Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 1144 | 57.69% | 2 | 8.33% |
Vladimir Stempen | 417 | 21.03% | 2 | 8.33% |
Eryk Brol | 101 | 5.09% | 1 | 4.17% |
Wenjing Liu | 86 | 4.34% | 2 | 8.33% |
Nikola Cornij | 46 | 2.32% | 2 | 8.33% |
Dmytro Laktyushkin | 41 | 2.07% | 1 | 4.17% |
Yi-Ling Chen | 39 | 1.97% | 1 | 4.17% |
Jayendran Ramani | 38 | 1.92% | 1 | 4.17% |
Ilya Bakoulin | 20 | 1.01% | 2 | 8.33% |
Anthony Koo | 19 | 0.96% | 1 | 4.17% |
Nicholas Kazlauskas | 9 | 0.45% | 1 | 4.17% |
Bing Guo | 6 | 0.30% | 1 | 4.17% |
Martin Leung | 6 | 0.30% | 2 | 8.33% |
Joshua Aberback | 5 | 0.25% | 1 | 4.17% |
Fatemeh Darbehani | 2 | 0.10% | 1 | 4.17% |
Isabella Basso | 2 | 0.10% | 1 | 4.17% |
Aric Cyr | 1 | 0.05% | 1 | 4.17% |
David Francis | 1 | 0.05% | 1 | 4.17% |
Total | 1983 | 24 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "reg_helper.h" #include "dcn20_optc.h" #include "dc.h" #define REG(reg)\ optc1->tg_regs->reg #define CTX \ optc1->base.ctx #undef FN #define FN(reg_name, field_name) \ optc1->tg_shift->field_name, optc1->tg_mask->field_name /** * Enable CRTC * Enable CRTC - call ASIC Control Object to enable Timing generator. */ bool optc2_enable_crtc(struct timing_generator *optc) { /* TODO FPGA wait for answer * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK */ struct optc *optc1 = DCN10TG_FROM_TG(optc); /* opp instance for OTG. For DCN1.0, ODM is remoed. * OPP and OPTC should 1:1 mapping */ REG_UPDATE(OPTC_DATA_SOURCE_SELECT, OPTC_SEG0_SRC_SEL, optc->inst); /* VTG enable first is for HW workaround */ REG_UPDATE(CONTROL, VTG0_ENABLE, 1); REG_SEQ_START(); /* Enable CRTC */ REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 3, OTG_MASTER_EN, 1); REG_SEQ_SUBMIT(); REG_SEQ_WAIT_DONE(); return true; } /** *For the below, I'm not sure how your GSL parameters are stored in your env, * so I will assume a gsl_params struct for now */ void optc2_set_gsl(struct timing_generator *optc, const struct gsl_params *params) { struct optc *optc1 = DCN10TG_FROM_TG(optc); /** * There are (MAX_OPTC+1)/2 gsl groups available for use. * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1, * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves. */ REG_UPDATE_5(OTG_GSL_CONTROL, OTG_GSL0_EN, params->gsl0_en, OTG_GSL1_EN, params->gsl1_en, OTG_GSL2_EN, params->gsl2_en, OTG_GSL_MASTER_EN, params->gsl_master_en, OTG_GSL_MASTER_MODE, params->gsl_master_mode); } void optc2_set_gsl_source_select( struct timing_generator *optc, int group_idx, uint32_t gsl_ready_signal) { struct optc *optc1 = DCN10TG_FROM_TG(optc); switch (group_idx) { case 1: REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal); break; case 2: REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal); break; case 3: REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal); break; default: break; } } /* Set DSC-related configuration. * dsc_mode: 0 disables DSC, other values enable DSC in specified format * sc_bytes_per_pixel: Bytes per pixel in u3.28 format * dsc_slice_width: Slice width in pixels */ void optc2_set_dsc_config(struct timing_generator *optc, enum optc_dsc_mode dsc_mode, uint32_t dsc_bytes_per_pixel, uint32_t dsc_slice_width) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DSC_MODE, dsc_mode); REG_SET(OPTC_BYTES_PER_PIXEL, 0, OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel); REG_UPDATE(OPTC_WIDTH_CONTROL, OPTC_DSC_SLICE_WIDTH, dsc_slice_width); } /* Get DSC-related configuration. * dsc_mode: 0 disables DSC, other values enable DSC in specified format */ void optc2_get_dsc_status(struct timing_generator *optc, uint32_t *dsc_mode) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET(OPTC_DATA_FORMAT_CONTROL, OPTC_DSC_MODE, dsc_mode); } /*TEMP: Need to figure out inheritance model here.*/ bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) { return optc1_is_two_pixels_per_containter(timing); } void optc2_set_odm_bypass(struct timing_generator *optc, const struct dc_crtc_timing *dc_crtc_timing) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t h_div_2 = 0; REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, OPTC_NUM_OF_INPUT_SEGMENT, 0, OPTC_SEG0_SRC_SEL, optc->inst, OPTC_SEG1_SRC_SEL, 0xf); REG_WRITE(OTG_H_TIMING_CNTL, 0); h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing); REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_BY2, h_div_2); REG_SET(OPTC_MEMORY_CONFIG, 0, OPTC_MEM_SEL, 0); optc1->opp_count = 1; } void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt, struct dc_crtc_timing *timing) { struct optc *optc1 = DCN10TG_FROM_TG(optc); int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right) / opp_cnt; uint32_t memory_mask; ASSERT(opp_cnt == 2); /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1); * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start * REG_SET_2(OTG_GLOBAL_CONTROL1, 0, * MASTER_UPDATE_LOCK_DB_X, 160, * MASTER_UPDATE_LOCK_DB_Y, 240); */ /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192, * however, for ODM combine we can simplify by always