Contributors: 40
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Harry Wentland |
1465 |
42.44% |
11 |
14.29% |
Aric Cyr |
316 |
9.15% |
2 |
2.60% |
Roy Chan |
289 |
8.37% |
1 |
1.30% |
Charlene Liu |
152 |
4.40% |
3 |
3.90% |
Leo (Hanghong) Ma |
122 |
3.53% |
3 |
3.90% |
Jerry (Fangzhi) Zuo |
91 |
2.64% |
3 |
3.90% |
Wenjing Liu |
90 |
2.61% |
2 |
2.60% |
Jun Lei |
71 |
2.06% |
2 |
2.60% |
Leo (Sunpeng) Li |
68 |
1.97% |
3 |
3.90% |
Hersen Wu |
66 |
1.91% |
1 |
1.30% |
Reza Amini |
57 |
1.65% |
2 |
2.60% |
Aurabindo Pillai |
55 |
1.59% |
1 |
1.30% |
Duke Du |
55 |
1.59% |
1 |
1.30% |
Anthony Koo |
50 |
1.45% |
5 |
6.49% |
Alvin lee |
47 |
1.36% |
2 |
2.60% |
Martin Tsai |
47 |
1.36% |
1 |
1.30% |
Julian Parkin |
46 |
1.33% |
2 |
2.60% |
Josip Pavic |
45 |
1.30% |
1 |
1.30% |
Paul Hsieh |
44 |
1.27% |
1 |
1.30% |
Bhawanpreet Lakha |
44 |
1.27% |
2 |
2.60% |
Dave Airlie |
43 |
1.25% |
2 |
2.60% |
Yongqiang Sun |
32 |
0.93% |
3 |
3.90% |
Yue Hin Lau |
30 |
0.87% |
4 |
5.19% |
Jimmy Kizito |
21 |
0.61% |
1 |
1.30% |
Nicholas Kazlauskas |
18 |
0.52% |
2 |
2.60% |
Dmytro Laktyushkin |
17 |
0.49% |
1 |
1.30% |
Wang |
9 |
0.26% |
1 |
1.30% |
Eric Bernstein |
9 |
0.26% |
1 |
1.30% |
Eric Yang |
9 |
0.26% |
1 |
1.30% |
Ken Chalmers |
8 |
0.23% |
1 |
1.30% |
Sylvia Tsai |
7 |
0.20% |
1 |
1.30% |
Shirish S |
7 |
0.20% |
1 |
1.30% |
Andrey Grodzovsky |
6 |
0.17% |
1 |
1.30% |
Colin Ian King |
3 |
0.09% |
2 |
2.60% |
Joshua Aberback |
3 |
0.09% |
1 |
1.30% |
Fuqian Huang |
3 |
0.09% |
1 |
1.30% |
David Francis |
2 |
0.06% |
1 |
1.30% |
Krunoslav Kovac |
2 |
0.06% |
1 |
1.30% |
Lee Jones |
2 |
0.06% |
1 |
1.30% |
Andrew Jiang |
1 |
0.03% |
1 |
1.30% |
Total |
3452 |
|
77 |
|
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "basics/dc_common.h"
#include "dc.h"
#include "core_types.h"
#include "resource.h"
#include "ipp.h"
#include "timing_generator.h"
#define DC_LOGGER dc->ctx->logger
/*******************************************************************************
* Private functions
******************************************************************************/
void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
{
if (sink->sink_signal == SIGNAL_TYPE_NONE)
stream->signal = stream->link->connector_signal;
else
stream->signal = sink->sink_signal;
if (dc_is_dvi_signal(stream->signal)) {
if (stream->ctx->dc->caps.dual_link_dvi &&
(stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
else
stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
}
}
static bool dc_stream_construct(struct dc_stream_state *stream,
struct dc_sink *dc_sink_data)
{
uint32_t i = 0;
stream->sink = dc_sink_data;
dc_sink_retain(dc_sink_data);
stream->ctx = dc_sink_data->ctx;
stream->link = dc_sink_data->link;
stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
/* Copy audio modes */
/* TODO - Remove this translation */
for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++)
{
stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
}
stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
memmove(
stream->audio_info.display_name,
dc_sink_data->edid_caps.display_name,
AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
if (dc_sink_data->dc_container_id != NULL) {
struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
stream->audio_info.port_id[0] = dc_container_id->portId[0];
stream->audio_info.port_id[1] = dc_container_id->portId[1];
} else {
/* TODO - WindowDM has implemented,
other DMs need Unhardcode port_id */
stream->audio_info.port_id[0] = 0x5558859e;
stream->audio_info.port_id[1] = 0xd989449;
}
/* EDID CAP translation for HDMI 2.0 */
stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
stream->timing.dsc_cfg.num_slices_h = 0;
stream->timing.dsc_cfg.num_slices_v = 0;
stream->timing.dsc_cfg.bits_per_pixel = 128;
stream->timing.dsc_cfg.block_pred_enable = 1;
stream->timing.dsc_cfg.linebuf_depth = 9;
stream->timing.dsc_cfg.version_minor = 2;
stream->timing.dsc_cfg.ycbcr422_simple = 0;
update_stream_signal(stream, dc_sink_data);
stream->out_transfer_func = dc_create_transfer_func();
if (stream->out_transfer_func == NULL) {
dc_sink_release(dc_sink_data);
return false;
}
stream->out_transfer_func->type = TF_TYPE_BYPASS;
stream->stream_id = stream->ctx->dc_stream_id_count;
stream->ctx->dc_stream_id_count++;
return true;
}
static void dc_stream_destruct(struct dc_stream_state *stream)
{
