Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Wolfgang Grandegger | 1928 | 38.41% | 7 | 10.29% |
Chris Packham | 1439 | 28.67% | 10 | 14.71% |
Adrian Cox | 408 | 8.13% | 1 | 1.47% |
Joakim Tjernlund | 185 | 3.69% | 3 | 4.41% |
Kumar Gala | 181 | 3.61% | 3 | 4.41% |
Albrecht Dreß | 168 | 3.35% | 1 | 1.47% |
Valentin Longchamp | 122 | 2.43% | 2 | 2.94% |
Chen-Hui Zhao | 118 | 2.35% | 1 | 1.47% |
Gerhard Sittig | 77 | 1.53% | 1 | 1.47% |
Arseny Solokha | 66 | 1.31% | 4 | 5.88% |
Jon Smirl | 64 | 1.27% | 2 | 2.94% |
Tang Yuantian | 62 | 1.24% | 1 | 1.47% |
Domen Puncer | 51 | 1.02% | 2 | 2.94% |
Grant C. Likely | 44 | 0.88% | 6 | 8.82% |
Andy Shevchenko | 42 | 0.84% | 4 | 5.88% |
Guenter Roeck | 19 | 0.38% | 1 | 1.47% |
Russell King | 9 | 0.18% | 2 | 2.94% |
Rob Herring | 6 | 0.12% | 1 | 1.47% |
Arnd Bergmann | 5 | 0.10% | 1 | 1.47% |
Laurent Riffard | 3 | 0.06% | 1 | 1.47% |
Jingoo Han | 3 | 0.06% | 2 | 2.94% |
Kay Sievers | 3 | 0.06% | 1 | 1.47% |
Tejun Heo | 3 | 0.06% | 1 | 1.47% |
Jean Delvare | 3 | 0.06% | 3 | 4.41% |
Nishanth Aravamudan | 3 | 0.06% | 1 | 1.47% |
Al Viro | 2 | 0.04% | 1 | 1.47% |
Axel Lin | 2 | 0.04% | 1 | 1.47% |
Ingo Molnar | 1 | 0.02% | 1 | 1.47% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.47% |
Mickey Stein | 1 | 0.02% | 1 | 1.47% |
Julia Lawall | 1 | 0.02% | 1 | 1.47% |
Total | 5020 | 68 |
// SPDX-License-Identifier: GPL-2.0 /* * This is a combined i2c adapter and algorithm driver for the * MPC107/Tsi107 PowerPC northbridge and processors that include * the same I2C unit (8240, 8245, 85xx). * * Copyright (C) 2003-2004 Humboldt Solutions Ltd, adrian@humboldt.co.uk * Copyright (C) 2021 Allied Telesis Labs */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/sched/signal.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/fsl_devices.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <asm/mpc52xx.h> #include <asm/mpc85xx.h> #include <sysdev/fsl_soc.h> #define DRV_NAME "mpc-i2c" #define MPC_I2C_CLOCK_LEGACY 0 #define MPC_I2C_CLOCK_PRESERVE (~0U) #define MPC_I2C_FDR 0x04 #define MPC_I2C_CR 0x08 #define MPC_I2C_SR 0x0c #define MPC_I2C_DR 0x10 #define MPC_I2C_DFSRR 0x14 #define CCR_MEN 0x80 #define CCR_MIEN 0x40 #define CCR_MSTA 0x20 #define CCR_MTX 0x10 #define CCR_TXAK 0x08 #define CCR_RSTA 0x04 #define CCR_RSVD 0x02 #define CSR_MCF 0x80 #define CSR_MAAS 0x40 #define CSR_MBB 0x20 #define CSR_MAL 0x10 #define CSR_SRW 0x04 #define CSR_MIF 0x02 #define CSR_RXAK 0x01 enum mpc_i2c_action { MPC_I2C_ACTION_START = 1, MPC_I2C_ACTION_RESTART, MPC_I2C_ACTION_READ_BEGIN, MPC_I2C_ACTION_READ_BYTE, MPC_I2C_ACTION_WRITE, MPC_I2C_ACTION_STOP, __MPC_I2C_ACTION_CNT }; static const char * const action_str[] = { "invalid", "start", "restart", "read