Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Ujfalusi | 11444 | 89.34% | 58 | 57.43% |
Matt Porter | 616 | 4.81% | 3 | 2.97% |
Joel A Fernandes | 246 | 1.92% | 7 | 6.93% |
John Ogness | 131 | 1.02% | 2 | 1.98% |
Vinod Koul | 110 | 0.86% | 3 | 2.97% |
Chuhong Yuan | 93 | 0.73% | 2 | 1.98% |
Thomas Gleixner | 60 | 0.47% | 6 | 5.94% |
Arnd Bergmann | 33 | 0.26% | 3 | 2.97% |
Wei Yongjun | 16 | 0.12% | 2 | 1.98% |
Vignesh R | 13 | 0.10% | 1 | 0.99% |
Kees Cook | 12 | 0.09% | 1 | 0.99% |
Russell King | 11 | 0.09% | 1 | 0.99% |
Maxime Ripard | 5 | 0.04% | 2 | 1.98% |
Tom Rix | 4 | 0.03% | 1 | 0.99% |
Sekhar Nori | 4 | 0.03% | 1 | 0.99% |
Christophe Jaillet | 3 | 0.02% | 1 | 0.99% |
Christian Engelmayer | 2 | 0.02% | 1 | 0.99% |
Yue haibing | 2 | 0.02% | 1 | 0.99% |
Dan Carpenter | 1 | 0.01% | 1 | 0.99% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.99% |
Lad Prabhakar | 1 | 0.01% | 1 | 0.99% |
Colin Ian King | 1 | 0.01% | 1 | 0.99% |
Josh Boyer | 1 | 0.01% | 1 | 0.99% |
Total | 12810 | 101 |
// SPDX-License-Identifier: GPL-2.0-only /* * TI EDMA DMA engine driver * * Copyright 2012 Texas Instruments */ #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/bitmap.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of.h> #include <linux/of_dma.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/platform_data/edma.h> #include "../dmaengine.h" #include "../virt-dma.h" /* Offsets matching "struct edmacc_param" */ #define PARM_OPT 0x00 #define PARM_SRC 0x04 #define PARM_A_B_CNT 0x08 #define PARM_DST 0x0c #define PARM_SRC_DST_BIDX 0x10 #define PARM_LINK_BCNTRLD 0x14 #define PARM_SRC_DST_CIDX 0x18 #define PARM_CCNT 0x1c #define PARM_SIZE 0x20 /* Offsets for EDMA CC global channel registers and their shadows */ #define SH_ER 0x00 /* 64 bits */ #define SH_ECR 0x08 /* 64 bits */ #define SH_ESR 0x10 /* 64 bits */ #define SH_CER 0x18 /* 64 bits */ #define SH_EER 0x20 /* 64 bits */ #define SH_EECR 0x28 /* 64 bits */ #define SH_EESR 0x30 /* 64 bits */ #define SH_SER 0x38 /* 64 bits */ #define SH_SECR 0x40 /* 64 bits */ #define SH_IER 0x50 /* 64 bits */ #define SH_IECR 0x58 /* 64 bits */ #define SH_IESR 0x60 /* 64 bits */ #define SH_IPR 0x68 /* 64 bits */ #define SH_ICR 0x70 /* 64 bits */ #define SH_IEVAL 0x78 #define SH_QER 0x80 #define SH_QEER 0x84 #define SH_QEECR 0x88 #define SH_QEESR 0x8c #define SH_QSER 0x90 #define SH_QSECR 0x94 #define SH_SIZE 0x200 /* Offsets for EDMA CC global registers */ #define EDMA_REV 0x0000 #define EDMA_CCCFG 0x0004 #define EDMA_QCHMAP 0x0200 /* 8 registers */ #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ #define EDMA_QDMAQNUM 0x0260 #define EDMA_QUETCMAP 0x0280 #define EDMA_QUEPRI 0x0284 #define EDMA_EMR 0x0300 /* 64 bits */ #define EDMA_EMCR 0x0308 /* 64 bits */ #define EDMA_QEMR 0x0310 #define EDMA_QEMCR 0x0314 #define EDMA_CCERR 0x0318 #define EDMA_CCERRCLR 0x031c #define EDMA_EEVAL 0x0320 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ #define EDMA_QRAE 0x0380 /* 4 registers */ #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ #define EDMA_QSTAT 0x0600 /* 2 registers */ #define EDMA_QWMTHRA 0x0620 #define EDMA_QWMTHRB 0x0624 #define EDMA_CCSTAT 0x0640 #define EDMA_M 0x1000 /* global channel registers */ #define EDMA_ECR 0x1008 #define EDMA_ECRH 0x100C #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ #define EDMA_PARM 0x4000 /* PaRAM entries */ #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) #define EDMA_DCHMAP 0x0100 /* 64 registers */ /* CCCFG register */ #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ #define CHMAP_EXIST BIT(24) /* CCSTAT register */ #define EDMA_CCSTAT_ACTV BIT(4) /* * Max of 20 segments per channel to conserve PaRAM slots * Also note that MAX_NR_SG should be at least the no.of periods * that are required for ASoC, otherwise DMA prep calls will * fail. Today davinci-pcm is the only user of this driver and * requires at least 17 slots, so we setup the default to 20. */ #define MAX_NR_SG 20 #define EDMA_MAX_SLOTS MAX_NR_SG #define EDMA_DESCRIPTORS 16 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ #define EDMA_CONT_PARAMS_ANY 1001 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 /* * 64bit array registers are split into two 32bit registers: * reg0: channel/event 0-31 * reg1: channel/event 32-63 * * bit 5 in the channel number tells the array index (0/1) * bit 0-4 (0x1f) is the bit offset within the register */ #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) /* PaRAM slots are laid out like this */ struct edmacc_param { u32 opt; u32 src; u32 a_b_cnt; u32 dst; u32 src_dst_bidx; u32 link_bcntrld; u32 src_dst_cidx; u32 ccnt; } __packed; /* fields in edmacc_param.opt */ #define SAM BIT(0) #define DAM BIT(1) #define SYNCDIM BIT(2) #define STATIC BIT(3) #define EDMA_FWID (0x07 << 8) #define TCCMODE BIT(11) #define EDMA_TCC(t) ((t) << 12) #define TCINTEN BIT(20) #define ITCINTEN BIT(21) #define TCCHEN BIT(22) #define ITCCHEN BIT(23) struct edma_pset { u32 len; dma_addr_t addr; struct edmacc_param param; }; struct edma_desc { struct virt_dma_desc vdesc; struct list_head node; enum dma_transfer_direction direction; int cyclic; bool polled; int absync; int pset_nr; struct edma_chan *echan; int processed; /* * The following 4 elements are used for residue accounting. * * - processed_stat: the number of SG elements we have traversed * so far to cover accounting. This is updated directly to processed * during edma_callback and is always <= processed, because processed * refers to the number of pending transfer (programmed to EDMA * controller), where as processed_stat tracks number of transfers * accounted for so far. * * - residue: The amount of bytes we have left to transfer for this desc * * - residue_stat: The residue in bytes of data we have covered * so far for accounting. This is updated directly to residue * during callbacks to keep it current. * * - sg_len: Tracks the length of the current intermediate transfer, * this is required to update the residue during intermediate transfer * completion callback. */ int processed_stat; u32 sg_len; u32 residue; u32 residue_stat; struct edma_pset pset[]; }; struct edma_cc; struct edma_tc { struct device_node *node; u16 id; }; struct edma_chan { struct virt_dma_chan vchan; struct list_head node; struct edma_desc *edesc; struct edma_cc *ecc; struct edma_tc *tc; int ch_num; bool alloced; bool hw_triggered; int slot[EDMA_MAX_SLOTS]; int missed; struct dma_slave_config cfg; }; struct edma_cc { struct device *dev; struct edma_soc_info *info; void __iomem *base; int id; bool legacy_mode; /* eDMA3 resource information */ unsigned num_channels; unsigned num_qchannels; unsigned num_region; unsigned num_slots; unsigned num_tc; bool chmap_exist; enum dma_event_q default_queue; unsigned int ccint; unsigned int ccerrint; /* * The slot_inuse bit for each PaRAM slot is clear unless the slot is * in use by Linux or if it is allocated to be used by DSP. */ unsigned long *slot_inuse; /* * For tracking reserved channels used by DSP. * If the bit is cleared, the channel is allocated to be used by DSP * and Linux must not touch it. */ unsigned long *channels_mask; struct dma_device dma_slave; struct dma_device *dma_memcpy; struct edma_chan *slave_chans; struct edma_tc *tc_list; int dummy_slot; }; /* dummy param set used to (re)initialize parameter RAM slots */ static const struct edmacc_param dummy_paramset = { .link_bcntrld = 0xffff, .ccnt = 1, }; #define EDMA_BINDING_LEGACY 0 #define EDMA_BINDING_TPCC 1 static const u32 edma_binding_type[] = { [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, }; static const struct of_device_id edma_of_ids[] = { { .compatible = "ti,edma3", .data = &edma_binding_type[EDMA_BINDING_LEGACY], }, { .compatible = "ti,edma3-tpcc", .data = &edma_binding_type[EDMA_BINDING_TPCC], }, {} }; MODULE_DEVICE_TABLE(of, edma_of_ids); static const struct of_device_id edma_tptc_of_ids[] = { { .compatible = "ti,edma3-tptc", }, {} }; MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); static inline unsigned int edma_read(struct edma_cc *ecc, int offset) { return (unsigned int)__raw_readl(ecc->base + offset); } static inline