using 4. * To make sure there's no overlap, each instance "reserves" 2 memories and * they are uniquely combined here. */ memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2); if (REG(OPTC_MEMORY_CONFIG)) REG_SET(OPTC_MEMORY_CONFIG, 0, OPTC_MEM_SEL, memory_mask); REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, OPTC_NUM_OF_INPUT_SEGMENT, 1, OPTC_SEG0_SRC_SEL, opp_id[0], OPTC_SEG1_SRC_SEL, opp_id[1]); REG_UPDATE(OPTC_WIDTH_CONTROL, OPTC_SEGMENT_WIDTH, mpcc_hactive); REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1); optc1->opp_count = opp_cnt; } void optc2_get_optc_source(struct timing_generator *optc, uint32_t *num_of_src_opp, uint32_t *src_opp_id_0, uint32_t *src_opp_id_1) { uint32_t num_of_input_segments; struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET_3(OPTC_DATA_SOURCE_SELECT, OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments, OPTC_SEG0_SRC_SEL, src_opp_id_0, OPTC_SEG1_SRC_SEL, src_opp_id_1); if (num_of_input_segments == 1) *num_of_src_opp = 2; else *num_of_src_opp = 1; /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */ if (*src_opp_id_1 == 0xf) *num_of_src_opp = 1; } static void optc2_set_dwb_source(struct timing_generator *optc, uint32_t dwb_pipe_inst) { struct optc *optc1 = DCN10TG_FROM_TG(optc); if (dwb_pipe_inst == 0) REG_UPDATE(DWB_SOURCE_SELECT, OPTC_DWB0_SOURCE_SELECT, optc->inst); else if (dwb_pipe_inst == 1) REG_UPDATE(DWB_SOURCE_SELECT, OPTC_DWB1_SOURCE_SELECT, optc->inst); } static void optc2_align_vblanks( struct timing_generator *optc_master, struct timing_generator *optc_slave, uint32_t master_pixel_clock_100Hz, uint32_t slave_pixel_clock_100Hz, uint8_t master_clock_divider, uint8_t slave_clock_divider) { /* accessing slave OTG registers */ struct optc *optc1 = DCN10TG_FROM_TG(optc_slave); uint32_t master_v_active = 0; uint32_t master_h_total = 0; uint32_t slave_h_total = 0; uint64_t L, XY; uint32_t X, Y, p = 10000; uint32_t master_update_lock; /* disable slave OTG */ REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0); /* wait until disabled */ REG_WAIT(OTG_CONTROL, OTG_CURRENT_MASTER_EN_STATE, 0, 10, 5000); REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total); /* assign slave OTG to be controlled by master update lock */ REG_SET(OTG_GLOBAL_CONTROL0, 0, OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst); /* accessing master OTG registers */ optc1 = DCN10TG_FROM_TG(optc_master); /* saving update lock state, not sure if it's needed */ REG_GET(OTG_MASTER_UPDATE_LOCK, OTG_MASTER_UPDATE_LOCK, &master_update_lock); /* unlocking master OTG */ REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 0); REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &master_v_active); REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total); /* calculate when to enable slave OTG */ L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz; L = div_u64(L, master_h_total); L = div_u64(L, slave_pixel_clock_100Hz); XY = div_u64(L, p); Y = master_v_active - XY - 1; X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider); /* * set master OTG to unlock when V/H * counters reach calculated values */ REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1); REG_UPDATE_2(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_X, X, MASTER_UPDATE_LOCK_DB_Y, Y); /* lock master OTG */ REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 1); REG_WAIT(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, 1, 1, 10); /* accessing slave OTG registers */ optc1 = DCN10TG_FROM_TG(optc_slave); /* * enable slave OTG, the OTG is locked with * master's update lock, so it will not run */ REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 1); /* accessing master OTG registers */ optc1 = DCN10TG_FROM_TG(optc_master); /* * unlock master OTG. When master H/V counters reach * DB_XY point, slave OTG will start */ REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 0); /* accessing slave OTG registers */ optc1 = DCN10TG_FROM_TG(optc_slave); /* wait for slave OTG to start running*/ REG_WAIT(OTG_CONTROL, OTG_CURRENT_MASTER_EN_STATE, 1, 10, 5000); /* accessing master OTG registers */ optc1 = DCN10TG_FROM_TG(optc_master); /* disable the XY point*/ REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0); REG_UPDATE_2(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_X, 0, MASTER_UPDATE_LOCK_DB_Y, 0); /*restore master update lock*/ REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, master_update_lock); /* accessing slave OTG registers */ optc1 = DCN10TG_FROM_TG(optc_slave); /* restore slave to be controlled by it's own */ REG_SET(OTG_GLOBAL_CONTROL0, 0, OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst); } void optc2_triplebuffer_lock(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_GLOBAL_CONTROL0, 0, OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); REG_SET(OTG_VUPDATE_KEEPOUT, 0, OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 1); if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) REG_WAIT(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, 