dc_sink_release(stream->sink);
if (stream->out_transfer_func != NULL) {
dc_transfer_func_release(stream->out_transfer_func);
stream->out_transfer_func = NULL;
}
}
void dc_stream_retain(struct dc_stream_state *stream)
{
kref_get(&stream->refcount);
}
static void dc_stream_free(struct kref *kref)
{
struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
dc_stream_destruct(stream);
kfree(stream);
}
void dc_stream_release(struct dc_stream_state *stream)
{
if (stream != NULL) {
kref_put(&stream->refcount, dc_stream_free);
}
}
struct dc_stream_state *dc_create_stream_for_sink(
struct dc_sink *sink)
{
struct dc_stream_state *stream;
if (sink == NULL)
return NULL;
stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
if (stream == NULL)
goto alloc_fail;
if (dc_stream_construct(stream, sink) == false)
goto construct_fail;
kref_init(&stream->refcount);
return stream;
construct_fail:
kfree(stream);
alloc_fail:
return NULL;
}
struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
{
struct dc_stream_state *new_stream;
new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
if (!new_stream)
return NULL;
if (new_stream->sink)
dc_sink_retain(new_stream->sink);
if (new_stream->out_transfer_func)
dc_transfer_func_retain(new_stream->out_transfer_func);
new_stream->stream_id = new_stream->ctx->dc_stream_id_count;
new_stream->ctx->dc_stream_id_count++;
/* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign)
new_stream->link_enc = NULL;
kref_init(&new_stream->refcount);
return new_stream;
}
/**
* dc_stream_get_status_from_state - Get stream status from given dc state
* @state: DC state to find the stream status in
* @stream: The stream to get the stream status for
*
* The given stream is expected to exist in the given dc state. Otherwise, NULL
* will be returned.
*/
struct dc_stream_status *dc_stream_get_status_from_state(
struct dc_state *state,
struct dc_stream_state *stream)
{
uint8_t i;
if (state == NULL)
return NULL;
for (i = 0; i < state->stream_count; i++) {
if (stream == state->streams[i])
return &state->stream_status[i];
}
return NULL;
}
/**
* dc_stream_get_status() - Get current stream status of the given stream state
* @stream: The stream to get the stream status for.
*
* The given stream is expected to exist in dc->current_state. Otherwise, NULL
* will be returned.
*/
struct dc_stream_status *dc_stream_get_status(
struct dc_stream_state *stream)
{
struct dc *dc = stream->ctx->dc;
return dc_stream_get_status_from_state(dc->current_state, stream);
}
static void program_cursor_attributes(
struct dc *dc,
struct dc_stream_state *stream,
const struct dc_cursor_attributes *attributes)
{
int i;
struct resource_context *res_ctx;
struct pipe_ctx *pipe_to_program = NULL;
if (!stream)
return;
res_ctx = &dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
if (!pipe_to_program) {
pipe_to_program = pipe_ctx;
dc->hwss.cursor_lock(dc, pipe_to_program, true);
if (pipe_to_program->next_odm_pipe)
dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
}
dc->hwss.set_cursor_attribute(pipe_ctx);
if (dc->hwss.set_cursor_sdr_white_level)
dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
}
if (pipe_to_program) {
dc->hwss.cursor_lock(dc, pipe_to_program, false);
if (pipe_to_program->next_odm_pipe)
dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
}
}
#ifndef TRIM_FSFT
/*
* dc_optimize_timing_for_fsft() - dc to optimize timing
*/
bool dc_optimize_timing_for_fsft(
struct dc_stream_state *pStream,
unsigned int max_input_rate_in_khz)
{
struct dc *dc;
dc = pStream->ctx->dc;
return (dc->hwss.optimize_timing_for_fsft &&
dc->hwss.optimize_timing_for_fsft(dc, &pStream->timing, max_input_rate_in_khz));
}
#endif
/*
* dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
*/
bool dc_stream_set_cursor_attributes(
struct dc_stream_state *stream,
const struct dc_cursor_attributes *attributes)
{
struct dc *dc;
bool reset_idle_optimizations = false;
if (NULL == stream) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (NULL == attributes) {
dm_error("DC: attributes is NULL!\n");
return false;
}
if (attributes->address.quad_part == 0) {
dm_output_to_console("DC: Cursor address is 0!\n");
return false;
}
dc = stream->ctx->dc;
if (dc->debug.allow_sw_cursor_fallback && attributes->height * attributes->width * 4 > 16384)
if (stream->mall_stream_config.type == SUBVP_MAIN)
return false;
stream->cursor_attributes = *attributes;
