Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Qiuxu Zhuo | 2557 | 71.58% | 15 | 78.95% |
Youquan Song | 990 | 27.72% | 1 | 5.26% |
Thomas Gleixner | 13 | 0.36% | 1 | 5.26% |
Tony Luck | 11 | 0.31% | 1 | 5.26% |
Robert Richter | 1 | 0.03% | 1 | 5.26% |
Total | 3572 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for Intel(R) 10nm server memory controller. * Copyright (c) 2019, Intel Corporation. * */ #include <linux/kernel.h> #include <linux/io.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/mce.h> #include "edac_module.h" #include "skx_common.h" #define I10NM_REVISION "v0.0.5" #define EDAC_MOD_STR "i10nm_edac" /* Debug macros */ #define i10nm_printk(level, fmt, arg...) \ edac_printk(level, "i10nm", fmt, ##arg) #define I10NM_GET_SCK_BAR(d, reg) \ pci_read_config_dword((d)->uracu, 0xd0, &(reg)) #define I10NM_GET_IMC_BAR(d, i, reg) \ pci_read_config_dword((d)->uracu, 0xd8 + (i) * 4, &(reg)) #define I10NM_GET_SAD(d, offset, i, reg)\ pci_read_config_dword((d)->sad_all, (offset) + (i) * 8, &(reg)) #define I10NM_GET_HBM_IMC_BAR(d, reg) \ pci_read_config_dword((d)->uracu, 0xd4, &(reg)) #define I10NM_GET_CAPID3_CFG(d, reg) \ pci_read_config_dword((d)->pcu_cr3, 0x90, &(reg)) #define I10NM_GET_DIMMMTR(m, i, j) \ readl((m)->mbase + ((m)->hbm_mc ? 0x80c : 0x2080c) + \ (i) * (m)->chan_mmio_sz + (j) * 4) #define I10NM_GET_MCDDRTCFG(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_MCMTR(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : 0x20ef8) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_AMAP(m, i) \ readl((m)->mbase + ((m)->hbm_mc ? 0x814 : 0x20814) + \ (i) * (m)->chan_mmio_sz) #define I10NM_GET_REG32(m, i, offset) \ readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_GET_REG64(m, i, offset) \ readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_SET_REG32(m, i, offset, v) \ writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) #define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23) #define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12) #define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \ GET_BITFIELD(reg, 0, 10) + 1) << 12) #define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \ ((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000) #define I10NM_HBM_IMC_MMIO_SIZE 0x9000 #define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30) #define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29) #define I10NM_MAX_SAD 16 #define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0) #define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5) #define RETRY_RD_ERR_LOG_UC BIT(1) #define RETRY_RD_ERR_LOG_NOOVER BIT(14) #define RETRY_RD_ERR_LOG_EN BIT(15) #define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1)) #define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0)) static struct list_head *i10nm_edac_list; static struct res_config *res_cfg; static int retry_rd_err_log; static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8}; static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8}; static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0}; static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0}; static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable) { u32 s, d; if (!imc->mbase) return; s = I10NM_GET_REG32(imc, chan, res_cfg->offsets_scrub[0]); d = I10NM_GET_REG32(imc, chan, res_cfg->offsets_demand[0]); if (enable) { /* Save default configurations */ imc->chan[chan].retry_rd_err_log_s = s; imc->chan[chan].retry_rd_err_log_d = d; s &= ~RETRY_RD_ERR_LOG_NOOVER_UC; s |= RETRY_RD_ERR_LOG_EN; d &= ~RETRY_RD_ERR_LOG_NOOVER_UC; d |= RETRY_RD_ERR_LOG_EN; } else { /* Restore default configurations */ if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC) s |= RETRY_RD_ERR_LOG_UC; if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER) s |= RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN)) s &= ~RETRY_RD_ERR_LOG_EN; if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC) d |= RETRY_RD_ERR_LOG_UC; if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER) d |= RETRY_RD_ERR_LOG_NOOVER; if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN)) d &= ~RETRY_RD_ERR_LOG_EN; } I10NM_SET_REG32(imc, chan, res_cfg->offsets_scrub[0], s); I10NM_SET_REG32(imc, chan, res_cfg->offsets_demand[0], d); } static void enable_retry_rd_err_log(bool enable) { struct skx_dev *d; int i, j; edac_dbg(2, "\n"); list_for_each_entry(d, i10nm_edac_list, list) for (i = 0; i < I10NM_NUM_IMC; i++) for (j = 0; j < I10NM_NUM_CHANNELS; j++) __enable_retry_rd_err_log(&d->imc[i], j, enable); } static void show_retry_rd_err_log(struct decoded_addr *res, char *msg, int len, bool scrub_err) { struct skx_imc *imc = &res->dev->imc[res->imc]; u32 log0, log1, log2, log3, log4; u32 corr0, corr1, corr2, corr3; u64 log2a, log5; u32 *offsets; int n; if (!imc->mbase) return; offsets = scrub_err ? res_cfg->offsets_scrub : res_cfg->offsets_demand; log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]); log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]); log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]); log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]); log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]); if (res_cfg->type == SPR) { log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx]", log0, log1, log2a, log3, log4, log5); } else { log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]", log0, log1, log2, log3, log4, log5); } corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18); corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c); corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20); corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24); if (len - n > 0) snprintf(msg + n, len - n, " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]", corr0 & 0xffff, corr0 >> 16, corr1 & 0xffff, corr1 >> 16, corr2 & 0xffff, corr2 >> 16, corr3 & 0xffff, corr3 >> 16); /* Clear status bits */ if (retry_rd_err_log == 2 && (log0 & RETRY_RD_ERR_LOG_OVER_UC_V)) { log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; I10NM_SET_REG32(imc, res->channel, offsets[0], log0); } } static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus, unsigned int dev, unsigned int fun) { struct pci_dev *pdev; pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun)); if (!pdev) { edac_dbg(2, "No device %02x:%02x.%x\n", bus, dev, fun); return NULL; } if (unlikely(pci_enable_device(pdev) < 0)) { edac_dbg(2, "Failed to enable device %02x:%02x.%x\n", bus, dev, fun); return NULL; } pci_dev_get(pdev); return pdev; } static bool i10nm_check_2lm(struct res_config *cfg) { struct skx_dev *d; u32 reg; int i; list_for_each_entry(d, i10nm_edac_list, list) { d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[1], PCI_SLOT(cfg->sad_all_devfn), PCI_FUNC(cfg->sad_all_devfn)); if (!d->sad_all) continue; for (i = 0; i < I10NM_MAX_SAD; i++) { I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg); if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) { edac_dbg(2, "2-level memory configuration.\n"); return true; } } } return false; } static int i10nm_get_ddr_munits(void) { struct pci_dev *mdev; void __iomem *mbase; unsigned long size; struct skx_dev *d; int i, j = 0; u32 reg, off; u64 base; list_for_each_entry(d, i10nm_edac_list, list) { d->util_all = pci_get_dev_wrapper(d->seg, d->bus[1], 29, 1); if (!d->util_all) return -ENODEV; d->uracu = pci_get_dev_wrapper(d->seg, d->bus[0], 0, 1); if (!d->uracu) return -ENODEV; if (I10NM_GET_SCK_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to socket bar\n"); return -ENODEV; } base = I10NM_GET_SCK_MMIO_BASE(reg); edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n", j++, base, reg); for (i = 0; i < I10NM_NUM_DDR_IMC; i++) { mdev = pci_get_dev_wrapper(d->seg, d->bus[0], 12 + i, 0); if (i == 0 && !mdev) { i10nm_printk(KERN_ERR, "No IMC found\n"); return -ENODEV; } if (!mdev) continue; d->imc[i].mdev = mdev; if (I10NM_GET_IMC_BAR(d, i, reg)) { i10nm_printk(KERN_ERR, "Failed to get mc bar\n"); return -ENODEV; } off = I10NM_GET_IMC_MMIO_OFFSET(reg); size = I10NM_GET_IMC_MMIO_SIZE(reg); edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n", i, base + off, size, reg); mbase = ioremap(base + off, size); if (!mbase) { i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", base + off); return -ENODEV; } d->imc[i].mbase = mbase; } } return 0; } static bool i10nm_check_hbm_imc(struct skx_dev *d) { u32 reg; if (I10NM_GET_CAPID3_CFG(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n"); return false; } return I10NM_IS_HBM_PRESENT(reg) != 0; } static int i10nm_get_hbm_munits(void) { struct pci_dev *mdev; void __iomem *mbase; u32 reg, off, mcmtr; struct skx_dev *d; int i, lmc; u64 base; list_for_each_entry(d, i10nm_edac_list, list) { d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[1], 30, 3); if (!d->pcu_cr3) return -ENODEV; if (!i10nm_check_hbm_imc(d)) { i10nm_printk(KERN_DEBUG, "No hbm memory\n"); return -ENODEV; } if (I10NM_GET_SCK_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get socket bar\n"); return -ENODEV; } base = I10NM_GET_SCK_MMIO_BASE(reg); if (I10NM_GET_HBM_IMC_BAR(d, reg)) { i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n"); return -ENODEV; } base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg); lmc = I10NM_NUM_DDR_IMC; for (i = 0; i < I10NM_NUM_HBM_IMC; i++) { mdev = pci_get_dev_wrapper(d->seg, d->bus[0], 12 + i / 4, 1 + i % 4); if (i == 0 && !mdev) { i10nm_printk(KERN_ERR, "No hbm mc found\n"); return -ENODEV; } if (!mdev) continue; d->imc[lmc].mdev = mdev; off = i * I10NM_HBM_IMC_MMIO_SIZE; edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n", lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE); mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE); if (!mbase) { pci_dev_put(d->imc[lmc].mdev); d->imc[lmc].mdev = NULL; i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n", base + off); return -ENOMEM; } d->imc[lmc].mbase = mbase; d->imc[lmc].hbm_mc = true; mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0); if (!I10NM_IS_HBM_IMC(mcmtr)) { iounmap(d->imc[lmc].mbase); d->imc[lmc].mbase = NULL; d->imc[lmc].hbm_mc = false; pci_dev_put(d->imc[lmc].mdev); d->imc[lmc].mdev = NULL; i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n"); return -ENODEV; } lmc++; } } return 0; } static struct res_config i10nm_cfg0 = { .type = I10NM, .decs_did = 0x3452, .busno_cfg_offset = 0xcc, .ddr_chan_mmio_sz = 0x4000, .sad_all_devfn = PCI_DEVFN(29, 0), .sad_all_offset = 0x108, .offsets_scrub = offsets_scrub_icx, .offsets_demand = offsets_demand_icx, }; static struct res_config i10nm_cfg1 = { .type = I10NM, .decs_did = 0x3452, .busno_cfg_offset = 0xd0, .ddr_chan_mmio_sz = 0x4000, .sad_all_devfn = PCI_DEVFN(29, 0), .sad_all_offset = 0x108, .offsets_scrub = offsets_scrub_icx, .offsets_demand = offsets_demand_icx, }; static struct res_config spr_cfg = { .type = SPR, .decs_did = 0x3252, .busno_cfg_offset = 0xd0, .ddr_chan_mmio_sz = 0x8000, .hbm_chan_mmio_sz = 0x4000, .support_ddr5 = true, .sad_all_devfn = PCI_DEVFN(10, 0), .sad_all_offset = 0x300, .offsets_scrub = offsets_scrub_spr, .offsets_demand = offsets_demand_spr, }; static const struct x86_cpu_id i10nm_cpuids[] = { X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(ICELAKE_D, X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1), X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SAPPHIRERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), {} }; MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids); static bool i10nm_check_ecc(struct skx_imc *imc, int chan) { u32 mcmtr; mcmtr = I10NM_GET_MCMTR(imc, chan); edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr); return !!GET_BITFIELD(mcmtr, 2, 2); } static int i10nm_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg) { struct skx_pvt *pvt = mci->pvt_info; struct skx_imc *imc = pvt->imc; u32 mtr, amap, mcddrtcfg; struct dimm_info *dimm; int i, j, ndimms; for (i = 0; i < imc->num_channels; i++) { if (!imc->mbase) continue; ndimms = 0; amap = I10NM_GET_AMAP(imc, i); mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i); for (j = 0; j < imc->num_dimms; j++) { dimm = edac_get_dimm(mci, i, j, 0); mtr = I10NM_GET_DIMMMTR(imc, i, j); edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n", mtr, mcddrtcfg, imc->mc, i, j); if (IS_DIMM_PRESENT(mtr)) ndimms += skx_get_dimm_info(mtr, 0, amap, dimm, imc, i, j, cfg); else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) ndimms += skx_get_nvdimm_info(dimm, imc, i, j, EDAC_MOD_STR); } if (ndimms && !i10nm_check_ecc(imc, i)) { i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n", imc->mc, i); return -ENODEV; } } return 0; } static struct notifier_block i10nm_mce_dec = { .notifier_call = skx_mce_check_error, .priority = MCE_PRIO_EDAC, }; #ifdef CONFIG_EDAC_DEBUG /* * Debug feature. * Exercise the address decode logic by writing an address to * /sys/kernel/debug/edac/i10nm_test/addr. */ static struct dentry *i10nm_test; static int debugfs_u64_set(void *data, u64 val) { struct mce m; pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); memset(&m, 0, sizeof(m)); /* ADDRV + MemRd + Unknown channel */ m.status = MCI_STATUS_ADDRV + 0x90; /* One corrected error */ m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); m.addr = val; skx_mce_check_error(NULL, 0, &m); return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); static void setup_i10nm_debug(void) { i10nm_test = edac_debugfs_create_dir("i10nm_test"); if (!i10nm_test) return; if (!edac_debugfs_create_file("addr", 0200, i10nm_test, NULL, &fops_u64_wo)) { debugfs_remove(i10nm_test); i10nm_test = NULL; } } static void teardown_i10nm_debug(void) { debugfs_remove_recursive(i10nm_test); } #else static inline void setup_i10nm_debug(void) {} static inline void teardown_i10nm_debug(void) {} #endif /*CONFIG_EDAC_DEBUG*/ static int __init i10nm_init(void) { u8 mc = 0, src_id = 0, node_id = 0; const struct x86_cpu_id *id; struct res_config *cfg; const char *owner; struct skx_dev *d; int rc, i, off[3] = {0xd0, 0xc8, 0xcc}; u64 tolm, tohm; edac_dbg(2, "\n"); owner = edac_get_owner(); if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) return -EBUSY; if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) return -ENODEV; id = x86_match_cpu(i10nm_cpuids); if (!id) return -ENODEV; cfg = (struct res_config *)id->driver_data; res_cfg = cfg; rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm); if (rc) return rc; rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list); if (rc < 0) goto fail; if (rc == 0) { i10nm_printk(KERN_ERR, "No memory controllers found\n"); return -ENODEV; } skx_set_mem_cfg(i10nm_check_2lm(cfg)); rc = i10nm_get_ddr_munits(); if (i10nm_get_hbm_munits() && rc) goto fail; list_for_each_entry(d, i10nm_edac_list, list) { rc = skx_get_src_id(d, 0xf8, &src_id); if (rc < 0) goto fail; rc = skx_get_node_id(d, &node_id); if (rc < 0) goto fail; edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id); for (i = 0; i < I10NM_NUM_IMC; i++) { if (!d->imc[i].mdev) continue; d->imc[i].mc = mc++; d->imc[i].lmc = i; d->imc[i].src_id = src_id; d->imc[i].node_id = node_id; if (d->imc[i].hbm_mc) { d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz; d->imc[i].num_channels = I10NM_NUM_HBM_CHANNELS; d->imc[i].num_dimms = I10NM_NUM_HBM_DIMMS; } else { d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz; d->imc[i].num_channels = I10NM_NUM_DDR_CHANNELS; d->imc[i].num_dimms = I10NM_NUM_DDR_DIMMS; } rc = skx_register_mci(&d->imc[i], d->imc[i].mdev, "Intel_10nm Socket", EDAC_MOD_STR, i10nm_get_dimm_config, cfg); if (rc < 0) goto fail; } } rc = skx_adxl_get(); if (rc) goto fail; opstate_init(); mce_register_decode_chain(&i10nm_mce_dec); setup_i10nm_debug(); if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { skx_set_decode(NULL, show_retry_rd_err_log); if (retry_rd_err_log == 2) enable_retry_rd_err_log(true); } i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION); return 0; fail: skx_remove(); return rc; } static void __exit i10nm_exit(void) { edac_dbg(2, "\n"); if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { skx_set_decode(NULL, NULL); if (retry_rd_err_log == 2) enable_retry_rd_err_log(false); } teardown_i10nm_debug(); mce_unregister_decode_chain(&i10nm_mce_dec); skx_adxl_put(); skx_remove(); } module_init(i10nm_init); module_exit(i10nm_exit); module_param(retry_rd_err_log, int, 0444); MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1