1, 1, 10); } void optc2_triplebuffer_unlock(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 0); REG_SET(OTG_VUPDATE_KEEPOUT, 0, OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0); } void optc2_lock_doublebuffer_enable(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t v_blank_start = 0; uint32_t h_blank_start = 0; REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1); REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1, DIG_UPDATE_LOCATION, 20); REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start); REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start); REG_UPDATE_2(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_X, (h_blank_start - 200 - 1) / optc1->opp_count, MASTER_UPDATE_LOCK_DB_Y, v_blank_start - 1); REG_SET_3(OTG_VUPDATE_KEEPOUT, 0, MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, 0, MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, 100, OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); } void optc2_lock_doublebuffer_disable(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE_2(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_X, 0, MASTER_UPDATE_LOCK_DB_Y, 0); REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0, DIG_UPDATE_LOCATION, 0); REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0); } void optc2_setup_manual_trigger(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET_8(OTG_TRIGA_CNTL, 0, OTG_TRIGA_SOURCE_SELECT, 21, OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, OTG_TRIGA_POLARITY_SELECT, 0, OTG_TRIGA_FREQUENCY_SELECT, 0, OTG_TRIGA_DELAY, 0, OTG_TRIGA_CLEAR, 1); } void optc2_program_manual_trigger(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_TRIGA_MANUAL_TRIG, 0, OTG_TRIGA_MANUAL_TRIG, 1); } bool optc2_configure_crc(struct timing_generator *optc, const struct crc_params *params) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET_2(OTG_CRC_CNTL2, 0, OTG_CRC_DSC_MODE, params->dsc_mode, OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode); return optc1_configure_crc(optc, params); } void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate); } static struct timing_generator_funcs dcn20_tg_funcs = { .validate_timing = optc1_validate_timing, .program_timing = optc1_program_timing, .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, .program_global_sync = optc1_program_global_sync, .enable_crtc = optc2_enable_crtc, .disable_crtc = optc1_disable_crtc, /* used by enable_timing_synchronization. Not need for FPGA */ .is_counter_moving = optc1_is_counter_moving, .get_position = optc1_get_position, .get_frame_count = optc1_get_vblank_counter, .get_scanoutpos = optc1_get_crtc_scanoutpos, .get_otg_active_size = optc1_get_otg_active_size, .set_early_control = optc1_set_early_control, /* used by enable_timing_synchronization. Not need for FPGA */ .wait_for_state = optc1_wait_for_state, .set_blank = optc1_set_blank, .is_blanked = optc1_is_blanked, .set_blank_color = optc1_program_blank_color, .enable_reset_trigger = optc1_enable_reset_trigger, .enable_crtc_reset = optc1_enable_crtc_reset, .did_triggered_reset_occur = optc1_did_triggered_reset_occur, .triplebuffer_lock = optc2_triplebuffer_lock, .triplebuffer_unlock = optc2_triplebuffer_unlock, .disable_reset_trigger = optc1_disable_reset_trigger, .lock = optc1_lock, .unlock = optc1_unlock, .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable, .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable, .enable_optc_clock = optc1_enable_optc_clock, .set_drr = optc1_set_drr, .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal, .set_static_screen_control = optc1_set_static_screen_control, .program_stereo = optc1_program_stereo, .is_stereo_left_eye = optc1_is_stereo_left_eye, .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, .tg_init = optc1_tg_init, .is_tg_enabled = optc1_is_tg_enabled, .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, .clear_optc_underflow = optc1_clear_optc_underflow, .setup_global_swap_lock = NULL, .get_crc = optc1_get_crc, .configure_crc = optc2_configure_crc, .set_dsc_config = optc2_set_dsc_config, .get_dsc_status = optc2_get_dsc_status, .set_dwb_source = optc2_set_dwb_source, .set_odm_bypass = optc2_set_odm_bypass, .set_odm_combine = optc2_set_odm_combine, .get_optc_source = optc2_get_optc_source, .set_gsl = optc2_set_gsl, .set_gsl_source_select = optc2_set_gsl_source_select, .set_vtg_params = optc1_set_vtg_params, .program_manual_trigger = optc2_program_manual_trigger, .setup_manual_trigger = optc2_setup_manual_trigger, .get_hw_timing = optc1_get_hw_timing, .align_vblanks = optc2_align_vblanks, }; void dcn20_timing_generator_init(struct optc *optc1) { optc1->base.funcs = &dcn20_tg_funcs; optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; optc1->min_h_blank = 32; optc1->min_v_blank = 3; optc1->min_v_blank_interlace = 5; optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue. optc1->min_v_sync_width = 1; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1