctx->cmd.u.xts.iv = &rctx->iv_sg; rctx->cmd.u.xts.iv_len = AES_BLOCK_SIZE; rctx->cmd.u.xts.src = req->src; rctx->cmd.u.xts.src_len = req->cryptlen; rctx->cmd.u.xts.dst = req->dst; ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); return ret; } static int ccp_aes_xts_encrypt(struct skcipher_request *req) { return ccp_aes_xts_crypt(req, 1); } static int ccp_aes_xts_decrypt(struct skcipher_request *req) { return ccp_aes_xts_crypt(req, 0); } static int ccp_aes_xts_init_tfm(struct crypto_skcipher *tfm) { struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *fallback_tfm; ctx->complete = ccp_aes_xts_complete; ctx->u.aes.key_len = 0; fallback_tfm = crypto_alloc_skcipher("xts(aes)", 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback_tfm)) { pr_warn("could not load fallback driver xts(aes)\n"); return PTR_ERR(fallback_tfm); } ctx->u.aes.tfm_skcipher = fallback_tfm; crypto_skcipher_set_reqsize(tfm, sizeof(struct ccp_aes_req_ctx) + crypto_skcipher_reqsize(fallback_tfm)); return 0; } static void ccp_aes_xts_exit_tfm(struct crypto_skcipher *tfm) { struct ccp_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(ctx->u.aes.tfm_skcipher); } static int ccp_register_aes_xts_alg(struct list_head *head, const struct ccp_aes_xts_def *def) { struct ccp_crypto_skcipher_alg *ccp_alg; struct skcipher_alg *alg; int ret; ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); if (!ccp_alg) return -ENOMEM; INIT_LIST_HEAD(&ccp_alg->entry); alg = &ccp_alg->alg; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->drv_name); alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK; alg->base.cra_blocksize = AES_BLOCK_SIZE; alg->base.cra_ctxsize = sizeof(struct ccp_ctx); alg->base.cra_priority = CCP_CRA_PRIORITY; alg->base.cra_module = THIS_MODULE; alg->setkey = ccp_aes_xts_setkey; alg->encrypt = ccp_aes_xts_encrypt; alg->decrypt = ccp_aes_xts_decrypt; alg->min_keysize = AES_MIN_KEY_SIZE * 2; alg->max_keysize = AES_MAX_KEY_SIZE * 2; alg->ivsize = AES_BLOCK_SIZE; alg->init = ccp_aes_xts_init_tfm; alg->exit = ccp_aes_xts_exit_tfm; ret = crypto_register_skcipher(alg); if (ret) { pr_err("%s skcipher algorithm registration error (%d)\n", alg->base.cra_name, ret); kfree(ccp_alg); return ret; } list_add(&ccp_alg->entry, head); return 0; } int ccp_register_aes_xts_algs(struct list_head *head) { int i, ret; for (i = 0; i < ARRAY_SIZE(aes_xts_algs); i++) { ret = ccp_register_aes_xts_alg(head, &aes_xts_algs[i]); if (ret) return ret; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1