void edma_write(struct edma_cc *ecc, int offset, int val) { __raw_writel(val, ecc->base + offset); } static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, unsigned or) { unsigned val = edma_read(ecc, offset); val &= and; val |= or; edma_write(ecc, offset, val); } static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) { unsigned val = edma_read(ecc, offset); val &= and; edma_write(ecc, offset, val); } static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) { unsigned val = edma_read(ecc, offset); val |= or; edma_write(ecc, offset, val); } static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, int i) { return edma_read(ecc, offset + (i << 2)); } static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, unsigned val) { edma_write(ecc, offset + (i << 2), val); } static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, unsigned and, unsigned or) { edma_modify(ecc, offset + (i << 2), and, or); } static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, unsigned or) { edma_or(ecc, offset + (i << 2), or); } static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, unsigned or) { edma_or(ecc, offset + ((i * 2 + j) << 2), or); } static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, int j, unsigned val) { edma_write(ecc, offset + ((i * 2 + j) << 2), val); } static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) { return edma_read(ecc, EDMA_SHADOW0 + offset); } static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, int offset, int i) { return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); } static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, unsigned val) { edma_write(ecc, EDMA_SHADOW0 + offset, val); } static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, int i, unsigned val) { edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); } static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, int param_no) { return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); } static inline void edma_param_write(struct edma_cc *ecc, int offset, int param_no, unsigned val) { edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); } static inline void edma_param_modify(struct edma_cc *ecc, int offset, int param_no, unsigned and, unsigned or) { edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); } static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, unsigned and) { edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); } static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, unsigned or) { edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); } static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, int priority) { int bit = queue_no * 4; edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); } static void edma_set_chmap(struct edma_chan *echan, int slot) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); if (ecc->chmap_exist) { slot = EDMA_CHAN_SLOT(slot); edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); } } static void edma_setup_interrupt(struct edma_chan *echan, bool enable) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); int idx = EDMA_REG_ARRAY_INDEX(channel); int ch_bit = EDMA_CHANNEL_BIT(channel); if (enable) { edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); } else { edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); } } /* * paRAM slot management functions */ static void edma_write_slot(struct edma_cc *ecc, unsigned slot, const struct edmacc_param *param) { slot = EDMA_CHAN_SLOT(slot); if (slot >= ecc->num_slots) return; memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); } static int edma_read_slot(struct edma_cc *ecc, unsigned slot, struct edmacc_param *param) { slot = EDMA_CHAN_SLOT(slot); if (slot >= ecc->num_slots) return -EINVAL; memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); return 0; } /** * edma_alloc_slot - allocate DMA parameter RAM * @ecc: pointer to edma_cc struct * @slot: specific slot to allocate; negative for "any unused slot" * * This allocates a parameter RAM slot, initializing it to hold a * dummy transfer. Slots allocated using this routine have not been * mapped to a hardware DMA channel, and will normally be used by * linking to them from a slot associated with a DMA channel. * * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific * slots may be allocated on behalf of DSP firmware. * * Returns the number of the slot, else negative errno. */ static int edma_alloc_slot(struct edma_cc *ecc, int slot) { if (slot >= 0) { slot = EDMA_CHAN_SLOT(slot); /* Requesting entry paRAM slot for a HW triggered channel. */ if (ecc->chmap_exist && slot < ecc->num_channels) slot = EDMA_SLOT_ANY; } if (slot < 0) { if (ecc->chmap_exist) slot = 0; else slot = ecc->num_channels; for (;;) { slot = find_next_zero_bit(ecc->slot_inuse, ecc->num_slots, slot); if (slot == ecc->num_slots) return -ENOMEM; if (!test_and_set_bit(slot, ecc->slot_inuse)) break; } } else if (slot >= ecc->num_slots) { return -EINVAL; } else if (test_and_set_bit(slot, ecc->slot_inuse)) { return -EBUSY; } edma_write_slot(ecc, slot, &dummy_paramset); return EDMA_CTLR_CHAN(ecc->id, slot); } static void edma_free_slot(struct edma_cc *ecc, unsigned slot) { slot = EDMA_CHAN_SLOT(slot); if (slot >= ecc->num_slots) return; edma_write_slot(ecc, slot, &dummy_paramset); clear_bit(slot, ecc->slot_inuse); } /** * edma_link - link one parameter RAM slot to another * @ecc: pointer to edma_cc struct * @from: parameter RAM slot originating the link * @to: parameter RAM slot which is the link target * * The originating slot should not be part of any active DMA transfer. */ static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) { if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); from = EDMA_CHAN_SLOT(from); to = EDMA_CHAN_SLOT(to); if (from >= ecc->num_slots || to >= ecc->num_slots) return; edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, PARM_OFFSET(to)); } /** * edma_get_position - returns the current transfer point * @ecc: pointer to edma_cc struct * @slot: parameter RAM slot being examined * @dst: true selects the dest position, false the source * * Returns the position of the current active slot */ static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, bool dst) { u32 offs; slot = EDMA_CHAN_SLOT(slot); offs = PARM_OFFSET(slot); offs += dst ? PARM_DST : PARM_SRC; return edma_read(ecc, offs); } /* * Channels with event associations will be triggered by their hardware * events, and channels without such associations will be triggered by * software. (At this writing there is no interface for using software * triggers except with channels that don't support hardware triggers.) */ static void edma_start(struct edma_chan *echan) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); int idx = EDMA_REG_ARRAY_INDEX(channel); int ch_bit = EDMA_CHANNEL_BIT(channel); if (!echan->hw_triggered) { /* EDMA channels without event association */ dev_dbg(ecc->dev, "ESR%d %08x\n", idx, edma_shadow0_read_array(ecc, SH_ESR, idx)); edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); } else { /* EDMA channel with event association */ dev_dbg(ecc->dev, "ER%d %08x\n", idx, edma_shadow0_read_array(ecc, SH_ER, idx)); /* Clear any pending event or error */ edma_write_array(ecc, EDMA_ECR, idx, ch_bit); edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); /* Clear any SER */ edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); dev_dbg(ecc->dev, "EER%d %08x\n", idx, edma_shadow0_read_array(ecc, SH_EER, idx)); } } static void edma_stop(struct edma_chan *echan) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); int idx = EDMA_REG_ARRAY_INDEX(channel); int ch_bit = EDMA_CHANNEL_BIT(channel); edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); /* clear possibly pending completion interrupt */ edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); dev_dbg(ecc->dev, "EER%d %08x\n", idx, edma_shadow0_read_array(ecc, SH_EER, idx)); /* REVISIT: consider guarding against inappropriate event * chaining by overwriting with dummy_paramset. */ } /* * Temporarily disable EDMA hardware events on the specified channel, * preventing them from