Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrzej Hajda | 1915 | 97.21% | 1 | 14.29% |
Jagan Teki | 28 | 1.42% | 1 | 14.29% |
Sam Ravnborg | 14 | 0.71% | 2 | 28.57% |
Marek Szyprowski | 6 | 0.30% | 1 | 14.29% |
Laurent Pinchart | 4 | 0.20% | 1 | 14.29% |
Ville Syrjälä | 3 | 0.15% | 1 | 14.29% |
Total | 1970 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Samsung Electronics Co., Ltd * * Authors: * Andrzej Hajda <a.hajda@samsung.com> * Maciej Purski <m.purski@samsung.com> */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/regulator/consumer.h> #include <video/mipi_display.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_print.h> #define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end)) #define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end)) /* PPI layer registers */ #define PPI_STARTPPI 0x0104 /* START control bit */ #define PPI_LPTXTIMECNT 0x0114 /* LPTX timing signal */ #define PPI_LANEENABLE 0x0134 /* Enables each lane */ #define PPI_TX_RX_TA 0x013C /* BTA timing parameters */ #define PPI_D0S_CLRSIPOCOUNT 0x0164 /* Assertion timer for Lane 0 */ #define PPI_D1S_CLRSIPOCOUNT 0x0168 /* Assertion timer for Lane 1 */ #define PPI_D2S_CLRSIPOCOUNT 0x016C /* Assertion timer for Lane 2 */ #define PPI_D3S_CLRSIPOCOUNT 0x0170 /* Assertion timer for Lane 3 */ #define PPI_START_FUNCTION 1 /* DSI layer registers */ #define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX */ #define DSI_LANEENABLE 0x0210 /* Enables each lane */ #define DSI_RX_START 1 /* Video path registers */ #define VP_CTRL 0x0450 /* Video Path Control */ #define VP_CTRL_MSF(v) FLD_VAL(v, 0, 0) /* Magic square in RGB666 */ #define VP_CTRL_VTGEN(v) FLD_VAL(v, 4, 4) /* Use chip clock for timing */ #define VP_CTRL_EVTMODE(v) FLD_VAL(v, 5, 5) /* Event mode */ #define VP_CTRL_RGB888(v) FLD_VAL(v, 8, 8) /* RGB888 mode */ #define VP_CTRL_VSDELAY(v) FLD_VAL(v, 31, 20) /* VSYNC delay */ #define VP_CTRL_HSPOL BIT(17) /* Polarity of HSYNC signal */ #define VP_CTRL_DEPOL BIT(18) /* Polarity of DE signal */ #define VP_CTRL_VSPOL BIT(19) /* Polarity of VSYNC signal */ #define VP_HTIM1 0x0454 /* Horizontal Timing Control 1 */ #define VP_HTIM1_HBP(v) FLD_VAL(v, 24, 16) #define VP_HTIM1_HSYNC(v) FLD_VAL(v, 8, 0) #define VP_HTIM2 0x0458 /* Horizontal Timing Control 2 */ #define VP_HTIM2_HFP(v) FLD_VAL(v, 24, 16) #define VP_HTIM2_HACT(v) FLD_VAL(v, 10, 0) #define VP_VTIM1 0x045C /* Vertical Timing Control 1 */ #define VP_VTIM1_VBP(v) FLD_VAL(v, 23, 16) #define VP_VTIM1_VSYNC(v) FLD_VAL(v, 7, 0) #define VP_VTIM2 0x0460 /* Vertical Timing Control 2 */ #define VP_VTIM2_VFP(v) FLD_VAL(v, 23, 16) #define VP_VTIM2_VACT(v) FLD_VAL(v, 10, 0) #define VP_VFUEN 0x0464 /* Video Frame Timing Update Enable */ /* LVDS registers */ #define LV_MX0003 0x0480 /* Mux input bit 0 to 3 */ #define LV_MX0407 0x0484 /* Mux input bit 4 to 7 */ #define LV_MX0811 0x0488 /* Mux input