begin", "read", "write", "stop", }; static_assert(ARRAY_SIZE(action_str) == __MPC_I2C_ACTION_CNT); struct mpc_i2c { struct device *dev; void __iomem *base; u32 interrupt; wait_queue_head_t waitq; spinlock_t lock; struct i2c_adapter adap; int irq; u32 real_clk; u8 fdr, dfsrr; struct clk *clk_per; u32 cntl_bits; enum mpc_i2c_action action; struct i2c_msg *msgs; int num_msgs; int curr_msg; u32 byte_posn; u32 block; int rc; int expect_rxack; bool has_errata_A004447; }; struct mpc_i2c_divider { u16 divider; u16 fdr; /* including dfsrr */ }; struct mpc_i2c_data { void (*setup)(struct device_node *node, struct mpc_i2c *i2c, u32 clock); }; static inline void writeccr(struct mpc_i2c *i2c, u32 x) { writeb(x, i2c->base + MPC_I2C_CR); } /* Sometimes 9th clock pulse isn't generated, and slave doesn't release * the bus, because it wants to send ACK. * Following sequence of enabling/disabling and sending start/stop generates * the 9 pulses, each with a START then ending with STOP, so it's all OK. */ static void mpc_i2c_fixup(struct mpc_i2c *i2c) { int k; unsigned long flags; for (k = 9; k; k--) { writeccr(i2c, 0); writeb(0, i2c->base + MPC_I2C_SR); /* clear any status bits */ writeccr(i2c, CCR_MEN | CCR_MSTA); /* START */ readb(i2c->base + MPC_I2C_DR); /* init xfer */ udelay(15); /* let it hit the bus */ local_irq_save(flags); /* should not be delayed further */ writeccr(i2c, CCR_MEN | CCR_MSTA | CCR_RSTA); /* delay SDA */ readb(i2c->base + MPC_I2C_DR); if (k != 1) udelay(5); local_irq_restore(flags); } writeccr(i2c, CCR_MEN); /* Initiate STOP */ readb(i2c->base + MPC_I2C_DR); udelay(15); /* Let STOP propagate */ writeccr(i2c, 0); } static int i2c_mpc_wait_sr(struct mpc_i2c *i2c, int mask) { void __iomem *addr = i2c->base + MPC_I2C_SR; u8 val; return readb_poll_timeout(addr, val, val & mask, 0, 100); } /* * Workaround for Erratum A004447. From the P2040CE Rev Q * * 1. Set up the frequency divider and sampling rate. * 2. I2CCR - a0h * 3. Poll for I2CSR[MBB] to get set. * 4. If I2CSR[MAL] is set (an indication that SDA is stuck low), then go to * step 5. If MAL is not set, then go to step 13. * 5. I2CCR - 00h * 6. I2CCR - 22h * 7. I2CCR - a2h * 8. Poll for I2CSR[MBB] to get set. * 9. Issue read to I2CDR. * 10. Poll for I2CSR[MIF] to be set. * 11. I2CCR - 82h * 12. Workaround complete. Skip the next steps. * 13. Issue read to I2CDR. * 14. Poll for I2CSR[MIF] to be set. * 15. I2CCR - 80h */ static void mpc_i2c_fixup_A004447(struct mpc_i2c *i2c) { int ret; u32 val; writeccr(i2c, CCR_MEN | CCR_MSTA); ret = i2c_mpc_wait_sr(i2c, CSR_MBB); if (ret) { dev_err(i2c->dev, "timeout waiting for CSR_MBB\n"); return; } val = readb(i2c->base + MPC_I2C_SR); if (val & CSR_MAL) { writeccr(i2c, 0x00); writeccr(i2c, CCR_MSTA | CCR_RSVD); writeccr(i2c, CCR_MEN | CCR_MSTA | CCR_RSVD); ret = i2c_mpc_wait_sr(i2c, CSR_MBB); if (ret) { dev_err(i2c->dev, "timeout waiting for CSR_MBB\n"); return; } val = readb(i2c->base + MPC_I2C_DR); ret = i2c_mpc_wait_sr(i2c, CSR_MIF); if (ret) { dev_err(i2c->dev, "timeout waiting for CSR_MIF\n"); return; } writeccr(i2c, CCR_MEN | CCR_RSVD); } else { val = readb(i2c->base + MPC_I2C_DR); ret = i2c_mpc_wait_sr(i2c, CSR_MIF); if (ret) { dev_err(i2c->dev, "timeout waiting for CSR_MIF\n"); return; } writeccr(i2c, CCR_MEN); } } #if defined(CONFIG_PPC_MPC52xx) || defined(CONFIG_PPC_MPC512x) static const struct mpc_i2c_divider mpc_i2c_dividers_52xx[] = { {20, 0x20}, {22, 0x21}, {24, 0x22}, {26, 0x23}, {28, 0x24}, {30, 0x01}, {32, 0x25}, {34, 0x02}, {36, 0x26}, {40, 0x27}, {44, 0x04}, {48, 0x28}, {52, 0x63}, {56, 0x29}, {60, 0x41}, {64, 0x2a}, {68, 0x07}, {72, 0x2b}, {80, 0x2c}, {88, 0x09}, {96, 0x2d}, {104, 0x0a}, {112, 0x2e}, {120, 0x81}, {128, 0x2f}, {136, 0x47}, {144, 0x0c}, {160, 0x30}, {176, 0x49}, {192, 0x31}, {208, 0x4a}, {224, 0x32}, {240, 0x0f}, {256, 0x33}, {272, 0x87}, {288, 0x10}, {320, 0x34}, {352, 0x89}, {384, 0x35}, {416, 0x8a}, {448, 0x36}, {480, 0x13}, {512, 0x37}, {576, 0x14}, {640, 0x38}, {768, 0x39}, {896, 0x3a}, {960, 0x17}, {1024, 0x3b}, {1152, 0x18}, {1280, 0x3c}, {1536, 0x3d}, {1792, 0x3e}, {1920, 0x1b}, {2048, 0x3f}, {2304, 0x1c}, {2560, 0x1d}, {3072, 0x1e}, {3584, 0x7e}, {3840, 0x1f}, {4096, 0x7f}, {4608, 0x5c}, {5120, 0x5d}, {6144, 0x5e}, {7168, 0xbe}, {7680, 0x5f}, {8192, 0xbf}, {9216, 0x9c}, {10240, 0x9d}, {12288, 0x9e}, {15360, 0x9f} }; static int mpc_i2c_get_fdr_52xx(struct device_node *node, u32 clock, u32 *real_clk) { struct fwnode_handle *fwnode = of_fwnode_handle(node); const struct mpc_i2c_divider *div = NULL; unsigned int pvr = mfspr(SPRN_PVR); u32 divider; int i; if (clock == MPC_I2C_CLOCK_LEGACY) { /* see below - default fdr = 0x3f -> div = 2048 */ *real_clk = mpc5xxx_fwnode_get_bus_frequency(fwnode) / 2048; return -EINVAL; } /* Determine divider value */ divider = mpc5xxx_fwnode_get_bus_frequency(fwnode) / clock; /* * We want to choose an FDR/DFSR that generates an I2C bus speed that * is equal to or lower than the requested speed. */ for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_52xx); i++) { div = &mpc_i2c_dividers_52xx[i]; /* Old MPC5200 rev A CPUs do not support the high bits */ if (div->fdr & 0xc0 && pvr == 0x80822011) continue; if (div->divider >= divider) break; } *real_clk = mpc5xxx_fwnode_get_bus_frequency(fwnode) / div->divider; return (int)div->fdr; } static void mpc_i2c_setup_52xx(struct device_node *node, struct mpc_i2c *i2c, u32 clock) { int ret, fdr; if (clock == MPC_I2C_CLOCK_PRESERVE) { dev_dbg(i2c->dev, "using fdr %d\n", readb(i2c->base + MPC_I2C_FDR)); return; } ret = mpc_i2c_get_fdr_52xx(node, clock, &i2c->real_clk); fdr = (ret >= 0) ? ret : 0x3f; /* backward compatibility */ writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR); if (ret >= 0) dev_info(i2c->dev, "clock %u Hz (fdr=%d)\n", i2c->real_clk, fdr); } #else /* !(CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x) */ static void mpc_i2c_setup_52xx(struct device_node *node, struct mpc_i2c *i2c, u32 clock) { } #endif /* CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x */ #ifdef CONFIG_PPC_MPC512x static void mpc_i2c_setup_512x(struct device_node *node, struct mpc_i2c *i2c, u32 clock) { struct device_node *node_ctrl; void __iomem *ctrl; const u32 *pval; u32 idx; /* Enable I2C interrupts for mpc5121 */ node_ctrl = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-i2c-ctrl"); if (node_ctrl) { ctrl = of_iomap(node_ctrl, 0); if (ctrl) { /* Interrupt enable bits for i2c-0/1/2: bit 24/26/28 */ pval = of_get_property(node, "reg", NULL); idx = (*pval & 0xff) / 0x20; setbits32(ctrl, 1 << (24 + idx * 2)); iounmap(ctrl); } of_node_put(node_ctrl); } /* The clock setup for the 52xx works also fine for the 512x */ mpc_i2c_setup_52xx(node, i2c, clock); } #else /* CONFIG_PPC_MPC512x */ static void mpc_i2c_setup_512x(struct device_node *node, struct mpc_i2c *i2c, u32 clock) { } #endif /* CONFIG_PPC_MPC512x */ #ifdef CONFIG_FSL_SOC static const struct mpc_i2c_divider mpc_i2c_dividers_8xxx[] = { {160, 0x0120}, {192, 0x0121}, {224, 0x0122}, {256, 0x0123}, {288, 0x0100}, {320, 0x0101}, {352, 0x0601}, {384, 0x0102}, {416, 0x0602}, {448, 0x0126}, {480, 0x0103}, {512, 0x0127}, {544, 0x0b03}, {576, 0x0104}, {608, 0x1603}, {640, 0x0105}, {672, 0x2003}, {704, 0x0b05}, {736, 0x2b03}, {768, 0x0106}, {800, 0x3603}, {832, 0x0b06}, {896, 0x012a}, {960, 0x0107}, {1024, 0x012b}, {1088, 0x1607}, {1152, 0x0108}, {1216, 0x2b07}, {1280, 0x0109}, {1408, 0x1609}, {1536, 0x010a}, {1664, 0x160a}, {1792, 0x012e}, {1920, 0x010b}, {2048, 0x012f}, {2176, 0x2b0b}, {2304, 0x010c}, {2560, 0x010d}, {2816, 0x2b0d}, {3072, 0x010e}, {3328, 0x2b0e}, {3584, 0x0132}, {3840, 0x010f}, {4096, 0x0133}, {4608, 0x0110}, {5120, 0x0111}, {6144, 0x0112}, {7168, 0x0136}, {7680, 0x0113}, {8192, 0x0137}, {9216, 0x0114}, {10240, 0x0115}, {12288, 0x0116}, {14336, 0x013a}, {15360, 0x0117}, {16384, 0x013b}, {18432, 0x0118}, {20480, 0x0119}, {24576, 0x011a}, {28672, 0x013e}, {30720, 0x011b}, {32768, 0x013f}, {36864, 0x011c}, {40960, 0x011d}, {49152, 0x011e}, {61440, 0x011f} }; static u32 mpc_i2c_get_sec_cfg_8xxx(void) { struct device_node *node; u32 __iomem *reg; u32 val = 0; node = of_find_node_by_name(NULL, "global-utilities"); if (node) { const u32 *prop = of_get_property(node, "reg", NULL); if (prop) { /* * Map and check POR Device Status Register 2 * (PORDEVSR2) at 0xE0014. Note than while MPC8533 * and MPC8544 indicate SEC frequency ratio * configuration as bit 26 in PORDEVSR2, other MPC8xxx * parts may store it differently or may not have it * at all. */ reg = ioremap(get_immrbase() + *prop + 0x14, 0x4); if (!reg) printk(KERN_ERR "Error: couldn't map PORDEVSR2\n"); else val = in_be32(reg) & 0x00000020; /* sec-cfg */ iounmap(reg); } } of_node_put(node); return val; } static u32 mpc_i2c_get_prescaler_8xxx(void) { /* * According to the AN2919 all MPC824x have prescaler 1, while MPC83xx * may have prescaler 1, 2, or 3, depending on the power-on * configuration. */ u32 prescaler = 1; /* mpc85xx */ if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2) || pvr_version_is(PVR_VER_E500MC) || pvr_version_is(PVR_VER_E5500) || pvr_version_is(PVR_VER_E6500)) { unsigned int svr = mfspr(SPRN_SVR); if ((SVR_SOC_VER(svr) == SVR_8540) || (SVR_SOC_VER(svr) == SVR_8541) || (SVR_SOC_VER(svr) == SVR_8560) || (SVR_SOC_VER(svr) == SVR_8555) || (SVR_SOC_VER(svr) == SVR_8610)) /* the above 85xx SoCs have prescaler 1 */ prescaler = 1; else if ((SVR_SOC_VER(svr) == SVR_8533) || (SVR_SOC_VER(svr) == SVR_8544)) /* the above 85xx SoCs have prescaler 3 or 2 */ prescaler = mpc_i2c_get_sec_cfg_8xxx() ? 3 : 2; else /* all the other 85xx have prescaler 2 */ prescaler = 2; } return prescaler; } static int mpc_i2c_get_fdr_8xxx(struct device_node *node, u32 clock, u32 *real_clk) { const struct mpc_i2c_divider *div = NULL; u32 prescaler = mpc_i2c_get_prescaler_8xxx(); u32 divider; int i; if (clock == MPC_I2C_CLOCK_LEGACY) { /* see below - default fdr = 0x1031 -> div = 16 * 3072 */ *real_clk = fsl_get_sys_freq() / prescaler / (16 * 3072); return -EINVAL; } divider = fsl_get_sys_freq() / clock / prescaler; pr_debug("I2C: src_clock=%d clock=%d divider=%d\n", fsl_get_sys_freq(), clock, divider); /* * We want to choose an FDR/DFSR that generates an I2C bus speed that * is equal to or lower than the requested speed. */ for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_8xxx); i++) { div = &mpc_i2c_dividers_8xxx[i]; if (div->divider >= divider) break; } *real_clk = fsl_get_sys_freq() / prescaler / div->divider; return (int)div->fdr; } static void mpc_i2c_setup_8xxx(struct device_node *node, struct mpc_i2c *i2c, u32 clock) { int ret, fdr; if (clock == MPC_I2C_CLOCK_PRESERVE) { dev_dbg(i2c->dev, "using dfsrr %d, fdr %d\n", readb(i2c->base + MPC_I2C_DFSRR), readb(i2c->base + MPC_I2C_FDR)); return; } ret = mpc_i2c_get_fdr_8xxx(node, clock, &i2c->real_clk); fdr = (ret >= 0) ? ret : 0x1031; /* backward compatibility */ writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR); writeb((fdr >> 