triggering new transfers */ static void edma_pause(struct edma_chan *echan) { int channel = EDMA_CHAN_SLOT(echan->ch_num); edma_shadow0_write_array(echan->ecc, SH_EECR, EDMA_REG_ARRAY_INDEX(channel), EDMA_CHANNEL_BIT(channel)); } /* Re-enable EDMA hardware events on the specified channel. */ static void edma_resume(struct edma_chan *echan) { int channel = EDMA_CHAN_SLOT(echan->ch_num); edma_shadow0_write_array(echan->ecc, SH_EESR, EDMA_REG_ARRAY_INDEX(channel), EDMA_CHANNEL_BIT(channel)); } static void edma_trigger_channel(struct edma_chan *echan) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); int idx = EDMA_REG_ARRAY_INDEX(channel); int ch_bit = EDMA_CHANNEL_BIT(channel); edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); dev_dbg(ecc->dev, "ESR%d %08x\n", idx, edma_shadow0_read_array(ecc, SH_ESR, idx)); } static void edma_clean_channel(struct edma_chan *echan) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); int idx = EDMA_REG_ARRAY_INDEX(channel); int ch_bit = EDMA_CHANNEL_BIT(channel); dev_dbg(ecc->dev, "EMR%d %08x\n", idx, edma_read_array(ecc, EDMA_EMR, idx)); edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); /* Clear the corresponding EMR bits */ edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); /* Clear any SER */ edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); } /* Move channel to a specific event queue */ static void edma_assign_channel_eventq(struct edma_chan *echan, enum dma_event_q eventq_no) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); int bit = (channel & 0x7) * 4; /* default to low priority queue */ if (eventq_no == EVENTQ_DEFAULT) eventq_no = ecc->default_queue; if (eventq_no >= ecc->num_tc) return; eventq_no &= 7; edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), eventq_no << bit); } static int edma_alloc_channel(struct edma_chan *echan, enum dma_event_q eventq_no) { struct edma_cc *ecc = echan->ecc; int channel = EDMA_CHAN_SLOT(echan->ch_num); if (!test_bit(echan->ch_num, ecc->channels_mask)) { dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", echan->ch_num); return -EINVAL; } /* ensure access through shadow region 0 */ edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), EDMA_CHANNEL_BIT(channel)); /* ensure no events are pending */ edma_stop(echan); edma_setup_interrupt(echan, true); edma_assign_channel_eventq(echan, eventq_no); return 0; } static void edma_free_channel(struct edma_chan *echan) { /* ensure no events are pending */ edma_stop(echan); /* REVISIT should probably take out of shadow region 0 */ edma_setup_interrupt(echan, false); } static inline struct edma_cc *to_edma_cc(struct dma_device *d) { return container_of(d, struct edma_cc, dma_slave); } static inline struct edma_chan *to_edma_chan(struct dma_chan *c) { return container_of(c, struct edma_chan, vchan.chan); } static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct edma_desc, vdesc.tx); } static void edma_desc_free(struct virt_dma_desc *vdesc) { kfree(container_of(vdesc, struct edma_desc, vdesc)); } /* Dispatch a queued descriptor to the controller (caller holds lock) */ static void edma_execute(struct edma_chan *echan) { struct edma_cc *ecc = echan->ecc; struct virt_dma_desc *vdesc; struct edma_desc *edesc; struct device *dev = echan->vchan.chan.device->dev; int i, j, left, nslots; if (!echan->edesc) { /* Setup is needed for the first transfer */ vdesc = vchan_next_desc(&echan->vchan); if (!vdesc) return; list_del(&vdesc->node); echan->edesc = to_edma_desc(&vdesc->tx); } edesc = echan->edesc; /* Find out how many left */ left = edesc->pset_nr - edesc->processed; nslots = min(MAX_NR_SG, left); edesc->sg_len = 0; /* Write descriptor PaRAM set(s) */ for (i = 0; i < nslots; i++) { j = i + edesc->processed; edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); edesc->sg_len += edesc->pset[j].len; dev_vdbg(dev, "\n pset[%d]:\n" " chnum\t%d\n" " slot\t%d\n" " opt\t%08x\n" " src\t%08x\n" " dst\t%08x\n" " abcnt\t%08x\n" " ccnt\t%08x\n" " bidx\t%08x\n" " cidx\t%08x\n" " lkrld\t%08x\n", j, echan->ch_num, echan->slot[i], edesc->pset[j].param.opt, edesc->pset[j].param.src, edesc->pset[j].param.dst, edesc->pset[j].param.a_b_cnt, edesc->pset[j].param.ccnt, edesc->pset[j].param.src_dst_bidx, edesc->pset[j].param.src_dst_cidx, edesc->pset[j].param.link_bcntrld); /* Link to the previous slot if not the last set */ if (i != (nslots - 1)) edma_link(ecc, echan->slot[i], echan->slot[i + 1]); } edesc->processed += nslots; /* * If this is either the last set in a set of SG-list transactions * then setup a link to the dummy slot, this results in all future * events being absorbed and that's OK because we're done */ if (edesc->processed == edesc->pset_nr) { if (edesc->cyclic) edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); else edma_link(ecc, echan->slot[nslots - 1], echan->ecc->dummy_slot); } if (echan->missed) { /* * This happens due to setup times between intermediate * transfers in long SG lists which have to be broken up into * transfers of MAX_NR_SG */ dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); edma_clean_channel(echan); edma_stop(echan); edma_start(echan); edma_trigger_channel(echan); echan->missed = 0; } else if (edesc->processed <= MAX_NR_SG) { dev_dbg(dev, "first transfer starting on channel %d\n", echan->ch_num); edma_start(echan); } else { dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", echan->ch_num, edesc->processed); edma_resume(echan); } } static int edma_terminate_all(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&echan->vchan.lock, flags); /* * Stop DMA activity: we assume the callback will not be called * after edma_dma() returns (even if it does, it will see * echan->edesc is NULL and exit.) */ if (echan->edesc) { edma_stop(echan); /* Move the cyclic channel back to default queue */ if (!echan->tc && echan->edesc->cyclic) edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); vchan_terminate_vdesc(&echan->edesc->vdesc); echan->edesc = NULL; } vchan_get_all_descriptors(&echan->vchan, &head); spin_unlock_irqrestore(&echan->vchan.lock, flags); vchan_dma_desc_free_list(&echan->vchan, &head); return 0; } static void edma_synchronize(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); vchan_synchronize(&echan->vchan); } static int edma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct edma_chan *echan = to_edma_chan(chan); if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; if (cfg->src_maxburst > chan->device->max_burst || cfg->dst_maxburst > chan->device->max_burst) return -EINVAL; memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); return 0; } static int edma_dma_pause(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); if (!echan->edesc) return -EINVAL; edma_pause(echan); return 0; } static int edma_dma_resume(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); edma_resume(echan); return 0; } /* * A PaRAM set configuration abstraction used by other modes * @chan: Channel who's PaRAM set we're configuring * @pset: PaRAM set to initialize and setup. * @src_addr: Source address of the DMA * @dst_addr: Destination address of the DMA * @burst: In units of dev_width, how much to send * @dev_width: How much is the dev_width * @dma_length: Total length of the DMA transfer * @direction: Direction of the transfer */ static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, unsigned int acnt, unsigned int dma_length, enum dma_transfer_direction direction) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; struct edmacc_param *param = &epset->param; int bcnt, ccnt, cidx; int src_bidx, dst_bidx, src_cidx, dst_cidx; int absync; /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ if (!burst) burst = 1; /* * If the maxburst is equal to the fifo width, use * A-synced transfers. This allows for large contiguous * buffer transfers using only one PaRAM set. */ if (burst == 1) { /* * For the A-sync case, bcnt and ccnt are the remainder * and quotient respectively of the division of: * (dma_length / acnt) by (SZ_64K -1). This is so * that in case bcnt over flows, we have ccnt to use. * Note: In A-sync transfer only, bcntrld is used, but it * only