Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anthony Koo | 964 | 19.95% | 6 | 18.18% |
Amy Zhang | 925 | 19.15% | 4 | 12.12% |
Alex Deucher | 888 | 18.38% | 2 | 6.06% |
Stylon Wang | 748 | 15.48% | 1 | 3.03% |
Wayne Lin | 367 | 7.60% | 1 | 3.03% |
Harry Wentland | 321 | 6.64% | 3 | 9.09% |
Yongqiang Sun | 308 | 6.38% | 2 | 6.06% |
Alvin lee | 121 | 2.50% | 1 | 3.03% |
Martin Tsai | 61 | 1.26% | 1 | 3.03% |
Charlene Liu | 37 | 0.77% | 2 | 6.06% |
Krunoslav Kovac | 34 | 0.70% | 1 | 3.03% |
Josip Pavic | 14 | 0.29% | 1 | 3.03% |
SivapiriyanKumarasamy | 11 | 0.23% | 1 | 3.03% |
Jun Lei | 8 | 0.17% | 1 | 3.03% |
Lee Jones | 8 | 0.17% | 2 | 6.06% |
Eryk Brol | 8 | 0.17% | 1 | 3.03% |
Tony Cheng | 4 | 0.08% | 1 | 3.03% |
Nirmoy Das | 3 | 0.06% | 1 | 3.03% |
Dmytro Laktyushkin | 1 | 0.02% | 1 | 3.03% |
Total | 4831 | 33 |
/* * Copyright 2012-16 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "core_types.h" #include "link_encoder.h" #include "dce_dmcu.h" #include "dm_services.h" #include "reg_helper.h" #include "fixed31_32.h" #include "dc.h" #define TO_DCE_DMCU(dmcu)\ container_of(dmcu, struct dce_dmcu, base) #define REG(reg) \ (dmcu_dce->regs->reg) #undef FN #define FN(reg_name, field_name) \ dmcu_dce->dmcu_shift->field_name, dmcu_dce->dmcu_mask->field_name #define CTX \ dmcu_dce->base.ctx /* PSR related commands */ #define PSR_ENABLE 0x20 #define PSR_EXIT 0x21 #define PSR_SET 0x23 #define PSR_SET_WAITLOOP 0x31 #define MCP_INIT_DMCU 0x88 #define MCP_INIT_IRAM 0x89 #define MCP_SYNC_PHY_LOCK 0x90 #define MCP_SYNC_PHY_UNLOCK 0x91 #define MCP_BL_SET_PWM_FRAC 0x6A /* Enable or disable Fractional PWM */ #define CRC_WIN_NOTIFY 0x92 #define CRC_STOP_UPDATE 0x93 #define MCP_SEND_EDID_CEA 0xA0 #define EDID_CEA_CMD_ACK 1 #define EDID_CEA_CMD_NACK 2 #define MASTER_COMM_CNTL_REG__MASTER_COMM_INTERRUPT_MASK 0x00000001L // PSP FW version #define mmMP0_SMN_C2PMSG_58 0x1607A //Register access policy version #define mmMP0_SMN_C2PMSG_91 0x1609B static const uint32_t abm_gain_stepsize = 0x0060; static bool dce_dmcu_init(struct dmcu *dmcu) { // Do nothing return true; } static bool dce_dmcu_load_iram(struct dmcu *dmcu, unsigned int start_offset, const char *src, unsigned int bytes) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int count = 0; /* Enable write access to IRAM */ REG_UPDATE_2(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 1, IRAM_WR_ADDR_AUTO_INC, 1); REG_WAIT(DCI_MEM_PWR_STATUS, DMCU_IRAM_MEM_PWR_STATE, 0, 2, 10); REG_WRITE(DMCU_IRAM_WR_CTRL, start_offset); for (count = 0; count < bytes; count++) REG_WRITE(DMCU_IRAM_WR_DATA, src[count]); /* Disable write access to IRAM to allow dynamic sleep state */ REG_UPDATE_2(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 0, IRAM_WR_ADDR_AUTO_INC, 0); return true; } static void dce_get_dmcu_psr_state(struct dmcu *dmcu, enum dc_psr_state *state) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); uint32_t psr_state_offset = 0xf0; /* Enable write access to IRAM */ REG_UPDATE(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 1); REG_WAIT(DCI_MEM_PWR_STATUS, DMCU_IRAM_MEM_PWR_STATE, 0, 2, 10); /* Write address to IRAM_RD_ADDR in DMCU_IRAM_RD_CTRL */ REG_WRITE(DMCU_IRAM_RD_CTRL, psr_state_offset); /* Read data from IRAM_RD_DATA in DMCU_IRAM_RD_DATA*/ *state = (enum dc_psr_state)REG_READ(DMCU_IRAM_RD_DATA); /* Disable write access to IRAM after finished using IRAM * in order to allow dynamic sleep state */ REG_UPDATE(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 0); } static void dce_dmcu_set_psr_enable(struct dmcu *dmcu, bool enable, bool wait) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_max_retry_on_wait_reg_ready = 801; unsigned int dmcu_wait_reg_ready_interval = 100; unsigned int retryCount; enum dc_psr_state