Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Declan Murphy | 2112 | 80.64% | 1 | 33.33% |
Daniele Alessandrelli | 503 | 19.21% | 1 | 33.33% |
Lee Jones | 4 | 0.15% | 1 | 33.33% |
Total | 2619 | 3 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS HCU Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/module.h> #include <crypto/sha2.h> #include "ocs-hcu.h" /* Registers. */ #define OCS_HCU_MODE 0x00 #define OCS_HCU_CHAIN 0x04 #define OCS_HCU_OPERATION 0x08 #define OCS_HCU_KEY_0 0x0C #define OCS_HCU_ISR 0x50 #define OCS_HCU_IER 0x54 #define OCS_HCU_STATUS 0x58 #define OCS_HCU_MSG_LEN_LO 0x60 #define OCS_HCU_MSG_LEN_HI 0x64 #define OCS_HCU_KEY_BYTE_ORDER_CFG 0x80 #define OCS_HCU_DMA_SRC_ADDR 0x400 #define OCS_HCU_DMA_SRC_SIZE 0x408 #define OCS_HCU_DMA_DST_SIZE 0x40C #define OCS_HCU_DMA_DMA_MODE 0x410 #define OCS_HCU_DMA_NEXT_SRC_DESCR 0x418 #define OCS_HCU_DMA_MSI_ISR 0x480 #define OCS_HCU_DMA_MSI_IER 0x484 #define OCS_HCU_DMA_MSI_MASK 0x488 /* Register bit definitions. */ #define HCU_MODE_ALGO_SHIFT 16 #define HCU_MODE_HMAC_SHIFT 22 #define HCU_STATUS_BUSY BIT(0) #define HCU_BYTE_ORDER_SWAP BIT(0) #define HCU_IRQ_HASH_DONE BIT(2) #define HCU_IRQ_HASH_ERR_MASK (BIT(3) | BIT(1) | BIT(0)) #define HCU_DMA_IRQ_SRC_DONE BIT(0) #define HCU_DMA_IRQ_SAI_ERR BIT(2) #define HCU_DMA_IRQ_BAD_COMP_ERR BIT(3) #define HCU_DMA_IRQ_INBUF_RD_ERR BIT(4) #define HCU_DMA_IRQ_INBUF_WD_ERR BIT(5) #define HCU_DMA_IRQ_OUTBUF_WR_ERR BIT(6) #define HCU_DMA_IRQ_OUTBUF_RD_ERR BIT(7) #define HCU_DMA_IRQ_CRD_ERR BIT(8) #define HCU_DMA_IRQ_ERR_MASK (HCU_DMA_IRQ_SAI_ERR | \ HCU_DMA_IRQ_BAD_COMP_ERR | \ HCU_DMA_IRQ_INBUF_RD_ERR | \ HCU_DMA_IRQ_INBUF_WD_ERR | \ HCU_DMA_IRQ_OUTBUF_WR_ERR | \ HCU_DMA_IRQ_OUTBUF_RD_ERR | \ HCU_DMA_IRQ_CRD_ERR) #define HCU_DMA_SNOOP_MASK (0x7 << 28) #define HCU_DMA_SRC_LL_EN BIT(25) #define HCU_DMA_EN BIT(31) #define OCS_HCU_ENDIANNESS_VALUE 0x2A #define HCU_DMA_MSI_UNMASK BIT(0) #define HCU_DMA_MSI_DISABLE 0 #define HCU_IRQ_DISABLE 0 #define OCS_HCU_START BIT(0) #define OCS_HCU_TERMINATE BIT(1) #define OCS_LL_DMA_FLAG_TERMINATE BIT(31) #define OCS_HCU_HW_KEY_LEN_U32 (OCS_HCU_HW_KEY_LEN / sizeof(u32)) #define HCU_DATA_WRITE_ENDIANNESS_OFFSET 26 #define OCS_HCU_NUM_CHAINS_SHA256_224_SM3 (SHA256_DIGEST_SIZE / sizeof(u32)) #define OCS_HCU_NUM_CHAINS_SHA384_512 (SHA512_DIGEST_SIZE / sizeof(u32)) /* * While polling on a busy HCU, wait maximum 200us between one check and the * other. */ #define OCS_HCU_WAIT_BUSY_RETRY_DELAY_US 200 /* Wait on a busy HCU for maximum 1 second. */ #define OCS_HCU_WAIT_BUSY_TIMEOUT_US 1000000 /** * struct ocs_hcu_dma_entry - An entry in an OCS DMA linked list. * @src_addr: Source address of the data. * @src_len: Length of data to be fetched. * @nxt_desc: Next descriptor to fetch. * @ll_flags: Flags (Freeze @ terminate) for the DMA engine. */ struct ocs_hcu_dma_entry { u32 src_addr; u32 src_len; u32 nxt_desc; u32 ll_flags; }; /** * struct ocs_hcu_dma_list - OCS-specific DMA linked list. * @head: The head of the list (points to the array backing the list). * @tail: The current tail of the list; NULL if the list is empty. * @dma_addr: The DMA address of @head (i.e., the DMA address of the backing * array). * @max_nents: Maximum number of entries in the list (i.e., number of elements * in the backing array). * * The OCS DMA list is an array-backed list of OCS DMA descriptors. The array * backing the list is allocated with dma_alloc_coherent() and pointed by * @head. */ struct ocs_hcu_dma_list { struct ocs_hcu_dma_entry *head; struct ocs_hcu_dma_entry *tail; dma_addr_t dma_addr; size_t max_nents; }; static inline u32 ocs_hcu_num_chains(enum ocs_hcu_algo algo) { switch (algo) { case OCS_HCU_ALGO_SHA224: case OCS_HCU_ALGO_SHA256: case OCS_HCU_ALGO_SM3: return OCS_HCU_NUM_CHAINS_SHA256_224_SM3; case OCS_HCU_ALGO_SHA384: case OCS_HCU_ALGO_SHA512: return OCS_HCU_NUM_CHAINS_SHA384_512; default: return 0; }; } static inline u32 ocs_hcu_digest_size(enum ocs_hcu_algo algo) { switch (algo) { case OCS_HCU_ALGO_SHA224: return SHA224_DIGEST_SIZE; case OCS_HCU_ALGO_SHA256: case OCS_HCU_ALGO_SM3: /* SM3 shares the same block size. */ return SHA256_DIGEST_SIZE; case OCS_HCU_ALGO_SHA384: return SHA384_DIGEST_SIZE; case OCS_HCU_ALGO_SHA512: return SHA512_DIGEST_SIZE; default: return 0; } } /** * ocs_hcu_wait_busy() - Wait for HCU OCS hardware to became usable. * @hcu_dev: OCS HCU device to wait for. * * Return: 0 if device free, -ETIMEOUT if device busy and internal timeout has * expired. */ static int ocs_hcu_wait_busy(struct ocs_hcu_dev *hcu_dev) { long val; return readl_poll_timeout(hcu_dev->io_base + OCS_HCU_STATUS, val, !