applies for sg_dma_len(sg) >= SZ_64K. * In this case, the best way adopted is- bccnt for the * first frame will be the remainder below. Then for * every successive frame, bcnt will be SZ_64K-1. This * is assured as bcntrld = 0xffff in end of function. */ absync = false; ccnt = dma_length / acnt / (SZ_64K - 1); bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); /* * If bcnt is non-zero, we have a remainder and hence an * extra frame to transfer, so increment ccnt. */ if (bcnt) ccnt++; else bcnt = SZ_64K - 1; cidx = acnt; } else { /* * If maxburst is greater than the fifo address_width, * use AB-synced transfers where A count is the fifo * address_width and B count is the maxburst. In this * case, we are limited to transfers of C count frames * of (address_width * maxburst) where C count is limited * to SZ_64K-1. This places an upper bound on the length * of an SG segment that can be handled. */ absync = true; bcnt = burst; ccnt = dma_length / (acnt * bcnt); if (ccnt > (SZ_64K - 1)) { dev_err(dev, "Exceeded max SG segment size\n"); return -EINVAL; } cidx = acnt * bcnt; } epset->len = dma_length; if (direction == DMA_MEM_TO_DEV) { src_bidx = acnt; src_cidx = cidx; dst_bidx = 0; dst_cidx = 0; epset->addr = src_addr; } else if (direction == DMA_DEV_TO_MEM) { src_bidx = 0; src_cidx = 0; dst_bidx = acnt; dst_cidx = cidx; epset->addr = dst_addr; } else if (direction == DMA_MEM_TO_MEM) { src_bidx = acnt; src_cidx = cidx; dst_bidx = acnt; dst_cidx = cidx; epset->addr = src_addr; } else { dev_err(dev, "%s: direction not implemented yet\n", __func__); return -EINVAL; } param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); /* Configure A or AB synchronized transfers */ if (absync) param->opt |= SYNCDIM; param->src = src_addr; param->dst = dst_addr; param->src_dst_bidx = (dst_bidx << 16) | src_bidx; param->src_dst_cidx = (dst_cidx << 16) | src_cidx; param->a_b_cnt = bcnt << 16 | acnt; param->ccnt = ccnt; /* * Only time when (bcntrld) auto reload is required is for * A-sync case, and in this case, a requirement of reload value * of SZ_64K-1 only is assured. 'link' is initially set to NULL * and then later will be populated by edma_execute. */ param->link_bcntrld = 0xffffffff; return absync; } static struct dma_async_tx_descriptor *edma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long tx_flags, void *context) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; struct edma_desc *edesc; dma_addr_t src_addr = 0, dst_addr = 0; enum dma_slave_buswidth dev_width; u32 burst; struct scatterlist *sg; int i, nslots, ret; if (unlikely(!echan || !sgl || !sg_len)) return NULL; if (direction == DMA_DEV_TO_MEM) { src_addr = echan->cfg.src_addr; dev_width = echan->cfg.src_addr_width; burst = echan->cfg.src_maxburst; } else if (direction == DMA_MEM_TO_DEV) { dst_addr = echan->cfg.dst_addr; dev_width = echan->cfg.dst_addr_width; burst = echan->cfg.dst_maxburst; } else { dev_err(dev, "%s: bad direction: %d\n", __func__, direction); return NULL; } if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { dev_err(dev, "%s: Undefined slave buswidth\n", __func__); return NULL; } edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); if (!edesc) return NULL; edesc->pset_nr = sg_len; edesc->residue = 0; edesc->direction = direction; edesc->echan = echan; /* Allocate a PaRAM slot, if needed */ nslots = min_t(unsigned, MAX_NR_SG, sg_len); for (i = 0; i < nslots; i++) { if (echan->slot[i] < 0) { echan->slot[i] = edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); if (echan->slot[i] < 0) { kfree(edesc); dev_err(dev, "%s: Failed to allocate slot\n", __func__); return NULL; } } } /* Configure PaRAM sets for each SG */ for_each_sg(sgl, sg, sg_len, i) { /* Get address for each SG */ if (direction == DMA_DEV_TO_MEM) dst_addr = sg_dma_address(sg); else src_addr = sg_dma_address(sg); ret = edma_config_pset(chan, &edesc->pset[i], src_addr, dst_addr, burst, dev_width, sg_dma_len(sg), direction); if (ret < 0) { kfree(edesc); return NULL; } edesc->absync = ret; edesc->residue += sg_dma_len(sg); if (i == sg_len - 1) /* Enable completion interrupt */ edesc->pset[i].param.opt |= TCINTEN; else if (!((i+1) % MAX_NR_SG)) /* * Enable early completion interrupt for the * intermediateset. In this case the driver will be * notified when the paRAM set is submitted to TC. This * will allow more time to set up the next set of slots. */ edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); } edesc->residue_stat = edesc->residue; return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long tx_flags) { int ret, nslots; struct edma_desc *edesc; struct device *dev = chan->device->dev; struct edma_chan *echan = to_edma_chan(chan); unsigned int width, pset_len, array_size; if (unlikely(!echan || !len)) return NULL; /* Align the array size (acnt block) with the transfer properties */ switch (__ffs((src | dest | len))) { case 0: array_size = SZ_32K - 1; break; case 1: array_size = SZ_32K - 2; break; default: array_size = SZ_32K - 4; break; } if (len < SZ_64K) { /* * Transfer size less than 64K can be handled with one paRAM * slot and with one burst. * ACNT = length */ width = len; pset_len = len; nslots = 1; } else { /* * Transfer size bigger than 64K will be handled with maximum of * two paRAM slots. * slot1: (full_length / 32767) times 32767 bytes bursts. * ACNT = 32767, length1: (full_length / 32767) * 32767 * slot2: the remaining amount of data after slot1. * ACNT = full_length - length1, length2 = ACNT * * When the full_length is a multiple of 32767 one slot can be * used to complete the transfer. */ width = array_size; pset_len = rounddown(len, width); /* One slot is enough for lengths multiple of (SZ_32K -1) */ if (unlikely(pset_len == len)) nslots = 1; else nslots = 2; } edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); if (!edesc) return NULL; edesc->pset_nr = nslots; edesc->residue = edesc->residue_stat = len; edesc->direction = DMA_MEM_TO_MEM; edesc->echan = echan; ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, width, pset_len, DMA_MEM_TO_MEM); if (ret < 0) { kfree(edesc); return NULL; } edesc->absync = ret; edesc->pset[0].param.opt |= ITCCHEN; if (nslots == 1) { /* Enable transfer complete interrupt if requested */ if (tx_flags & DMA_PREP_INTERRUPT) edesc->pset[0].param.opt |= TCINTEN; } else { /* Enable transfer complete chaining for the first slot */ edesc->pset[0].param.opt |= TCCHEN; if (echan->slot[1] < 0) { echan->slot[1] = edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); if (echan->slot[1] < 0) { kfree(edesc); dev_err(dev, "%s: Failed to allocate slot\n", __func__); return NULL; } } dest += pset_len; src += pset_len; pset_len = width = len % array_size; ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, width, pset_len, DMA_MEM_TO_MEM); if (ret < 0) { kfree(edesc); return NULL; } edesc->pset[1].param.opt |= ITCCHEN; /* Enable transfer complete interrupt if requested */ if (tx_flags & DMA_PREP_INTERRUPT) edesc->pset[1].param.opt |= TCINTEN; } if (!