state = PSR_STATE0; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, dmcu_wait_reg_ready_interval, dmcu_max_retry_on_wait_reg_ready); /* setDMCUParam_Cmd */ if (enable) REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_ENABLE); else REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_EXIT); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); if (wait == true) { for (retryCount = 0; retryCount <= 100; retryCount++) { dce_get_dmcu_psr_state(dmcu, &state); if (enable) { if (state != PSR_STATE0) break; } else { if (state == PSR_STATE0) break; } udelay(10); } } } static bool dce_dmcu_setup_psr(struct dmcu *dmcu, struct dc_link *link, struct psr_context *psr_context) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_max_retry_on_wait_reg_ready = 801; unsigned int dmcu_wait_reg_ready_interval = 100; union dce_dmcu_psr_config_data_reg1 masterCmdData1; union dce_dmcu_psr_config_data_reg2 masterCmdData2; union dce_dmcu_psr_config_data_reg3 masterCmdData3; link->link_enc->funcs->psr_program_dp_dphy_fast_training(link->link_enc, psr_context->psrExitLinkTrainingRequired); /* Enable static screen interrupts for PSR supported display */ /* Disable the interrupt coming from other displays. */ REG_UPDATE_4(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN1_INT_TO_UC_EN, 0, STATIC_SCREEN2_INT_TO_UC_EN, 0, STATIC_SCREEN3_INT_TO_UC_EN, 0, STATIC_SCREEN4_INT_TO_UC_EN, 0); switch (psr_context->controllerId) { /* Driver uses case 1 for unconfigured */ case 1: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN1_INT_TO_UC_EN, 1); break; case 2: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN2_INT_TO_UC_EN, 1); break; case 3: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN3_INT_TO_UC_EN, 1); break; case 4: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN4_INT_TO_UC_EN, 1); break; case 5: /* CZ/NL only has 4 CRTC!! * really valid. * There is no interrupt enable mask for these instances. */ break; case 6: /* CZ/NL only has 4 CRTC!! * These are here because they are defined in HW regspec, * but not really valid. There is no interrupt enable mask * for these instances. */ break; default: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN1_INT_TO_UC_EN, 1); break; } link->link_enc->funcs->psr_program_secondary_packet(link->link_enc, psr_context->sdpTransmitLineNumDeadline); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, dmcu_wait_reg_ready_interval, dmcu_max_retry_on_wait_reg_ready); /* setDMCUParam_PSRHostConfigData */ masterCmdData1.u32All = 0; masterCmdData1.bits.timehyst_frames = psr_context->timehyst_frames; masterCmdData1.bits.hyst_lines = psr_context->hyst_lines; masterCmdData1.bits.rfb_update_auto_en = psr_context->rfb_update_auto_en; masterCmdData1.bits.dp_port_num = psr_context->transmitterId; masterCmdData1.bits.dcp_sel = psr_context->controllerId; masterCmdData1.bits.phy_type = psr_context->phyType; masterCmdData1.bits.frame_cap_ind = psr_context->psrFrameCaptureIndicationReq; masterCmdData1.bits.aux_chan = psr_context->channel; masterCmdData1.bits.aux_repeat = psr_context->aux_repeats; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG1), masterCmdData1.u32All); masterCmdData2.u32All = 0; masterCmdData2.bits.dig_fe = psr_context->engineId; masterCmdData2.bits.dig_be = psr_context->transmitterId; masterCmdData2.bits.skip_wait_for_pll_lock = psr_context->skipPsrWaitForPllLock; masterCmdData2.bits.frame_delay = psr_context->frame_delay; masterCmdData2.bits.smu_phy_id = psr_context->smuPhyId; masterCmdData2.bits.num_of_controllers = psr_context->numberOfControllers; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG2), masterCmdData2.u32All); masterCmdData3.u32All = 0; masterCmdData3.bits.psr_level = psr_context->psr_level.u32all; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG3), masterCmdData3.u32All); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_SET); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); return true; } static bool dce_is_dmcu_initialized(struct dmcu *dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_uc_reset; /* microcontroller is not running */ REG_GET(DMCU_STATUS, UC_IN_RESET, &dmcu_uc_reset); /* DMCU is not running */ if (dmcu_uc_reset) return false; return true; } static void dce_psr_wait_loop( struct dmcu *dmcu, unsigned int wait_loop_number) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); union dce_dmcu_psr_config_data_wait_loop_reg1 masterCmdData1; if (dmcu->cached_wait_loop_number == wait_loop_number) return; /* DMCU is not running */ if (!dce_is_dmcu_initialized(dmcu)) return; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); masterCmdData1.u32 = 0; masterCmdData1.bits.wait_loop = wait_loop_number; dmcu->cached_wait_loop_number = wait_loop_number; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG1), masterCmdData1.u32); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_SET_WAITLOOP); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); } static void dce_get_psr_wait_loop( struct dmcu *dmcu, unsigned int *psr_wait_loop_number) { *psr_wait_loop_number = dmcu->cached_wait_loop_number; return; } static void dcn10_get_dmcu_version(struct dmcu *dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); uint32_t dmcu_version_offset = 0xf1; /* Enable write access to IRAM */ REG_UPDATE_2(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 1, IRAM_RD_ADDR_AUTO_INC, 1); REG_WAIT(DMU_MEM_PWR_CNTL, DMCU_IRAM_MEM_PWR_STATE, 0, 2, 10); /* Write address to IRAM_RD_ADDR and read from DATA register */ REG_WRITE(DMCU_IRAM_RD_CTRL, dmcu_version_offset); dmcu->dmcu_version.interface_version = REG_READ(DMCU_IRAM_RD_DATA); dmcu->dmcu_version.abm_version = REG_READ(DMCU_IRAM_RD_DATA); dmcu->dmcu_version.psr_version = REG_READ(DMCU_IRAM_RD_DATA); dmcu->dmcu_version.build_version = ((REG_READ(DMCU_IRAM_RD_DATA) << 8) | REG_READ(DMCU_IRAM_RD_DATA)); /* Disable write access to IRAM to allow dynamic sleep state */ REG_UPDATE_2(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 0, IRAM_RD_ADDR_AUTO_INC, 0); } static void dcn10_dmcu_enable_fractional_pwm(struct dmcu *dmcu, uint32_t fractional_pwm) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); /* Wait until microcontroller is ready to process interrupt */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 100, 800); /* Set PWM fractional enable/disable */ REG_WRITE(MASTER_COMM_DATA_REG1, fractional_pwm); /* Set command to enable or disable fractional PWM microcontroller */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_BL_SET_PWM_FRAC); /* Notify microcontroller of new command */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* Ensure command has been executed before continuing */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 100, 800); } static bool dcn10_dmcu_init(struct dmcu *dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); const struct dc_config *config = &dmcu->ctx->dc->config; bool status = false; struct dc_context *ctx = dmcu->ctx; unsigned int i; // 5 4 3 2 1 0 // F E D C B A - bit 0 is A, bit 5 is F unsigned int tx_interrupt_mask = 0; PERF_TRACE(); /* Definition of DC_DMCU_SCRATCH * 0 : firmare not loaded * 1 : PSP load DMCU FW but not initialized * 2 : Firmware already initialized */ dmcu->dmcu_state = REG_READ(DC_DMCU_SCRATCH); for (i = 0; i < ctx->dc->link_count; i++) { if (ctx->dc->links[i]->link_enc->features.flags.bits.DP_IS_USB_C) { if (ctx->dc->links[i]->link_enc->transmitter >= TRANSMITTER_UNIPHY_A && ctx->dc->links[i]->link_enc->transmitter <= TRANSMITTER_UNIPHY_F) { tx_interrupt_mask |= 1 << ctx->dc->links[i]->link_enc->transmitter; } } } switch (dmcu->dmcu_state) { case DMCU_UNLOADED: status = false; break; case DMCU_LOADED_UNINITIALIZED: /* Wait until microcontroller is ready to process interrupt */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 100, 800); /* Set initialized ramping boundary value */ REG_WRITE(MASTER_COMM_DATA_REG1, 0xFFFF); /* Set backlight ramping stepsize */ REG_WRITE(MASTER_COMM_DATA_REG2, abm_gain_stepsize); REG_WRITE(MASTER_COMM_DATA_REG3, tx_interrupt_mask); /* Set command to initialize microcontroller */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_INIT_DMCU); /* Notify microcontroller of new command */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* Ensure command has been executed before continuing */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 100, 800); // Check state is initialized dmcu->dmcu_state = REG_READ(DC_DMCU_SCRATCH); // If microcontroller is not in running state, fail if (dmcu->dmcu_state == DMCU_RUNNING) { /* Retrieve and cache the DMCU firmware version. */ dcn10_get_dmcu_version(dmcu); /* Initialize DMCU to use fractional PWM or not */ dcn10_dmcu_enable_fractional_pwm(dmcu, (config->disable_fractional_pwm == false) ? 1 : 0); status = true; } else { status = false; } break; case DMCU_RUNNING: status = true; break; default: status = false; break; } PERF_TRACE(); return status; } static bool dcn21_dmcu_init(struct dmcu *dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); uint32_t dmcub_psp_version = REG_READ(DMCUB_SCRATCH15); if (dmcu->auto_load_dmcu && dmcub_psp_version == 0) { return false; } return dcn10_dmcu_init(dmcu); } static bool dcn10_dmcu_load_iram(struct dmcu *dmcu, unsigned int start_offset, const char *src, unsigned int bytes) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int count = 0; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; /* Enable write access to IRAM */ REG_UPDATE_2(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 1, IRAM_WR_ADDR_AUTO_INC, 1); REG_WAIT(DMU_MEM_PWR_CNTL, DMCU_IRAM_MEM_PWR_STATE, 0, 2, 10); REG_WRITE(DMCU_IRAM_WR_CTRL, start_offset); for (count = 0; count < bytes; count++) REG_WRITE(DMCU_IRAM_WR_DATA, src[count]); /* Disable write access to IRAM to allow dynamic sleep state */ REG_UPDATE_2(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 0, IRAM_WR_ADDR_AUTO_INC, 0); /* Wait until microcontroller is ready to process interrupt */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 100, 800); /* Set command to signal IRAM is loaded and to initialize IRAM */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_INIT_IRAM); /* Notify microcontroller of new command */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* Ensure command has been executed before continuing */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 100, 800); return true; } static void dcn10_get_dmcu_psr_state(struct dmcu *dmcu, enum dc_psr_state *state) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); uint32_t psr_state_offset = 0xf0; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return; /* Enable write access to IRAM */ REG_UPDATE(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 1); REG_WAIT(DMU_MEM_PWR_CNTL, DMCU_IRAM_MEM_PWR_STATE, 0, 2, 10); /* Write address to IRAM_RD_ADDR in DMCU_IRAM_RD_CTRL */ REG_WRITE(DMCU_IRAM_RD_CTRL, psr_state_offset); /* Read data from IRAM_RD_DATA in DMCU_IRAM_RD_DATA*/ *state = (enum dc_psr_state)REG_READ(DMCU_IRAM_RD_DATA); /* Disable write access to IRAM after finished using IRAM * in order to allow dynamic sleep state */ REG_UPDATE(DMCU_RAM_ACCESS_CTRL, IRAM_HOST_ACCESS_EN, 0); } static void dcn10_dmcu_set_psr_enable(struct dmcu *dmcu, bool enable, bool wait) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_max_retry_on_wait_reg_ready = 801; unsigned int dmcu_wait_reg_ready_interval = 100; unsigned int retryCount; enum dc_psr_state state = PSR_STATE0; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, dmcu_wait_reg_ready_interval, dmcu_max_retry_on_wait_reg_ready); /* setDMCUParam_Cmd */ if (enable) REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_ENABLE); else REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_EXIT); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* Below loops 1000 x 500us = 500 ms. * Exit PSR may need to wait 1-2 frames to power up. Timeout after at * least a few frames. Should never hit the max retry assert below. */ if (wait == true) { for (retryCount = 0; retryCount <= 1000; retryCount++) { dcn10_get_dmcu_psr_state(dmcu, &state); if (enable) { if (state != PSR_STATE0) break; } else { if (state == PSR_STATE0) break; } udelay(500); } /* assert if max retry hit */ if (retryCount >= 1000) ASSERT(0); } } static bool dcn10_dmcu_setup_psr(struct dmcu *dmcu, struct dc_link *link, struct psr_context *psr_context) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_max_retry_on_wait_reg_ready = 801; unsigned int dmcu_wait_reg_ready_interval = 100; union dce_dmcu_psr_config_data_reg1 masterCmdData1; union dce_dmcu_psr_config_data_reg2 masterCmdData2; union dce_dmcu_psr_config_data_reg3 masterCmdData3; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; link->link_enc->funcs->psr_program_dp_dphy_fast_training(link->link_enc, psr_context->psrExitLinkTrainingRequired); /* Enable static screen interrupts for PSR supported display */ /* Disable the interrupt coming from other displays. */ REG_UPDATE_4(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN1_INT_TO_UC_EN, 0, STATIC_SCREEN2_INT_TO_UC_EN, 0, STATIC_SCREEN3_INT_TO_UC_EN, 0, STATIC_SCREEN4_INT_TO_UC_EN, 0); switch (psr_context->controllerId) { /* Driver uses case 1 for unconfigured */ case 1: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN1_INT_TO_UC_EN, 1); break; case 2: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN2_INT_TO_UC_EN, 1); break; case 3: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN3_INT_TO_UC_EN, 1); break; case 4: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN4_INT_TO_UC_EN, 1); break; case 5: /* CZ/NL only has 4 CRTC!! * really valid. * There is no interrupt enable mask for these instances. */ break; case 6: /* CZ/NL only has 4 CRTC!! * These are here because they are defined in HW regspec, * but not really valid. There is no interrupt enable mask * for these instances. */ break; default: REG_UPDATE(DMCU_INTERRUPT_TO_UC_EN_MASK, STATIC_SCREEN1_INT_TO_UC_EN, 1); break; } link->link_enc->funcs->psr_program_secondary_packet(link->link_enc, psr_context->sdpTransmitLineNumDeadline); if (psr_context->allow_smu_optimizations) REG_UPDATE(SMU_INTERRUPT_CONTROL, DC_SMU_INT_ENABLE, 1); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, dmcu_wait_reg_ready_interval, dmcu_max_retry_on_wait_reg_ready); /* setDMCUParam_PSRHostConfigData */ masterCmdData1.u32All = 0; masterCmdData1.bits.timehyst_frames = psr_context->timehyst_frames; masterCmdData1.bits.hyst_lines = psr_context->hyst_lines; masterCmdData1.bits.rfb_update_auto_en = psr_context->rfb_update_auto_en; masterCmdData1.bits.dp_port_num = psr_context->transmitterId; masterCmdData1.bits.dcp_sel = psr_context->controllerId; masterCmdData1.bits.phy_type = psr_context->phyType; masterCmdData1.bits.frame_cap_ind = psr_context->psrFrameCaptureIndicationReq; masterCmdData1.bits.aux_chan = psr_context->channel; masterCmdData1.bits.aux_repeat = psr_context->aux_repeats; masterCmdData1.bits.allow_smu_optimizations = psr_context->allow_smu_optimizations; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG1), masterCmdData1.u32All); masterCmdData2.u32All = 0; masterCmdData2.bits.dig_fe = psr_context->engineId; masterCmdData2.bits.dig_be = psr_context->transmitterId; masterCmdData2.bits.skip_wait_for_pll_lock = psr_context->skipPsrWaitForPllLock; masterCmdData2.bits.frame_delay = psr_context->frame_delay; masterCmdData2.bits.smu_phy_id = psr_context->smuPhyId; masterCmdData2.bits.num_of_controllers = psr_context->numberOfControllers; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG2), masterCmdData2.u32All); masterCmdData3.u32All = 0; masterCmdData3.bits.psr_level = psr_context->psr_level.u32all; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG3), masterCmdData3.u32All); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_SET); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); return true; } static void dcn10_psr_wait_loop( struct dmcu *dmcu, unsigned int wait_loop_number) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); union dce_dmcu_psr_config_data_wait_loop_reg1 masterCmdData1; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return; if (wait_loop_number != 0) { /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); masterCmdData1.u32 = 0; masterCmdData1.bits.wait_loop = wait_loop_number; dmcu->cached_wait_loop_number = wait_loop_number; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG1), masterCmdData1.u32); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, PSR_SET_WAITLOOP); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); } } static void dcn10_get_psr_wait_loop( struct dmcu *dmcu, unsigned int *psr_wait_loop_number) { *psr_wait_loop_number = dmcu->cached_wait_loop_number; return; } static bool dcn10_is_dmcu_initialized(struct dmcu *dmcu) { /* microcontroller is not running */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; return true; } static bool dcn20_lock_phy(struct dmcu *dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_SYNC_PHY_LOCK); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); return true; } static bool dcn20_unlock_phy(struct dmcu *dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_SYNC_PHY_UNLOCK); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); return true; } static bool dcn10_send_edid_cea(struct dmcu *dmcu, int offset, int total_length, uint8_t *data, int length) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); uint32_t header, data1, data2; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; if (length > 8 || length <= 0) return false; header = ((uint32_t)offset & 0xFFFF) << 16 | (total_length & 0xFFFF); data1 = (((uint32_t)data[0]) << 24) | (((uint32_t)data[1]) << 16) | (((uint32_t)data[2]) << 8) | ((uint32_t)data[3]); data2 = (((uint32_t)data[4]) << 24) | (((uint32_t)data[5]) << 16) | (((uint32_t)data[6]) << 8) | ((uint32_t)data[7]); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_SEND_EDID_CEA); REG_WRITE(MASTER_COMM_DATA_REG1, header); REG_WRITE(MASTER_COMM_DATA_REG2, data1); REG_WRITE(MASTER_COMM_DATA_REG3, data2); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000); return true; } static bool dcn10_get_scp_results(struct dmcu *dmcu, uint32_t *cmd, uint32_t *data1, uint32_t *data2, uint32_t *data3) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return false; *cmd = REG_READ(SLAVE_COMM_CMD_REG); *data1 = REG_READ(SLAVE_COMM_DATA_REG1); *data2 = REG_READ(SLAVE_COMM_DATA_REG2); *data3 = REG_READ(SLAVE_COMM_DATA_REG3); /* clear SCP interrupt */ REG_UPDATE(SLAVE_COMM_CNTL_REG, SLAVE_COMM_INTERRUPT, 0); return true; } static bool dcn10_recv_amd_vsdb(struct dmcu *dmcu, int *version, int *min_frame_rate, int *max_frame_rate) { uint32_t data[4]; int cmd, ack, len; if (!dcn10_get_scp_results(dmcu, &data[0], &data[1], &data[2], &data[3])) return false; cmd = data[0] & 0x3FF; len = (data[0] >> 10) & 0x3F; ack = data[1]; if (cmd != MCP_SEND_EDID_CEA || ack != EDID_CEA_CMD_ACK || len != 12) return false; if ((data[2] & 0xFF)) { *version = (data[2] >> 8) & 0xFF; *min_frame_rate = (data[3] >> 16) & 0xFFFF; *max_frame_rate = data[3] & 0xFFFF; return true; } return false; } static bool dcn10_recv_edid_cea_ack(struct dmcu *dmcu, int *offset) { uint32_t data[4]; int cmd, ack; if (!dcn10_get_scp_results(dmcu, &data[0], &data[1], &data[2], &data[3])) return false; cmd = data[0] & 0x3FF; ack = data[1]; if (cmd != MCP_SEND_EDID_CEA) return false; if (ack == EDID_CEA_CMD_ACK) return true; *offset = data[2]; /* nack */ return false; } #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) static void dcn10_forward_crc_window(struct dmcu *dmcu, struct crc_region *crc_win, struct otg_phy_mux *mux_mapping) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_max_retry_on_wait_reg_ready = 801; unsigned int dmcu_wait_reg_ready_interval = 100; unsigned int crc_start = 0, crc_end = 0, otg_phy_mux = 0; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return; if (!crc_win) return; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, dmcu_wait_reg_ready_interval, dmcu_max_retry_on_wait_reg_ready); /* build up nitification data */ crc_start = (((unsigned int) crc_win->x_start) << 16) | crc_win->y_start; crc_end = (((unsigned int) crc_win->x_end) << 16) | crc_win->y_end; otg_phy_mux = (((unsigned int) mux_mapping->otg_output_num) << 16) | mux_mapping->phy_output_num; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG1), crc_start); dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG2), crc_end); dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG3), otg_phy_mux); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, CRC_WIN_NOTIFY); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); } static void dcn10_stop_crc_win_update(struct dmcu *dmcu, struct otg_phy_mux *mux_mapping) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu); unsigned int dmcu_max_retry_on_wait_reg_ready = 801; unsigned int dmcu_wait_reg_ready_interval = 100; unsigned int otg_phy_mux = 0; /* If microcontroller is not running, do nothing */ if (dmcu->dmcu_state != DMCU_RUNNING) return; /* waitDMCUReadyForCmd */ REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, dmcu_wait_reg_ready_interval, dmcu_max_retry_on_wait_reg_ready); /* build up nitification data */ otg_phy_mux = (((unsigned int) mux_mapping->otg_output_num) << 16) | mux_mapping->phy_output_num; dm_write_reg(dmcu->ctx, REG(MASTER_COMM_DATA_REG1), otg_phy_mux); /* setDMCUParam_Cmd */ REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, CRC_STOP_UPDATE); /* notifyDMCUMsg */ REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1); } #endif static const struct dmcu_funcs dce_funcs = { .dmcu_init = dce_dmcu_init, .load_iram = dce_dmcu_load_iram, .set_psr_enable = dce_dmcu_set_psr_enable, .setup_psr = dce_dmcu_setup_psr, .get_psr_state = dce_get_dmcu_psr_state, .set_psr_wait_loop = dce_psr_wait_loop, .get_psr_wait_loop = dce_get_psr_wait_loop, .is_dmcu_initialized = dce_is_dmcu_initialized }; static const struct dmcu_funcs dcn10_funcs = { .dmcu_init = dcn10_dmcu_init, .load_iram = dcn10_dmcu_load_iram, .set_psr_enable = dcn10_dmcu_set_psr_enable, .setup_psr = dcn10_dmcu_setup_psr, .get_psr_state = dcn10_get_dmcu_psr_state, .set_psr_wait_loop = dcn10_psr_wait_loop, .get_psr_wait_loop = dcn10_get_psr_wait_loop, .send_edid_cea = dcn10_send_edid_cea, .recv_amd_vsdb = dcn10_recv_amd_vsdb, .recv_edid_cea_ack = dcn10_recv_edid_cea_ack, #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) .forward_crc_window = dcn10_forward_crc_window, .stop_crc_win_update = dcn10_stop_crc_win_update, #endif .is_dmcu_initialized = dcn10_is_dmcu_initialized }; static const struct dmcu_funcs dcn20_funcs = { .dmcu_init = dcn10_dmcu_init, .load_iram = dcn10_dmcu_load_iram, .set_psr_enable = dcn10_dmcu_set_psr_enable, .setup_psr = dcn10_dmcu_setup_psr, .get_psr_state = dcn10_get_dmcu_psr_state, .set_psr_wait_loop = dcn10_psr_wait_loop, .get_psr_wait_loop = dcn10_get_psr_wait_loop, .is_dmcu_initialized = dcn10_is_dmcu_initialized, .lock_phy = dcn20_lock_phy, .unlock_phy = dcn20_unlock_phy }; static const struct dmcu_funcs dcn21_funcs = { .dmcu_init = dcn21_dmcu_init, .load_iram = dcn10_dmcu_load_iram, .set_psr_enable = dcn10_dmcu_set_psr_enable, .setup_psr = dcn10_dmcu_setup_psr, .get_psr_state = dcn10_get_dmcu_psr_state, .set_psr_wait_loop = dcn10_psr_wait_loop, .get_psr_wait_loop = dcn10_get_psr_wait_loop, .is_dmcu_initialized = dcn10_is_dmcu_initialized, .lock_phy = dcn20_lock_phy, .unlock_phy = dcn20_unlock_phy }; static void dce_dmcu_construct( struct dce_dmcu *dmcu_dce, struct dc_context *ctx, const struct dce_dmcu_registers *regs, const struct dce_dmcu_shift *dmcu_shift, const struct dce_dmcu_mask *dmcu_mask) { struct dmcu *base = &dmcu_dce->base; base->ctx = ctx; base->funcs = &dce_funcs; base->cached_wait_loop_number = 0; dmcu_dce->regs = regs; dmcu_dce->dmcu_shift = dmcu_shift; dmcu_dce->dmcu_mask = dmcu_mask; } static void dcn21_dmcu_construct( struct dce_dmcu *dmcu_dce, struct dc_context *ctx, const struct dce_dmcu_registers *regs, const struct dce_dmcu_shift *dmcu_shift, const struct dce_dmcu_mask *dmcu_mask) { uint32_t psp_version = 0; dce_dmcu_construct(dmcu_dce, ctx, regs, dmcu_shift, dmcu_mask); if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) { psp_version = dm_read_reg(ctx, mmMP0_SMN_C2PMSG_58); dmcu_dce->base.auto_load_dmcu = ((psp_version & 0x00FF00FF) > 0x00110029); dmcu_dce->base.psp_version = psp_version; } } struct dmcu *dce_dmcu_create( struct dc_context *ctx, const struct dce_dmcu_registers *regs, const struct dce_dmcu_shift *dmcu_shift, const struct dce_dmcu_mask *dmcu_mask) { struct dce_dmcu *dmcu_dce = kzalloc(sizeof(*dmcu_dce), GFP_KERNEL); if (dmcu_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } dce_dmcu_construct( dmcu_dce, ctx, regs, dmcu_shift, dmcu_mask); dmcu_dce->base.funcs = &dce_funcs; return &dmcu_dce->base; } struct dmcu *dcn10_dmcu_create( struct dc_context *ctx, const struct dce_dmcu_registers *regs, const struct dce_dmcu_shift *dmcu_shift, const struct dce_dmcu_mask *dmcu_mask) { struct dce_dmcu *dmcu_dce = kzalloc(sizeof(*dmcu_dce), GFP_ATOMIC); if (dmcu_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } dce_dmcu_construct( dmcu_dce, ctx, regs, dmcu_shift, dmcu_mask); dmcu_dce->base.funcs = &dcn10_funcs; return &dmcu_dce->base; } struct dmcu *dcn20_dmcu_create( struct dc_context *ctx, const struct dce_dmcu_registers *regs, const struct dce_dmcu_shift *dmcu_shift, const struct dce_dmcu_mask *dmcu_mask) { struct dce_dmcu *dmcu_dce = kzalloc(sizeof(*dmcu_dce), GFP_ATOMIC); if (dmcu_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } dce_dmcu_construct( dmcu_dce, ctx, regs, dmcu_shift, dmcu_mask); dmcu_dce->base.funcs = &dcn20_funcs; return &dmcu_dce->base; } struct dmcu *dcn21_dmcu_create( struct dc_context *ctx, const struct dce_dmcu_registers *regs, const struct dce_dmcu_shift *dmcu_shift, const struct dce_dmcu_mask *dmcu_mask) { struct dce_dmcu *dmcu_dce = kzalloc(sizeof(*dmcu_dce), GFP_ATOMIC); if (dmcu_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } dcn21_dmcu_construct( dmcu_dce, ctx, regs, dmcu_shift, dmcu_mask); dmcu_dce->base.funcs = &dcn21_funcs; return &dmcu_dce->base; } void dce_dmcu_destroy(struct dmcu **dmcu) { struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(*dmcu); kfree(dmcu_dce); *dmcu = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1