bit 8 to 11 */ #define LV_MX1215 0x048C /* Mux input bit 12 to 15 */ #define LV_MX1619 0x0490 /* Mux input bit 16 to 19 */ #define LV_MX2023 0x0494 /* Mux input bit 20 to 23 */ #define LV_MX2427 0x0498 /* Mux input bit 24 to 27 */ #define LV_MX(b0, b1, b2, b3) (FLD_VAL(b0, 4, 0) | FLD_VAL(b1, 12, 8) | \ FLD_VAL(b2, 20, 16) | FLD_VAL(b3, 28, 24)) /* Input bit numbers used in mux registers */ enum { LVI_R0, LVI_R1, LVI_R2, LVI_R3, LVI_R4, LVI_R5, LVI_R6, LVI_R7, LVI_G0, LVI_G1, LVI_G2, LVI_G3, LVI_G4, LVI_G5, LVI_G6, LVI_G7, LVI_B0, LVI_B1, LVI_B2, LVI_B3, LVI_B4, LVI_B5, LVI_B6, LVI_B7, LVI_HS, LVI_VS, LVI_DE, LVI_L0 }; #define LV_CFG 0x049C /* LVDS Configuration */ #define LV_PHY0 0x04A0 /* LVDS PHY 0 */ #define LV_PHY0_RST(v) FLD_VAL(v, 22, 22) /* PHY reset */ #define LV_PHY0_IS(v) FLD_VAL(v, 15, 14) #define LV_PHY0_ND(v) FLD_VAL(v, 4, 0) /* Frequency range select */ #define LV_PHY0_PRBS_ON(v) FLD_VAL(v, 20, 16) /* Clock/Data Flag pins */ /* System registers */ #define SYS_RST 0x0504 /* System Reset */ #define SYS_ID 0x0580 /* System ID */ #define SYS_RST_I2CS BIT(0) /* Reset I2C-Slave controller */ #define SYS_RST_I2CM BIT(1) /* Reset I2C-Master controller */ #define SYS_RST_LCD BIT(2) /* Reset LCD controller */ #define SYS_RST_BM BIT(3) /* Reset Bus Management controller */ #define SYS_RST_DSIRX BIT(4) /* Reset DSI-RX and App controller */ #define SYS_RST_REG BIT(5) /* Reset Register module */ #define LPX_PERIOD 2 #define TTA_SURE 3 #define TTA_GET 0x20000 /* Lane enable PPI and DSI register bits */ #define LANEENABLE_CLEN BIT(0) #define LANEENABLE_L0EN BIT(1) #define LANEENABLE_L1EN BIT(2) #define LANEENABLE_L2EN BIT(3) #define LANEENABLE_L3EN BIT(4) /* LVCFG fields */ #define LV_CFG_LVEN BIT(0) #define LV_CFG_LVDLINK BIT(1) #define LV_CFG_CLKPOL1 BIT(2) #define LV_CFG_CLKPOL2 BIT(3) static const char * const tc358764_supplies[] = { "vddc", "vddio", "vddlvds" }; struct tc358764 { struct device *dev; struct drm_bridge bridge; struct drm_bridge *next_bridge; struct regulator_bulk_data supplies[ARRAY_SIZE(tc358764_supplies)]; struct gpio_desc *gpio_reset; int error; }; static int tc358764_clear_error(struct tc358764 *ctx) { int ret = ctx->error; ctx->error = 0; return ret; } static void tc358764_read(struct tc358764 *ctx, u16 addr, u32 *val) { struct mipi_dsi_device *dsi = to_mipi_dsi_device(ctx->dev); ssize_t ret; if (ctx->error) return; cpu_to_le16s(&addr); ret = mipi_dsi_generic_read(dsi, &addr, sizeof(addr), val, sizeof(*val)); if (ret >= 0) le32_to_cpus(val); dev_dbg(ctx->dev, "read: %d, addr: %d\n", addr, *val); } static void tc358764_write(struct tc358764 *ctx, u16 addr, u32 val) { struct mipi_dsi_device *dsi = to_mipi_dsi_device(ctx->dev); ssize_t ret; u8 data[6]; if (ctx->error) return; data[0] = addr; data[1] = addr >> 8; data[2] = val; data[3] = val >> 8; data[4] = val >> 16; data[5] = val >> 24; ret = mipi_dsi_generic_write(dsi, data, sizeof(data)); if (ret < 0) ctx->error = ret; } static inline struct tc358764 *bridge_to_tc358764(struct drm_bridge *bridge) { return container_of(bridge, struct tc358764, bridge); } static int tc358764_init(struct tc358764 *ctx) { u32 v = 0; tc358764_read(ctx, SYS_ID, &v); if (ctx->error) return tc358764_clear_error(ctx); dev_info(ctx->dev, "ID: %#x\n", v); /* configure PPI counters */ tc358764_write(ctx, PPI_TX_RX_TA, TTA_GET | TTA_SURE); tc358764_write(ctx, PPI_LPTXTIMECNT, LPX_PERIOD); tc358764_write(ctx, PPI_D0S_CLRSIPOCOUNT, 5); tc358764_write(ctx, PPI_D1S_CLRSIPOCOUNT, 5); tc358764_write(ctx, PPI_D2S_CLRSIPOCOUNT, 5); tc358764_write(ctx, PPI_D3S_CLRSIPOCOUNT, 5); /* enable four data lanes and clock lane */ tc358764_write(ctx, PPI_LANEENABLE, LANEENABLE_L3EN | LANEENABLE_L2EN | LANEENABLE_L1EN | LANEENABLE_L0EN | LANEENABLE_CLEN); tc358764_write(ctx, DSI_LANEENABLE, LANEENABLE_L3EN | LANEENABLE_L2EN | LANEENABLE_L1EN | LANEENABLE_L0EN | LANEENABLE_CLEN); /* start */ tc358764_write(ctx, PPI_STARTPPI, PPI_START_FUNCTION); tc358764_write(ctx, DSI_STARTDSI, DSI_RX_START); /* configure video path */ tc358764_write(ctx, VP_CTRL, VP_CTRL_VSDELAY(15) | VP_CTRL_RGB888(1) | VP_CTRL_EVTMODE(1) | VP_CTRL_HSPOL | VP_CTRL_VSPOL); /* reset PHY */ tc358764_write(ctx, LV_PHY0, LV_PHY0_RST(1) | LV_PHY0_PRBS_ON(4) | LV_PHY0_IS(2) | LV_PHY0_ND(6)); tc358764_write(ctx, LV_PHY0, LV_PHY0_PRBS_ON(4) | LV_PHY0_IS(2) | LV_PHY0_ND(6)); /* reset bridge */ tc358764_write(ctx, SYS_RST, SYS_RST_LCD); /* set bit order */ tc358764_write(ctx, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3)); tc358764_write(ctx, LV_MX0407, LV_MX(LVI_R4, LVI_R7, LVI_R5, LVI_G0)); tc358764_write(ctx, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_G6, LVI_G7)); tc358764_write(ctx, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0)); tc358764_write(ctx, LV_MX1619, LV_MX(LVI_B6, LVI_B7, LVI_B1, LVI_B2)); tc358764_write(ctx, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0)); tc358764_write(ctx, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R6)); tc358764_write(ctx, LV_CFG, LV_CFG_CLKPOL2 | LV_CFG_CLKPOL1 | LV_CFG_LVEN); return tc358764_clear_error(ctx); } static void tc358764_reset(struct tc358764 *ctx) { gpiod_set_value(ctx->gpio_reset, 1); usleep_range(1000, 2000); gpiod_set_value(ctx->gpio_reset, 0); usleep_range(1000, 2000); } static void tc358764_post_disable(struct drm_bridge *bridge) { struct tc358764 *ctx = bridge_to_tc358764(bridge); int ret; tc358764_reset(ctx); usleep_range(10000, 15000); ret = regulator_bulk_disable(ARRAY_SIZE(ctx->supplies), ctx->supplies); if (ret < 0) dev_err(ctx->dev, "error disabling regulators (%d)\n", ret); } static void tc358764_pre_enable(struct drm_bridge *bridge) { struct tc358764 *ctx = bridge_to_tc358764(bridge); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(ctx->supplies), ctx->supplies); if (ret < 