(tx_flags & DMA_PREP_INTERRUPT)) edesc->polled = true; return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static struct dma_async_tx_descriptor * edma_prep_dma_interleaved(struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long tx_flags) { struct device *dev = chan->device->dev; struct edma_chan *echan = to_edma_chan(chan); struct edmacc_param *param; struct edma_desc *edesc; size_t src_icg, dst_icg; int src_bidx, dst_bidx; /* Slave mode is not supported */ if (is_slave_direction(xt->dir)) return NULL; if (xt->frame_size != 1 || xt->numf == 0) return NULL; if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K) return NULL; src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); if (src_icg) { src_bidx = src_icg + xt->sgl[0].size; } else if (xt->src_inc) { src_bidx = xt->sgl[0].size; } else { dev_err(dev, "%s: SRC constant addressing is not supported\n", __func__); return NULL; } dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); if (dst_icg) { dst_bidx = dst_icg + xt->sgl[0].size; } else if (xt->dst_inc) { dst_bidx = xt->sgl[0].size; } else { dev_err(dev, "%s: DST constant addressing is not supported\n", __func__); return NULL; } if (src_bidx > SZ_64K || dst_bidx > SZ_64K) return NULL; edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC); if (!edesc) return NULL; edesc->direction = DMA_MEM_TO_MEM; edesc->echan = echan; edesc->pset_nr = 1; param = &edesc->pset[0].param; param->src = xt->src_start; param->dst = xt->dst_start; param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size; param->ccnt = 1; param->src_dst_bidx = (dst_bidx << 16) | src_bidx; param->src_dst_cidx = 0; param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); param->opt |= ITCCHEN; /* Enable transfer complete interrupt if requested */ if (tx_flags & DMA_PREP_INTERRUPT) param->opt |= TCINTEN; else edesc->polled = true; return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long tx_flags) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; struct edma_desc *edesc; dma_addr_t src_addr, dst_addr; enum dma_slave_buswidth dev_width; bool use_intermediate = false; u32 burst; int i, ret, nslots; if (unlikely(!echan || !buf_len || !period_len)) return NULL; if (direction == DMA_DEV_TO_MEM) { src_addr = echan->cfg.src_addr; dst_addr = buf_addr; dev_width = echan->cfg.src_addr_width; burst = echan->cfg.src_maxburst; } else if (direction == DMA_MEM_TO_DEV) { src_addr = buf_addr; dst_addr = echan->cfg.dst_addr; dev_width = echan->cfg.dst_addr_width; burst = echan->cfg.dst_maxburst; } else { dev_err(dev, "%s: bad direction: %d\n", __func__, direction); return NULL; } if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { dev_err(dev, "%s: Undefined slave buswidth\n", __func__); return NULL; } if (unlikely(buf_len % period_len)) { dev_err(dev, "Period should be multiple of Buffer length\n"); return NULL; } nslots = (buf_len / period_len) + 1; /* * Cyclic DMA users such as audio cannot tolerate delays introduced * by cases where the number of periods is more than the maximum * number of SGs the EDMA driver can handle at a time. For DMA types * such as Slave SGs, such delays are tolerable and synchronized, * but the synchronization is difficult to achieve with Cyclic and * cannot be guaranteed, so we error out early. */ if (nslots > MAX_NR_SG) { /* * If the burst and period sizes are the same, we can put * the full buffer into a single period and activate * intermediate interrupts. This will produce interrupts * after each burst, which is also after each desired period. */ if (burst == period_len) { period_len = buf_len; nslots = 2; use_intermediate = true; } else { return NULL; } } edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); if (!edesc) return NULL; edesc->cyclic = 1; edesc->pset_nr = nslots; edesc->residue = edesc->residue_stat = buf_len; edesc->direction = direction; edesc->echan = echan; dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", __func__, echan->ch_num, nslots, period_len, buf_len); for (i = 0; i < nslots; i++) { /* Allocate a PaRAM slot, if needed */ if (echan->slot[i] < 0) { echan->slot[i] = edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); if (echan->slot[i] < 0) { kfree(edesc); dev_err(dev, "%s: Failed to allocate slot\n", __func__); return NULL; } } if (i == nslots - 1) { memcpy(&edesc->pset[i], &edesc->pset[0], sizeof(edesc->pset[0])); break; } ret = edma_config_pset(chan, &edesc->pset[i], src_addr, dst_addr, burst, dev_width, period_len, direction); if (ret < 0) { kfree(edesc); return NULL; } if (direction == DMA_DEV_TO_MEM) dst_addr += period_len; else src_addr += period_len; dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); dev_vdbg(dev, "\n pset[%d]:\n" " chnum\t%d\n" " slot\t%d\n" " opt\t%08x\n" " src\t%08x\n" " dst\t%08x\n" " abcnt\t%08x\n" " ccnt\t%08x\n" " bidx\t%08x\n" " cidx\t%08x\n" " lkrld\t%08x\n", i, echan->ch_num, echan->slot[i], edesc->pset[i].param.opt, edesc->pset[i].param.src, edesc->pset[i].param.dst, edesc->pset[i].param.a_b_cnt, edesc->pset[i].param.ccnt, edesc->pset[i].param.src_dst_bidx, edesc->pset[i].param.src_dst_cidx, edesc->pset[i].param.link_bcntrld); edesc->absync = ret; /* * Enable period interrupt only if it is requested */ if (tx_flags & DMA_PREP_INTERRUPT) { edesc->pset[i].param.opt |= TCINTEN; /* Also enable intermediate interrupts if necessary */ if (use_intermediate) edesc->pset[i].param.opt |= ITCINTEN; } } /* Place the cyclic channel to highest priority queue */ if (!echan->tc) edma_assign_channel_eventq(echan, EVENTQ_0); return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static void edma_completion_handler(struct edma_chan *echan) { struct device *dev = echan->vchan.chan.device->dev; struct edma_desc *edesc; spin_lock(&echan->vchan.lock); edesc = echan->edesc; if (edesc) { if (edesc->cyclic) { vchan_cyclic_callback(&edesc->vdesc); spin_unlock(&echan->vchan.lock); return; } else if (edesc->processed == edesc->pset_nr) { edesc->residue = 0; edma_stop(echan); vchan_cookie_complete(&edesc->vdesc); echan->edesc = NULL; dev_dbg(dev, "Transfer completed on channel %d\n", echan->ch_num); } else { dev_dbg(dev, "Sub transfer completed on channel %d\n", echan->ch_num); edma_pause(echan); /* Update statistics for tx_status */ edesc->residue -= edesc->sg_len; edesc->residue_stat = edesc->residue; edesc->processed_stat = edesc->processed; } edma_execute(echan); } spin_unlock(&echan->vchan.lock); } /* eDMA interrupt handler */ static irqreturn_t dma_irq_handler(int irq, void *data) { struct edma_cc *ecc = data; int ctlr; u32 sh_ier; u32 sh_ipr; u32 bank; ctlr = ecc->id; if (ctlr < 0) return IRQ_NONE; dev_vdbg(ecc->dev, "dma_irq_handler\n"); sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); if (!sh_ipr) { sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); if (!sh_ipr) return IRQ_NONE; sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); bank = 1; } else { sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); bank = 0; } do { u32 slot; u32 channel; slot = __ffs(sh_ipr); sh_ipr &= ~(BIT(slot)); if (sh_ier & BIT(slot)) { channel = (bank << 5) | slot; /* Clear the corresponding IPR bits */ edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); edma_completion_handler(&ecc->slave_chans[channel]); } } while (sh_ipr); edma_shadow0_write(ecc, SH_IEVAL, 1); return IRQ_HANDLED; } static void edma_error_handler(struct edma_chan *echan) { struct edma_cc *ecc = echan->ecc; struct device *dev = echan->vchan.chan.device->dev; struct edmacc_param p; int err; if (!echan->edesc) return; spin_lock(&echan->vchan.lock); err = edma_read_slot(ecc, echan->slot[0], &p); /* * Issue later based on missed flag which will be sure * to happen as: * (1) we finished transmitting an intermediate slot and * edma_execute is coming up. * (2) or we finished current transfer and issue will * call edma_execute. * * Important note: issuing can be dangerous here and * lead to some nasty recursion when we are in a NULL * slot. So we avoid doing so and set the missed flag. */ if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { dev_dbg(dev, "Error on null slot, setting miss\n"); echan->missed = 1; } else { /* * The slot is already programmed but the event got * missed, so its safe to issue it here. */ dev_dbg(dev, "Missed event, TRIGGERING\n"); edma_clean_channel(echan); edma_stop(echan); edma_start(echan); edma_trigger_channel(echan); } spin_unlock(&echan->vchan.lock); } static inline bool edma_error_pending(struct edma_cc *ecc) { if (edma_read_array(ecc, EDMA_EMR, 0) || edma_read_array(ecc, EDMA_EMR, 1) || edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) return true; return false; } /* eDMA error interrupt handler */ static irqreturn_t dma_ccerr_handler(int irq, void *data) { struct edma_cc *ecc = data; int i, j; int ctlr; unsigned int cnt = 0; unsigned int val; ctlr = ecc->id; if (ctlr < 0) return IRQ_NONE; dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); if (!edma_error_pending(ecc)) { /* * The registers indicate no pending error event but the irq * handler has been called. * Ask eDMA to re-evaluate the error registers. */ dev_err(ecc->dev, "%s: Error interrupt without error event!