(val & HCU_STATUS_BUSY), OCS_HCU_WAIT_BUSY_RETRY_DELAY_US, OCS_HCU_WAIT_BUSY_TIMEOUT_US); } static void ocs_hcu_done_irq_en(struct ocs_hcu_dev *hcu_dev) { /* Clear any pending interrupts. */ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_ISR); hcu_dev->irq_err = false; /* Enable error and HCU done interrupts. */ writel(HCU_IRQ_HASH_DONE | HCU_IRQ_HASH_ERR_MASK, hcu_dev->io_base + OCS_HCU_IER); } static void ocs_hcu_dma_irq_en(struct ocs_hcu_dev *hcu_dev) { /* Clear any pending interrupts. */ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); hcu_dev->irq_err = false; /* Only operating on DMA source completion and error interrupts. */ writel(HCU_DMA_IRQ_ERR_MASK | HCU_DMA_IRQ_SRC_DONE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER); /* Unmask */ writel(HCU_DMA_MSI_UNMASK, hcu_dev->io_base + OCS_HCU_DMA_MSI_MASK); } static void ocs_hcu_irq_dis(struct ocs_hcu_dev *hcu_dev) { writel(HCU_IRQ_DISABLE, hcu_dev->io_base + OCS_HCU_IER); writel(HCU_DMA_MSI_DISABLE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER); } static int ocs_hcu_wait_and_disable_irq(struct ocs_hcu_dev *hcu_dev) { int rc; rc = wait_for_completion_interruptible(&hcu_dev->irq_done); if (rc) goto exit; if (hcu_dev->irq_err) { /* Unset flag and return error. */ hcu_dev->irq_err = false; rc = -EIO; goto exit; } exit: ocs_hcu_irq_dis(hcu_dev); return rc; } /** * ocs_hcu_get_intermediate_data() - Get intermediate data. * @hcu_dev: The target HCU device. * @data: Where to store the intermediate. * @algo: The algorithm being used. * * This function is used to save the current hashing process state in order to * continue it in the future. * * Note: once all data has been processed, the intermediate data actually * contains the hashing result. So this function is also used to retrieve the * final result of a hashing process. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_get_intermediate_data(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_idata *data, enum ocs_hcu_algo algo) { const int n = ocs_hcu_num_chains(algo); u32 *chain; int rc; int i; /* Data not requested. */ if (!data) return -EINVAL; chain = (u32 *)data->digest; /* Ensure that the OCS is no longer busy before reading the chains. */ rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; /* * This loops is safe because data->digest is an array of * SHA512_DIGEST_SIZE bytes and the maximum value returned by * ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal * to SHA512_DIGEST_SIZE / sizeof(u32). */ for (i = 0; i < n; i++) chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN); data->msg_len_lo = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_LO); data->msg_len_hi = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_HI); return 0; } /** * ocs_hcu_set_intermediate_data() - Set intermediate data. * @hcu_dev: The target HCU device. * @data: The intermediate data to be set. * @algo: The algorithm being used. * * This function is used to continue a previous hashing process. */ static void ocs_hcu_set_intermediate_data(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_idata *data, enum ocs_hcu_algo algo) { const int n = ocs_hcu_num_chains(algo); u32 *chain = (u32 *)data->digest; int i; /* * This loops is safe because data->digest is an array of * SHA512_DIGEST_SIZE bytes and the maximum value returned by * ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal * to SHA512_DIGEST_SIZE / sizeof(u32). */ for (i = 0; i < n; i++) writel(chain[i], hcu_dev->io_base + OCS_HCU_CHAIN); writel(data->msg_len_lo, hcu_dev->io_base + OCS_HCU_MSG_LEN_LO); writel(data->msg_len_hi, hcu_dev->io_base + OCS_HCU_MSG_LEN_HI); } static int ocs_hcu_get_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, u8 *dgst, size_t dgst_len) { u32 *chain; int rc; int i; if (!dgst) return -EINVAL; /* Length of the output buffer must match the algo digest size. */ if (dgst_len != ocs_hcu_digest_size(algo)) return -EINVAL; /* Ensure that the OCS is no longer busy before reading the chains. */ rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; chain = (u32 *)dgst; for (i = 0; i < dgst_len / sizeof(u32); i++) chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN); return 0; } /** * ocs_hcu_hw_cfg() - Configure the HCU hardware. * @hcu_dev: The HCU device to configure. * @algo: The algorithm to be used by the HCU device. * @use_hmac: Whether or not HW HMAC should be used. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_hw_cfg(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, bool use_hmac) { u32 cfg; int rc; if (algo != OCS_HCU_ALGO_SHA256 && algo != OCS_HCU_ALGO_SHA224 && algo != OCS_HCU_ALGO_SHA384 && algo != OCS_HCU_ALGO_SHA512 && algo != OCS_HCU_ALGO_SM3) return -EINVAL; rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; /* Ensure interrupts are disabled. */ ocs_hcu_irq_dis(hcu_dev); /* Configure endianness, hashing algorithm and HW HMAC (if needed) */ cfg = OCS_HCU_ENDIANNESS_VALUE << HCU_DATA_WRITE_ENDIANNESS_OFFSET; cfg |= algo << HCU_MODE_ALGO_SHIFT; if (use_hmac) cfg |= BIT(HCU_MODE_HMAC_SHIFT); writel(cfg, hcu_dev->io_base + OCS_HCU_MODE); return 0; } /** * ocs_hcu_clear_key() - Clear key stored in OCS HMAC KEY registers. * @hcu_dev: The OCS HCU device whose key registers should be cleared. */ static void ocs_hcu_clear_key(struct ocs_hcu_dev *hcu_dev) { int reg_off; /* Clear OCS_HCU_KEY_[0..15] */ for (reg_off = 0; reg_off < OCS_HCU_HW_KEY_LEN; reg_off += sizeof(u32)) writel(0, hcu_dev->io_base + OCS_HCU_KEY_0 + reg_off); } /** * ocs_hcu_write_key() - Write key to OCS HMAC KEY registers. * @hcu_dev: The OCS HCU device the key should be written to. * @key: The key to be written. * @len: The size of the key to write. It must be OCS_HCU_HW_KEY_LEN. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_write_key(struct ocs_hcu_dev *hcu_dev, const u8 *key, size_t len) { u32 key_u32[OCS_HCU_HW_KEY_LEN_U32]; int i; if (len > OCS_HCU_HW_KEY_LEN) return -EINVAL; /* Copy key into temporary u32 array. */ memcpy(key_u32, key, len); /* * Hardware requires all the bytes of the HW Key vector to be * written. So pad with zero until we reach OCS_HCU_HW_KEY_LEN. */ memzero_explicit((u8 *)key_u32 + len, OCS_HCU_HW_KEY_LEN - len); /* * OCS hardware expects the MSB of the key to be written at the highest * address of the HCU Key vector; in other word, the key must be * written in reverse order. * * Therefore, we first enable byte swapping for the HCU key vector; * so that bytes of 32-bit word written to OCS_HCU_KEY_[0..15] will be * swapped: * 3 <---> 0, 2 <---> 1. */ writel(HCU_BYTE_ORDER_SWAP, hcu_dev->io_base + OCS_HCU_KEY_BYTE_ORDER_CFG); /* * And then we write the 32-bit words composing the key starting from * the end of the key. */ for (i = 0; i < OCS_HCU_HW_KEY_LEN_U32; i++) writel(key_u32[OCS_HCU_HW_KEY_LEN_U32 - 1 - i], hcu_dev->io_base + OCS_HCU_KEY_0 + (sizeof(u32) * i)); memzero_explicit(key_u32, OCS_HCU_HW_KEY_LEN); return 0; } /** * ocs_hcu_ll_dma_start() - Start OCS HCU hashing via DMA * @hcu_dev: The OCS HCU device to use. * @dma_list: The OCS DMA list mapping the data to hash. * @finalize: Whether or not this is the last hashing operation and therefore * the final hash should be compute even if data is not * block-aligned. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_ll_dma_start(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_dma_list *dma_list, bool finalize) { u32 cfg = HCU_DMA_SNOOP_MASK | HCU_DMA_SRC_LL_EN | HCU_DMA_EN; int rc; if (!dma_list) return -EINVAL; /* * For final requests we use HCU_DONE IRQ to be notified when all input * data has been processed by the HCU; however, we cannot do so for * non-final requests, because we don't get a HCU_DONE IRQ when we * don't terminate the operation. * * Therefore, for non-final requests, we use the DMA IRQ, which * triggers when DMA has finishing feeding all the input data to the * HCU, but the HCU may still be processing it. This is fine, since we * will wait for the HCU processing to be completed when we try to read * intermediate results, in ocs_hcu_get_intermediate_data(). */ if (finalize) ocs_hcu_done_irq_en(hcu_dev); else ocs_hcu_dma_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(dma_list->dma_addr, hcu_dev->io_base + OCS_HCU_DMA_NEXT_SRC_DESCR); writel(0, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE); writel(0, hcu_dev->io_base + OCS_HCU_DMA_DST_SIZE); writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION); writel(cfg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE); if (finalize) writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; return 0; } struct ocs_hcu_dma_list *ocs_hcu_dma_list_alloc(struct ocs_hcu_dev *hcu_dev, int max_nents) { struct ocs_hcu_dma_list *dma_list; dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL); if (!dma_list) return NULL; /* Total size of the DMA list to allocate. */ dma_list->head = dma_alloc_coherent(hcu_dev->dev, sizeof(*dma_list->head) * max_nents, &dma_list->dma_addr, GFP_KERNEL); if (!dma_list->head) { kfree(dma_list); return NULL; } dma_list->max_nents = max_nents; dma_list->tail = NULL; return dma_list; } void ocs_hcu_dma_list_free(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_dma_list *dma_list) { if (!dma_list) return; dma_free_coherent(hcu_dev->dev, sizeof(*dma_list->head) * dma_list->max_nents, dma_list->head, dma_list->dma_addr); kfree(dma_list); } /* Add a new DMA entry at the end of the OCS DMA list. */ int ocs_hcu_dma_list_add_tail(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_dma_list *dma_list, dma_addr_t addr, u32 len) { struct device *dev = hcu_dev->dev; struct ocs_hcu_dma_entry *old_tail; struct ocs_hcu_dma_entry *new_tail; if (!len) return 0; if (!dma_list) return -EINVAL; if (addr & ~OCS_HCU_DMA_BIT_MASK) { dev_err(dev, "Unexpected error: Invalid DMA address for OCS HCU\n"); return -EINVAL; } old_tail = dma_list->tail; new_tail = old_tail ? old_tail + 1 : dma_list->head; /* Check if list is full. */ if (new_tail - dma_list->head >= dma_list->max_nents) return -ENOMEM; /* * If there was an old tail (i.e., this is not the first element we are * adding), un-terminate the old tail and make it point to the new one. */ if (old_tail) { old_tail->ll_flags &= ~OCS_LL_DMA_FLAG_TERMINATE; /* * The old tail 'nxt_desc' must point to the DMA address of the * new tail. */ old_tail->nxt_desc = dma_list->dma_addr + sizeof(*dma_list->tail) * (new_tail - dma_list->head); } new_tail->src_addr = (u32)addr; new_tail->src_len = (u32)len; new_tail->ll_flags = OCS_LL_DMA_FLAG_TERMINATE; new_tail->nxt_desc = 0; /* Update list tail with new tail. */ dma_list->tail = new_tail; return 0; } /** * ocs_hcu_hash_init() - Initialize hash operation context. * @ctx: The context to initialize. * @algo: The hashing algorithm to use. * * Return: 0 on success, negative error code otherwise. */ int ocs_hcu_hash_init(struct ocs_hcu_hash_ctx *ctx, enum ocs_hcu_algo algo) { if (!ctx) return -EINVAL; ctx->algo = algo; ctx->idata.msg_len_lo = 0; ctx->idata.msg_len_hi = 0; /* No need to set idata.digest to 0. */ return 0; } /** * ocs_hcu_hash_update() - Perform a hashing iteration. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dma_list: The OCS DMA list mapping the input data to process. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_update(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_hash_ctx *ctx, const struct ocs_hcu_dma_list *dma_list) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* Start linked-list DMA hashing. */ rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, false); if (rc) return rc; /* Update idata and return. */ return ocs_hcu_get_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); } /** * ocs_hcu_hash_finup() - Update and finalize hash computation. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dma_list: The OCS DMA list mapping the input data to process. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_finup(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_hash_ctx *ctx, const struct ocs_hcu_dma_list *dma_list, u8 *dgst, size_t dgst_len) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* Start linked-list DMA hashing. */ rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true); if (rc) return rc; /* Get digest and return. */ return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len); } /** * ocs_hcu_hash_final() - Finalize hash computation. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_final(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_hash_ctx *ctx, u8 *dgst, size_t dgst_len) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* * Enable HCU interrupts, so that HCU_DONE will be triggered once the * final hash is computed. */ ocs_hcu_done_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; /* Get digest and return. */ return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len); } /** * ocs_hcu_digest() - Compute hash digest. * @hcu_dev: The OCS HCU device to use. * @algo: The hash algorithm to use. * @data: The input data to process. * @data_len: The length of @data. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, void *data, size_t data_len, u8 *dgst, size_t dgst_len) { struct device *dev = hcu_dev->dev; dma_addr_t dma_handle; u32 reg; int rc; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, algo, false); if (rc) return rc; dma_handle = dma_map_single(dev, data, data_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_handle)) return -EIO; reg = HCU_DMA_SNOOP_MASK | HCU_DMA_EN; ocs_hcu_done_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(dma_handle, hcu_dev->io_base + OCS_HCU_DMA_SRC_ADDR); writel(data_len, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE); writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION); writel(reg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE); writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; dma_unmap_single(dev, dma_handle, data_len, DMA_TO_DEVICE); return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len); } /** * ocs_hcu_hmac() - Compute HMAC. * @hcu_dev: The OCS HCU device to use. * @algo: The hash algorithm to use with HMAC. * @key: The key to use. * @dma_list: The OCS DMA list mapping the input data to process. * @key_len: The length of @key. * @dgst: The buffer where to save the computed HMAC. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hmac(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, const u8 *key, size_t key_len, const struct ocs_hcu_dma_list *dma_list, u8 *dgst, size_t dgst_len) { int rc; /* Ensure 'key' is not NULL. */ if (!key || key_len == 0) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, algo, true); if (rc) return rc; rc = ocs_hcu_write_key(hcu_dev, key, key_len); if (rc) return rc; rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true); /* Clear HW key before processing return code. */ ocs_hcu_clear_key(hcu_dev); if (rc) return rc; return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len); } irqreturn_t ocs_hcu_irq_handler(int irq, void *dev_id) { struct ocs_hcu_dev *hcu_dev = dev_id; u32 hcu_irq; u32 dma_irq; /* Read and clear the HCU interrupt. */ hcu_irq = readl(hcu_dev->io_base + OCS_HCU_ISR); writel(hcu_irq, hcu_dev->io_base + OCS_HCU_ISR); /* Read and clear the HCU DMA interrupt. */ dma_irq = readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); writel(dma_irq, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); /* Check for errors. */ if (hcu_irq & HCU_IRQ_HASH_ERR_MASK || dma_irq & HCU_DMA_IRQ_ERR_MASK) { hcu_dev->irq_err = true; goto complete; } /* Check for DONE IRQs. */ if (hcu_irq & HCU_IRQ_HASH_DONE || dma_irq & HCU_DMA_IRQ_SRC_DONE) goto complete; return IRQ_NONE; complete: complete(&hcu_dev->irq_done); return IRQ_HANDLED; } MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1