8) & 0xff, i2c->base + MPC_I2C_DFSRR); if (ret >= 0) dev_info(i2c->dev, "clock %d Hz (dfsrr=%d fdr=%d)\n", i2c->real_clk, fdr >> 8, fdr & 0xff); } #else /* !CONFIG_FSL_SOC */ static void mpc_i2c_setup_8xxx(struct device_node *node, struct mpc_i2c *i2c, u32 clock) { } #endif /* CONFIG_FSL_SOC */ static void mpc_i2c_finish(struct mpc_i2c *i2c, int rc) { i2c->rc = rc; i2c->block = 0; i2c->cntl_bits = CCR_MEN; writeccr(i2c, i2c->cntl_bits); wake_up(&i2c->waitq); } static void mpc_i2c_do_action(struct mpc_i2c *i2c) { struct i2c_msg *msg = NULL; int dir = 0; int recv_len = 0; u8 byte; dev_dbg(i2c->dev, "action = %s\n", action_str[i2c->action]); i2c->cntl_bits &= ~(CCR_RSTA | CCR_MTX | CCR_TXAK); if (i2c->action != MPC_I2C_ACTION_STOP) { msg = &i2c->msgs[i2c->curr_msg]; if (msg->flags & I2C_M_RD) dir = 1; if (msg->flags & I2C_M_RECV_LEN) recv_len = 1; } switch (i2c->action) { case MPC_I2C_ACTION_RESTART: i2c->cntl_bits |= CCR_RSTA; fallthrough; case MPC_I2C_ACTION_START: i2c->cntl_bits |= CCR_MSTA | CCR_MTX; writeccr(i2c, i2c->cntl_bits); writeb((msg->addr << 1) | dir, i2c->base + MPC_I2C_DR); i2c->expect_rxack = 1; i2c->action = dir ? MPC_I2C_ACTION_READ_BEGIN : MPC_I2C_ACTION_WRITE; break; case MPC_I2C_ACTION_READ_BEGIN: if (msg->len) { if (msg->len == 1 && !(msg->flags & I2C_M_RECV_LEN)) i2c->cntl_bits |= CCR_TXAK; writeccr(i2c, i2c->cntl_bits); /* Dummy read */ readb(i2c->base + MPC_I2C_DR); } i2c->action = MPC_I2C_ACTION_READ_BYTE; break; case MPC_I2C_ACTION_READ_BYTE: if (i2c->byte_posn || !recv_len) { /* Generate Tx ACK on next to last byte */ if (i2c->byte_posn == msg->len - 2) i2c->cntl_bits |= CCR_TXAK; /* Do not generate stop on last byte */ if (i2c->byte_posn == msg->len - 1) i2c->cntl_bits |= CCR_MTX; writeccr(i2c, i2c->cntl_bits); } byte = readb(i2c->base + MPC_I2C_DR); if (i2c->byte_posn == 0 && recv_len) { if (byte == 0 || byte > I2C_SMBUS_BLOCK_MAX) { mpc_i2c_finish(i2c, -EPROTO); return; } msg->len += byte; /* * For block reads, generate Tx ACK here if data length * is 1 byte (total length is 2 bytes). */ if (msg->len == 2) { i2c->cntl_bits |= CCR_TXAK; writeccr(i2c, i2c->cntl_bits); } } dev_dbg(i2c->dev, "%s %02x\n", action_str[i2c->action], byte); msg->buf[i2c->byte_posn++] = byte; break; case MPC_I2C_ACTION_WRITE: dev_dbg(i2c->dev, "%s %02x\n", action_str[i2c->action], msg->buf[i2c->byte_posn]); writeb(msg->buf[i2c->byte_posn++], i2c->base + MPC_I2C_DR); i2c->expect_rxack = 1; break; case MPC_I2C_ACTION_STOP: mpc_i2c_finish(i2c, 0); break; default: WARN(1, "Unexpected action %d\n", i2c->action); break; } if (msg && msg->len == i2c->byte_posn) { i2c->curr_msg++; i2c->byte_posn = 0; if (i2c->curr_msg == i2c->num_msgs) { i2c->action = MPC_I2C_ACTION_STOP; /* * We don't get another interrupt on read so * finish the transfer now */ if (dir) mpc_i2c_finish(i2c, 0); } else { i2c->action = MPC_I2C_ACTION_RESTART; } } } static void mpc_i2c_do_intr(struct mpc_i2c *i2c, u8 status) { spin_lock(&i2c->lock); if (!