\n", __func__); edma_write(ecc, EDMA_EEVAL, 1); return IRQ_NONE; } while (1) { /* Event missed register(s) */ for (j = 0; j < 2; j++) { unsigned long emr; val = edma_read_array(ecc, EDMA_EMR, j); if (!val) continue; dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); emr = val; for_each_set_bit(i, &emr, 32) { int k = (j << 5) + i; /* Clear the corresponding EMR bits */ edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); /* Clear any SER */ edma_shadow0_write_array(ecc, SH_SECR, j, BIT(i)); edma_error_handler(&ecc->slave_chans[k]); } } val = edma_read(ecc, EDMA_QEMR); if (val) { dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); /* Not reported, just clear the interrupt reason. */ edma_write(ecc, EDMA_QEMCR, val); edma_shadow0_write(ecc, SH_QSECR, val); } val = edma_read(ecc, EDMA_CCERR); if (val) { dev_warn(ecc->dev, "CCERR 0x%08x\n", val); /* Not reported, just clear the interrupt reason. */ edma_write(ecc, EDMA_CCERRCLR, val); } if (!edma_error_pending(ecc)) break; cnt++; if (cnt > 10) break; } edma_write(ecc, EDMA_EEVAL, 1); return IRQ_HANDLED; } /* Alloc channel resources */ static int edma_alloc_chan_resources(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); struct edma_cc *ecc = echan->ecc; struct device *dev = ecc->dev; enum dma_event_q eventq_no = EVENTQ_DEFAULT; int ret; if (echan->tc) { eventq_no = echan->tc->id; } else if (ecc->tc_list) { /* memcpy channel */ echan->tc = &ecc->tc_list[ecc->info->default_queue]; eventq_no = echan->tc->id; } ret = edma_alloc_channel(echan, eventq_no); if (ret) return ret; echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); if (echan->slot[0] < 0) { dev_err(dev, "Entry slot allocation failed for channel %u\n", EDMA_CHAN_SLOT(echan->ch_num)); ret = echan->slot[0]; goto err_slot; } /* Set up channel -> slot mapping for the entry slot */ edma_set_chmap(echan, echan->slot[0]); echan->alloced = true; dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, echan->hw_triggered ? "HW" : "SW"); return 0; err_slot: edma_free_channel(echan); return ret; } /* Free channel resources */ static void edma_free_chan_resources(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = echan->ecc->dev; int i; /* Terminate transfers */ edma_stop(echan); vchan_free_chan_resources(&echan->vchan); /* Free EDMA PaRAM slots */ for (i = 0; i < EDMA_MAX_SLOTS; i++) { if (echan->slot[i] >= 0) { edma_free_slot(echan->ecc, echan->slot[i]); echan->slot[i] = -1; } } /* Set entry slot to the dummy slot */ edma_set_chmap(echan, echan->ecc->dummy_slot); /* Free EDMA channel */ if (echan->alloced) { edma_free_channel(echan); echan->alloced = false; } echan->tc = NULL; echan->hw_triggered = false; dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); } /* Send pending descriptor to hardware */ static void edma_issue_pending(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&echan->vchan.lock, flags); if (vchan_issue_pending(&echan->vchan) && !echan->edesc) edma_execute(echan); spin_unlock_irqrestore(&echan->vchan.lock, flags); } /* * This limit exists to avoid a possible infinite loop when waiting for proof * that a particular transfer is completed. This limit can be hit if there * are large bursts to/from slow devices or the CPU is never able to catch * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART * RX-FIFO, as many as 55 loops have been seen. */ #define EDMA_MAX_TR_WAIT_LOOPS 1000 static u32 edma_residue(struct edma_desc *edesc) { bool dst = edesc->direction == DMA_DEV_TO_MEM; int loop_count = EDMA_MAX_TR_WAIT_LOOPS; struct edma_chan *echan = edesc->echan; struct edma_pset *pset = edesc->pset; dma_addr_t done, pos, pos_old; int channel = EDMA_CHAN_SLOT(echan->ch_num); int idx = EDMA_REG_ARRAY_INDEX(channel); int ch_bit = EDMA_CHANNEL_BIT(channel); int event_reg; int i; /* * We always read the dst/src position from the first RamPar * pset. That's the one which is active now. */ pos = edma_get_position(echan->ecc, echan->slot[0], dst); /* * "pos" may represent a transfer request that is still being * processed by the EDMACC or EDMATC. We will busy wait until * any one of the situations occurs: * 1. while and event is pending for the channel * 2. a position updated * 3. we hit the loop limit */ if (is_slave_direction(edesc->direction)) event_reg = SH_ER; else event_reg = SH_ESR; pos_old = pos; while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { pos = edma_get_position(echan->ecc, echan->slot[0], dst); if (pos != pos_old) break; if (!--loop_count) { dev_dbg_ratelimited(echan->vchan.chan.device->dev, "%s: timeout waiting for PaRAM update\n", __func__); break; } cpu_relax(); } /* * Cyclic is simple. Just subtract pset[0].addr from pos. * * We never update edesc->residue in the cyclic case, so we * can tell the remaining room to the end of the circular * buffer. */ if (edesc->cyclic) { done = pos - pset->addr; edesc->residue_stat = edesc->residue - done; return edesc->residue_stat; } /* * If the position is 0, then EDMA loaded the closing dummy slot, the * transfer is completed */ if (!pos) return 0; /* * For SG operation we catch up with the last processed * status. */ pset += edesc->processed_stat; for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { /* * If we are inside this pset address range, we know * this is the active one. Get the current delta and * stop walking the psets. */ if (pos >= pset->addr && pos < pset->addr + pset->len) return edesc->residue_stat - (pos - pset->addr); /* Otherwise mark it done and update residue_stat. */ edesc->processed_stat++; edesc->residue_stat -= pset->len; } return edesc->residue_stat; } /* Check request completion status */ static enum dma_status edma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct edma_chan *echan = to_edma_chan(chan); struct dma_tx_state txstate_tmp; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE) return ret; /* Provide a dummy dma_tx_state for completion checking */ if (!txstate) txstate = &txstate_tmp; spin_lock_irqsave(&echan->vchan.lock, flags); if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { txstate->residue = edma_residue(echan->edesc); } else { struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, cookie); if (vdesc) txstate->residue = to_edma_desc(&vdesc->tx)->residue; else txstate->residue = 0; } /* * Mark the cookie completed if the residue is 0 for non cyclic * transfers */ if (ret != DMA_COMPLETE && !txstate->residue && echan->edesc && echan->edesc->polled && echan->edesc->vdesc.tx.cookie == cookie) { edma_stop(echan); vchan_cookie_complete(&echan->edesc->vdesc); echan->edesc = NULL; edma_execute(echan); ret = DMA_COMPLETE; } spin_unlock_irqrestore(&echan->vchan.lock, flags); return ret; } static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) { if (!memcpy_channels) return false; while (*memcpy_channels != -1) { if (*memcpy_channels == ch_num) return true; memcpy_channels++; } return false; } #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) { struct dma_device *s_ddev = &ecc->dma_slave; struct dma_device *m_ddev = NULL; s32 *memcpy_channels = ecc->info->memcpy_channels; int i, j; dma_cap_zero(s_ddev->cap_mask); dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); if (ecc->legacy_mode && !memcpy_channels) { dev_warn(ecc->dev, "Legacy memcpy is enabled, things might not work\n"); dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask); s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; s_ddev->directions = BIT(DMA_MEM_TO_MEM); } s_ddev->device_prep_slave_sg = edma_prep_slave_sg; s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; s_ddev->device_free_chan_resources = edma_free_chan_resources; s_ddev->device_issue_pending = edma_issue_pending; s_ddev->device_tx_status = edma_tx_status; s_ddev->device_config = edma_slave_config; s_ddev->device_pause = edma_dma_pause; s_ddev->device_resume = edma_dma_resume; s_ddev->device_terminate_all = edma_terminate_all; s_ddev->device_synchronize = edma_synchronize; s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ s_ddev->dev = ecc->dev; INIT_LIST_HEAD(&s_ddev->channels); if (memcpy_channels) { m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); if (!m_ddev) { dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); memcpy_channels = NULL; goto ch_setup; } ecc->dma_memcpy = m_ddev; dma_cap_zero(m_ddev->cap_mask); dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask); m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; m_ddev->device_free_chan_resources = edma_free_chan_resources; m_ddev->device_issue_pending = edma_issue_pending; m_ddev->device_tx_status = edma_tx_status; m_ddev->device_config = edma_slave_config; m_ddev->device_pause = edma_dma_pause; m_ddev->device_resume = edma_dma_resume; m_ddev->device_terminate_all = edma_terminate_all; m_ddev->device_synchronize = edma_synchronize; m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; m_ddev->directions = BIT(DMA_MEM_TO_MEM); m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; m_ddev->dev = ecc->dev; INIT_LIST_HEAD(&m_ddev->channels); } else if (!ecc->legacy_mode) { dev_info(ecc->dev, "memcpy is disabled\n"); } ch_setup: for (i = 0; i < ecc->num_channels; i++) { struct edma_chan *echan = &ecc->slave_chans[i]; echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); echan->ecc = ecc; echan->vchan.desc_free = edma_desc_free; if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) vchan_init(&echan->vchan, m_ddev); else vchan_init(&echan->vchan, s_ddev); INIT_LIST_HEAD(&echan->node); for (j = 0; j < EDMA_MAX_SLOTS; j++) echan->slot[j] = -1; } } static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, struct edma_cc *ecc) { int i; u32 value, cccfg; s8 (*queue_priority_map)[2]; /* Decode the eDMA3 configuration from CCCFG register */ cccfg = edma_read(ecc, EDMA_CCCFG); value = GET_NUM_REGN(cccfg); ecc->num_region = BIT(value); value = GET_NUM_DMACH(cccfg); ecc->num_channels = BIT(value + 1); value = GET_NUM_QDMACH(cccfg); ecc->num_qchannels = value * 2; value = GET_NUM_PAENTRY(cccfg); ecc->num_slots = BIT(value + 4); value = GET_NUM_EVQUE(cccfg); ecc->num_tc = value + 1; ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); dev_dbg(dev, "num_region: %u\n", ecc->num_region); dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); /* Nothing need to be done if queue priority is provided */ if (pdata->queue_priority_mapping) return 0; /* * Configure TC/queue priority as follows: * Q0 - priority 0 * Q1 - priority 1 * Q2 - priority 2 * ... * The meaning of priority numbers: 0 highest priority, 7 lowest * priority. So Q0 is the highest priority queue and the last queue has * the lowest priority. */ queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), GFP_KERNEL); if (!queue_priority_map) return -ENOMEM; for (i = 0; i < ecc->num_tc; i++) { queue_priority_map[i][0] = i; queue_priority_map[i][1] = i; } queue_priority_map[i][0] = -1; queue_priority_map[i][1] = -1; pdata->queue_priority_mapping = queue_priority_map; /* Default queue has the lowest priority */ pdata->default_queue = i - 1; return 0; } #if IS_ENABLED(CONFIG_OF) static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, size_t sz) { const char pname[] = "ti,edma-xbar-event-map"; struct resource res; void __iomem *xbar; s16 (*xbar_chans)[2]; size_t nelm = sz / sizeof(s16); u32 shift, offset, mux; int ret, i; xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); if (!xbar_chans) return -ENOMEM; ret = of_address_to_resource(dev->of_node, 1, &res); if (ret) return -ENOMEM; xbar = devm_ioremap(dev, res.start, resource_size(&res)); if (!xbar) return -ENOMEM; ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, nelm); if (ret) return -EIO; /* Invalidate last entry for the other user of this mess */ nelm >>= 1; xbar_chans[nelm][0] = -1; xbar_chans[nelm][1] = -1; for (i = 0; i < nelm; i++) { shift = (xbar_chans[i][1] & 0x03) << 3; offset = xbar_chans[i][1] & 0xfffffffc; mux = readl(xbar + offset); mux &= ~(0xff << shift); mux |= xbar_chans[i][0] << shift; writel(mux, (xbar + offset)); } pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; return 0; } static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, bool legacy_mode) { struct edma_soc_info *info; struct property *prop; int sz, ret; info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); if (legacy_mode) { prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz); if (prop) { ret = edma_xbar_event_map(dev, info, sz); if (ret) return ERR_PTR(ret); } return info; } /* Get the list of channels allocated to be used for memcpy */ prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); if (prop) { const char pname[] = "ti,edma-memcpy-channels"; size_t nelm = sz / sizeof(s32); s32 *memcpy_ch; memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), GFP_KERNEL); if (!memcpy_ch) return ERR_PTR(-ENOMEM); ret = of_property_read_u32_array(dev->of_node, pname, (u32 *)memcpy_ch, nelm); if (ret) return ERR_PTR(ret); memcpy_ch[nelm] = -1; info->memcpy_channels = memcpy_ch; } prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", &sz); if (prop) { const char pname[] = "ti,edma-reserved-slot-ranges"; u32 (*tmp)[2]; s16 (*rsv_slots)[2]; size_t nelm = sz / sizeof(*tmp); struct edma_rsv_info *rsv_info; int i; if (!nelm) return info; tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); if (!tmp) return ERR_PTR(-ENOMEM); rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); if (!rsv_info) { kfree(tmp); return ERR_PTR(-ENOMEM); } rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), GFP_KERNEL); if (!rsv_slots) { kfree(tmp); return ERR_PTR(-ENOMEM); } ret = of_property_read_u32_array(dev->of_node, pname, (u32 *)tmp, nelm * 2); if (ret) { kfree(tmp); return ERR_PTR(ret); } for (i = 0; i < nelm; i++) { rsv_slots[i][0] = tmp[i][0]; rsv_slots[i][1] = tmp[i][1]; } rsv_slots[nelm][0] = -1; rsv_slots[nelm][1] = -1; info->rsv = rsv_info; info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; kfree(tmp); } return info; } static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct edma_cc *ecc = ofdma->of_dma_data; struct dma_chan *chan = NULL; struct edma_chan *echan; int i; if (!ecc || dma_spec->args_count < 1) return NULL; for (i = 0; i < ecc->num_channels; i++) { echan = &ecc->slave_chans[i]; if (echan->ch_num == dma_spec->args[0]) { chan = &echan->vchan.chan; break; } } if (!chan) return NULL; if (echan->ecc->legacy_mode && dma_spec->args_count == 1) goto out; if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && dma_spec->args[1] < echan->ecc->num_tc) { echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; goto out; } return NULL; out: /* The channel is going to be used as HW synchronized */ echan->hw_triggered = true; return dma_get_slave_channel(chan); } #else static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, bool legacy_mode) { return ERR_PTR(-EINVAL); } static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { return NULL; } #endif static bool edma_filter_fn(struct dma_chan *chan, void *param); static int edma_probe(struct platform_device *pdev) { struct edma_soc_info *info = pdev->dev.platform_data; s8 (*queue_priority_mapping)[2]; const s16 (*reserved)[2]; int i, irq; char *irq_name; struct resource *mem; struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct edma_cc *ecc; bool legacy_mode = true; int ret; if (node) { const struct of_device_id *match; match = of_match_node(edma_of_ids, node); if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) legacy_mode = false; info = edma_setup_info_from_dt(dev, legacy_mode); if (IS_ERR(info)) { dev_err(dev, "failed to get DT data\n"); return PTR_ERR(info); } } if (!info) return -ENODEV; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) return ret; ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); if (!ecc) return -ENOMEM; ecc->dev = dev; ecc->id = pdev->id; ecc->legacy_mode = legacy_mode; /* When booting with DT the pdev->id is -1 */ if (ecc->id < 0) ecc->id = 0; mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); if (!mem) { dev_dbg(dev, "mem resource not found, using index 0\n"); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(dev, "no mem resource?