0) dev_err(ctx->dev, "error enabling regulators (%d)\n", ret); usleep_range(10000, 15000); tc358764_reset(ctx); ret = tc358764_init(ctx); if (ret < 0) dev_err(ctx->dev, "error initializing bridge (%d)\n", ret); } static int tc358764_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct tc358764 *ctx = bridge_to_tc358764(bridge); return drm_bridge_attach(bridge->encoder, ctx->next_bridge, bridge, flags); } static const struct drm_bridge_funcs tc358764_bridge_funcs = { .post_disable = tc358764_post_disable, .pre_enable = tc358764_pre_enable, .attach = tc358764_attach, }; static int tc358764_parse_dt(struct tc358764 *ctx) { struct device *dev = ctx->dev; ctx->gpio_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(ctx->gpio_reset)) { dev_err(dev, "no reset GPIO pin provided\n"); return PTR_ERR(ctx->gpio_reset); } ctx->next_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 1, 0); if (IS_ERR(ctx->next_bridge)) return PTR_ERR(ctx->next_bridge); return 0; } static int tc358764_configure_regulators(struct tc358764 *ctx) { int i, ret; for (i = 0; i < ARRAY_SIZE(ctx->supplies); ++i) ctx->supplies[i].supply = tc358764_supplies[i]; ret = devm_regulator_bulk_get(ctx->dev, ARRAY_SIZE(ctx->supplies), ctx->supplies); if (ret < 0) dev_err(ctx->dev, "failed to get regulators: %d\n", ret); return ret; } static int tc358764_probe(struct mipi_dsi_device *dsi) { struct device *dev = &dsi->dev; struct tc358764 *ctx; int ret; ctx = devm_kzalloc(dev, sizeof(struct tc358764), GFP_KERNEL); if (!ctx) return -ENOMEM; mipi_dsi_set_drvdata(dsi, ctx); ctx->dev = dev; dsi->lanes = 4; dsi->format = MIPI_DSI_FMT_RGB888; dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | MIPI_DSI_MODE_VIDEO_AUTO_VERT | MIPI_DSI_MODE_LPM; ret = tc358764_parse_dt(ctx); if (ret < 0) return ret; ret = tc358764_configure_regulators(ctx); if (ret < 0) return ret; ctx->bridge.funcs = &tc358764_bridge_funcs; ctx->bridge.of_node = dev->of_node; drm_bridge_add(&ctx->bridge); ret = mipi_dsi_attach(dsi); if (ret < 0) { drm_bridge_remove(&ctx->bridge); dev_err(dev, "failed to attach dsi\n"); } return ret; } static int tc358764_remove(struct mipi_dsi_device *dsi) { struct tc358764 *ctx = mipi_dsi_get_drvdata(dsi); mipi_dsi_detach(dsi); drm_bridge_remove(&ctx->bridge); return 0; } static const struct of_device_id tc358764_of_match[] = { { .compatible = "toshiba,tc358764" }, { } }; MODULE_DEVICE_TABLE(of, tc358764_of_match); static struct mipi_dsi_driver tc358764_driver = { .probe = tc358764_probe, .remove = tc358764_remove, .driver = { .name = "tc358764", .owner = THIS_MODULE, .of_match_table = tc358764_of_match, }, }; module_mipi_dsi_driver(tc358764_driver); MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>"); MODULE_AUTHOR("Maciej Purski <m.purski@samsung.com>"); MODULE_DESCRIPTION("MIPI-DSI based Driver for TC358764 DSI/LVDS Bridge"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1