dc_z10_restore(dc);
/* disable idle optimizations while updating cursor */
if (dc->idle_optimizations_allowed) {
dc_allow_idle_optimizations(dc, false);
reset_idle_optimizations = true;
}
program_cursor_attributes(dc, stream, attributes);
/* re-enable idle optimizations if necessary */
if (reset_idle_optimizations)
dc_allow_idle_optimizations(dc, true);
return true;
}
static void program_cursor_position(
struct dc *dc,
struct dc_stream_state *stream,
const struct dc_cursor_position *position)
{
int i;
struct resource_context *res_ctx;
struct pipe_ctx *pipe_to_program = NULL;
if (!stream)
return;
res_ctx = &dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
if (pipe_ctx->stream != stream ||
(!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
!pipe_ctx->plane_state ||
(!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
(!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
continue;
if (!pipe_to_program) {
pipe_to_program = pipe_ctx;
dc->hwss.cursor_lock(dc, pipe_to_program, true);
}
dc->hwss.set_cursor_position(pipe_ctx);
}
if (pipe_to_program)
dc->hwss.cursor_lock(dc, pipe_to_program, false);
}
bool dc_stream_set_cursor_position(
struct dc_stream_state *stream,
const struct dc_cursor_position *position)
{
struct dc *dc = stream->ctx->dc;
bool reset_idle_optimizations = false;
if (NULL == stream) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (NULL == position) {
dm_error("DC: cursor position is NULL!\n");
return false;
}
dc = stream->ctx->dc;
dc_z10_restore(dc);
/* disable idle optimizations if enabling cursor */
if (dc->idle_optimizations_allowed && (!stream->cursor_position.enable || dc->debug.exit_idle_opt_for_cursor_updates)
&& position->enable) {
dc_allow_idle_optimizations(dc, false);
reset_idle_optimizations = true;
}
stream->cursor_position = *position;
program_cursor_position(dc, stream, position);
/* re-enable idle optimizations if necessary */
if (reset_idle_optimizations)
dc_allow_idle_optimizations(dc, true);
return true;
}
bool dc_stream_add_writeback(struct dc *dc,
struct dc_stream_state *stream,
struct dc_writeback_info *wb_info)
{
bool isDrc = false;
int i = 0;
struct dwbc *dwb;
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (wb_info == NULL) {
dm_error("DC: dc_writeback_info is NULL!\n");
return false;
}
if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
dm_error("DC: writeback pipe is invalid!\n");
return false;
}
wb_info->dwb_params.out_transfer_func = stream->out_transfer_func;
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
dwb->dwb_is_drc = false;
/* recalculate and apply DML parameters */
for (i = 0; i < stream->num_wb_info; i++) {
/*dynamic update*/
if (stream->writeback_info[i].wb_enabled &&
stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
stream->writeback_info[i] = *wb_info;
isDrc = true;
}
}
if (!isDrc) {
stream->writeback_info[stream->num_wb_info++] = *wb_info;
}
if (dc->hwss.enable_writeback) {
struct dc_stream_status *stream_status = dc_stream_get_status(stream);
struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
dwb->otg_inst = stream_status->primary_otg_inst;
}
if (IS_DIAG_DC(dc->ctx->dce_environment)) {
if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
dm_error("DC: update_bandwidth failed!\n");
return false;
}
/* enable writeback */
if (dc->hwss.enable_writeback) {
struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
if (dwb->funcs->is_enabled(dwb)) {
/* writeback pipe already enabled, only need to update */
dc->hwss.update_writeback(dc, wb_info, dc->current_state);
} else {
/* Enable writeback pipe from scratch*/
dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
}
}
}
return true;
}
bool dc_stream_remove_writeback(struct dc *dc,
struct dc_stream_state *stream,
uint32_t dwb_pipe_inst)
{
int i = 0, j = 0;
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (dwb_pipe_inst >= MAX_DWB_PIPES) {
dm_error("DC: writeback pipe is invalid!\n");
return false;
}
// stream->writeback_info[dwb_pipe_inst].wb_enabled = false;
for (i = 0; i < stream->num_wb_info; i++) {
/*dynamic update*/
if (stream->writeback_info[i].wb_enabled &&
stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst) {
stream->writeback_info[i].wb_enabled = false;
}
}
/* remove writeback info for disabled writeback pipes from stream */
for (i = 0, j = 0; i < stream->num_wb_info; i++) {