\n"); return -ENODEV; } } ecc->base = devm_ioremap_resource(dev, mem); if (IS_ERR(ecc->base)) return PTR_ERR(ecc->base); platform_set_drvdata(pdev, ecc); pm_runtime_enable(dev); ret = pm_runtime_get_sync(dev); if (ret < 0) { dev_err(dev, "pm_runtime_get_sync() failed\n"); pm_runtime_disable(dev); return ret; } /* Get eDMA3 configuration from IP */ ret = edma_setup_from_hw(dev, info, ecc); if (ret) goto err_disable_pm; /* Allocate memory based on the information we got from the IP */ ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, sizeof(*ecc->slave_chans), GFP_KERNEL); ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), sizeof(unsigned long), GFP_KERNEL); ecc->channels_mask = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_channels), sizeof(unsigned long), GFP_KERNEL); if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) { ret = -ENOMEM; goto err_disable_pm; } /* Mark all channels available initially */ bitmap_fill(ecc->channels_mask, ecc->num_channels); ecc->default_queue = info->default_queue; if (info->rsv) { /* Set the reserved slots in inuse list */ reserved = info->rsv->rsv_slots; if (reserved) { for (i = 0; reserved[i][0] != -1; i++) bitmap_set(ecc->slot_inuse, reserved[i][0], reserved[i][1]); } /* Clear channels not usable for Linux */ reserved = info->rsv->rsv_chans; if (reserved) { for (i = 0; reserved[i][0] != -1; i++) bitmap_clear(ecc->channels_mask, reserved[i][0], reserved[i][1]); } } for (i = 0; i < ecc->num_slots; i++) { /* Reset only unused - not reserved - paRAM slots */ if (!test_bit(i, ecc->slot_inuse)) edma_write_slot(ecc, i, &dummy_paramset); } irq = platform_get_irq_byname(pdev, "edma3_ccint"); if (irq < 0 && node) irq = irq_of_parse_and_map(node, 0); if (irq >= 0) { irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", dev_name(dev)); ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, ecc); if (ret) { dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); goto err_disable_pm; } ecc->ccint = irq; } irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); if (irq < 0 && node) irq = irq_of_parse_and_map(node, 2); if (irq >= 0) { irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", dev_name(dev)); ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, ecc); if (ret) { dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); goto err_disable_pm; } ecc->ccerrint = irq; } ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); if (ecc->dummy_slot < 0) { dev_err(dev, "Can't allocate PaRAM dummy slot\n"); ret = ecc->dummy_slot; goto err_disable_pm; } queue_priority_mapping = info->queue_priority_mapping; if (!ecc->legacy_mode) { int lowest_priority = 0; unsigned int array_max; struct of_phandle_args tc_args; ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, sizeof(*ecc->tc_list), GFP_KERNEL); if (!ecc->tc_list) { ret = -ENOMEM; goto err_reg1; } for (i = 0;; i++) { ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 1, i, &tc_args); if (ret || i == ecc->num_tc) break; ecc->tc_list[i].node = tc_args.np; ecc->tc_list[i].id = i; queue_priority_mapping[i][1] = tc_args.args[0]; if (queue_priority_mapping[i][1] > lowest_priority) { lowest_priority = queue_priority_mapping[i][1]; info->default_queue = i; } } /* See if we have optional dma-channel-mask array */ array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); ret = of_property_read_variable_u32_array(node, "dma-channel-mask", (u32 *)ecc->channels_mask, 1, array_max); if (ret > 0 && ret != array_max) dev_warn(dev, "dma-channel-mask is not complete.\n"); else if (ret == -EOVERFLOW || ret == -ENODATA) dev_warn(dev, "dma-channel-mask is out of range or empty\n"); } /* Event queue priority mapping */ for (i = 0; queue_priority_mapping[i][0] != -1; i++) edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], queue_priority_mapping[i][1]); edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); edma_write_array(ecc, EDMA_QRAE, 0, 0x0); ecc->info = info; /* Init the dma device and channels */ edma_dma_init(ecc, legacy_mode); for (i = 0; i < ecc->num_channels; i++) { /* Do not touch reserved channels */ if (!test_bit(i, ecc->channels_mask)) continue; /* Assign all channels to the default queue */ edma_assign_channel_eventq(&ecc->slave_chans[i], info->default_queue); /* Set entry slot to the dummy slot */ edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); } ecc->dma_slave.filter.map = info->slave_map; ecc->dma_slave.filter.mapcnt = info->slavecnt; ecc->dma_slave.filter.fn = edma_filter_fn; ret = dma_async_device_register(&ecc->dma_slave); if (ret) { dev_err(dev, "slave ddev registration failed (%d)\n", ret); goto err_reg1; } if (ecc->dma_memcpy) { ret = dma_async_device_register(ecc->dma_memcpy); if (ret) { dev_err(dev, "memcpy ddev registration failed (%d)\n", ret); dma_async_device_unregister(&ecc->dma_slave); goto err_reg1; } } if (node) of_dma_controller_register(node, of_edma_xlate, ecc); dev_info(dev, "TI EDMA DMA engine driver\n"); return 0; err_reg1: edma_free_slot(ecc, ecc->dummy_slot); err_disable_pm: pm_runtime_put_sync(dev); pm_runtime_disable(dev); return ret; } static void edma_cleanupp_vchan(struct dma_device *dmadev) { struct edma_chan *echan, *_echan; list_for_each_entry_safe(echan, _echan, &dmadev->channels, vchan.chan.device_node) { list_del(&echan->vchan.chan.device_node); tasklet_kill(&echan->vchan.task); } } static int edma_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct edma_cc *ecc = dev_get_drvdata(dev); devm_free_irq(dev, ecc->ccint, ecc); devm_free_irq(dev, ecc->ccerrint, ecc); edma_cleanupp_vchan(&ecc->dma_slave); if (dev->of_node) of_dma_controller_free(dev->of_node); dma_async_device_unregister(&ecc->dma_slave); if (ecc->dma_memcpy) dma_async_device_unregister(ecc->dma_memcpy); edma_free_slot(ecc, ecc->dummy_slot); pm_runtime_put_sync(dev); pm_runtime_disable(dev); return 0; } #ifdef CONFIG_PM_SLEEP static int edma_pm_suspend(struct device *dev) { struct edma_cc *ecc = dev_get_drvdata(dev); struct edma_chan *echan = ecc->slave_chans; int i; for (i = 0; i < ecc->num_channels; i++) { if (echan[i].alloced) edma_setup_interrupt(&echan[i], false); } return 0; } static int edma_pm_resume(struct device *dev) { struct edma_cc *ecc = dev_get_drvdata(dev); struct edma_chan *echan = ecc->slave_chans; int i; s8 (*queue_priority_mapping)[2]; /* re initialize dummy slot to dummy param set */ edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); queue_priority_mapping = ecc->info->queue_priority_mapping; /* Event queue priority mapping */ for (i = 0; queue_priority_mapping[i][0] != -1; i++) edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], queue_priority_mapping[i][1]); for (i = 0; i < ecc->num_channels; i++) { if (echan[i].alloced) { /* ensure access through shadow region 0 */ edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(i), EDMA_CHANNEL_BIT(i)); edma_setup_interrupt(&echan[i], true); /* Set up channel -> slot mapping for the entry slot */ edma_set_chmap(&echan[i], echan[i].slot[0]); } } return 0; } #endif static const struct dev_pm_ops edma_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) }; static struct platform_driver edma_driver = { .probe = edma_probe, .remove = edma_remove, .driver = { .name = "edma", .pm = &edma_pm_ops, .of_match_table = edma_of_ids, }, }; static int edma_tptc_probe(struct platform_device *pdev) { pm_runtime_enable(&pdev->dev); return pm_runtime_get_sync(&pdev->dev); } static struct platform_driver edma_tptc_driver = { .probe = edma_tptc_probe, .driver = { .name = "edma3-tptc", .of_match_table = edma_tptc_of_ids, }, }; static bool edma_filter_fn(struct dma_chan *chan, void *param) { bool match = false; if (chan->device->dev->driver == &edma_driver.driver) { struct edma_chan *echan = to_edma_chan(chan); unsigned ch_req = *(unsigned *)param; if (ch_req == echan->ch_num) { /* The channel is going to be used as HW synchronized */ echan->hw_triggered = true; match = true; } } return match; } static int edma_init(void) { int ret; ret = platform_driver_register(&edma_tptc_driver); if (ret) return ret; return platform_driver_register(&edma_driver); } subsys_initcall(edma_init); static void __exit edma_exit(void) { platform_driver_unregister(&edma_driver); platform_driver_unregister(&edma_tptc_driver); } module_exit(edma_exit); MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); MODULE_DESCRIPTION("TI EDMA DMA engine driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1