if (stream->writeback_info[i].wb_enabled) {
if (i != j)
/* trim the array */
stream->writeback_info[j] = stream->writeback_info[i];
j++;
}
}
stream->num_wb_info = j;
if (IS_DIAG_DC(dc->ctx->dce_environment)) {
/* recalculate and apply DML parameters */
if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
dm_error("DC: update_bandwidth failed!\n");
return false;
}
/* disable writeback */
if (dc->hwss.disable_writeback)
dc->hwss.disable_writeback(dc, dwb_pipe_inst);
}
return true;
}
bool dc_stream_warmup_writeback(struct dc *dc,
int num_dwb,
struct dc_writeback_info *wb_info)
{
if (dc->hwss.mmhubbub_warmup)
return dc->hwss.mmhubbub_warmup(dc, num_dwb, wb_info);
else
return false;
}
uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
{
uint8_t i;
struct dc *dc = stream->ctx->dc;
struct resource_context *res_ctx =
&dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
if (res_ctx->pipe_ctx[i].stream != stream)
continue;
return tg->funcs->get_frame_count(tg);
}
return 0;
}
bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
const uint8_t *custom_sdp_message,
unsigned int sdp_message_size)
{
int i;
struct dc *dc;
struct resource_context *res_ctx;
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
dc = stream->ctx->dc;
res_ctx = &dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
if (dc->hwss.send_immediate_sdp_message != NULL)
dc->hwss.send_immediate_sdp_message(pipe_ctx,
custom_sdp_message,
sdp_message_size);
else
DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
__func__);
}
return true;
}
bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
uint8_t i;
bool ret = false;
struct dc *dc = stream->ctx->dc;
struct resource_context *res_ctx =
&dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
if (res_ctx->pipe_ctx[i].stream != stream)
continue;
tg->funcs->get_scanoutpos(tg,
v_blank_start,
v_blank_end,
h_position,
v_position);
ret = true;
break;
}
return ret;
}
bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
{
struct pipe_ctx *pipe = NULL;
int i;
if (!dc->hwss.dmdata_status_done)
return false;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream)
break;
}
/* Stream not found, by default we'll assume HUBP fetched dm data */
if (i == MAX_PIPES)
return true;
return dc->hwss.dmdata_status_done(pipe);
}
bool dc_stream_set_dynamic_metadata(struct dc *dc,
struct dc_stream_state *stream,
struct dc_dmdata_attributes *attr)
{
struct pipe_ctx *pipe_ctx = NULL;
struct hubp *hubp;
int i;
/* Dynamic metadata is only supported on HDMI or DP */
if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
return false;
/* Check hardware support */
if (!dc->hwss.program_dmdata_engine)
return false;
for (i = 0; i < MAX_PIPES; i++) {
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == stream)
break;
}
if (i == MAX_PIPES)
return false;
hubp = pipe_ctx->plane_res.hubp;
if (hubp == NULL)
return false;
pipe_ctx->stream->dmdata_address = attr->address;
dc->hwss.program_dmdata_engine(pipe_ctx);
if (hubp->funcs->dmdata_set_attributes != NULL &&
pipe_ctx->stream->dmdata_address.quad_part != 0) {
hubp->funcs->dmdata_set_attributes(hubp, attr);
}
return true;
}
enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
struct dc_state *state,
struct dc_stream_state *stream)
{
if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
} else {
return DC_NO_DSC_RESOURCE;
}
}
struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
{
int i = 0;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream)
return pipe;
}
return NULL;
}
void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
{
DC_LOG_DC(
"core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
stream,
stream->src.x,
stream->src.y,
stream->src.width,
stream->src.height,
stream->dst.x,
stream->dst.y,
stream->dst.width,
stream->dst.height,
stream->output_color_space);
DC_LOG_DC(
"\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixelencoder:%d, displaycolorDepth:%d\n",
stream->timing.pix_clk_100hz / 10,
stream->timing.h_total,
stream->timing.v_total,
stream->timing.pixel_encoding,
stream->timing.display_color_depth);
DC_LOG_DC(
"\tlink: %d\n",
stream->link->link_index);
DC_LOG_DC(
"\tdsc: %d, mst_pbn: %d\n",
stream->timing.flags.DSC,
stream->timing.dsc_cfg.mst_pbn);
if (stream->sink) {
if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
DC_LOG_DC(
"\tdispname: %s signal: %x\n",
stream->sink->edid_caps.display_name,
stream->signal);
}
}
}