(status & CSR_MCF)) { dev_dbg(i2c->dev, "unfinished\n"); mpc_i2c_finish(i2c, -EIO); goto out; } if (status & CSR_MAL) { dev_dbg(i2c->dev, "arbitration lost\n"); mpc_i2c_finish(i2c, -EAGAIN); goto out; } if (i2c->expect_rxack && (status & CSR_RXAK)) { dev_dbg(i2c->dev, "no Rx ACK\n"); mpc_i2c_finish(i2c, -ENXIO); goto out; } i2c->expect_rxack = 0; mpc_i2c_do_action(i2c); out: spin_unlock(&i2c->lock); } static irqreturn_t mpc_i2c_isr(int irq, void *dev_id) { struct mpc_i2c *i2c = dev_id; u8 status; status = readb(i2c->base + MPC_I2C_SR); if (status & CSR_MIF) { /* Wait up to 100us for transfer to properly complete */ readb_poll_timeout_atomic(i2c->base + MPC_I2C_SR, status, status & CSR_MCF, 0, 100); writeb(0, i2c->base + MPC_I2C_SR); mpc_i2c_do_intr(i2c, status); return IRQ_HANDLED; } return IRQ_NONE; } static int mpc_i2c_wait_for_completion(struct mpc_i2c *i2c) { long time_left; time_left = wait_event_timeout(i2c->waitq, !i2c->block, i2c->adap.timeout); if (!time_left) return -ETIMEDOUT; if (time_left < 0) return time_left; return 0; } static int mpc_i2c_execute_msg(struct mpc_i2c *i2c) { unsigned long orig_jiffies; unsigned long flags; int ret; spin_lock_irqsave(&i2c->lock, flags); i2c->curr_msg = 0; i2c->rc = 0; i2c->byte_posn = 0; i2c->block = 1; i2c->action = MPC_I2C_ACTION_START; i2c->cntl_bits = CCR_MEN | CCR_MIEN; writeb(0, i2c->base + MPC_I2C_SR); writeccr(i2c, i2c->cntl_bits); mpc_i2c_do_action(i2c); spin_unlock_irqrestore(&i2c->lock, flags); ret = mpc_i2c_wait_for_completion(i2c); if (ret) i2c->rc = ret; if (i2c->rc == -EIO || i2c->rc == -EAGAIN || i2c->rc == -ETIMEDOUT) i2c_recover_bus(&i2c->adap); orig_jiffies = jiffies; /* Wait until STOP is seen, allow up to 1 s */ while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) { if (time_after(jiffies, orig_jiffies + HZ)) { u8 status = readb(i2c->base + MPC_I2C_SR); dev_dbg(i2c->dev, "timeout\n"); if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) { writeb(status & ~CSR_MAL, i2c->base + MPC_I2C_SR); i2c_recover_bus(&i2c->adap); } return -EIO; } cond_resched(); } return i2c->rc; } static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { int rc, ret = num; struct mpc_i2c *i2c = i2c_get_adapdata(adap); int i; dev_dbg(i2c->dev, "num = %d\n", num); for (i = 0; i < num; i++) dev_dbg(i2c->dev, " addr = %02x, flags = %02x, len = %d, %*ph\n", msgs[i].addr, msgs[i].flags, msgs[i].len, msgs[i].flags & I2C_M_RD ? 0 : msgs[i].len, msgs[i].buf); WARN_ON(i2c->msgs != NULL); i2c->msgs = msgs; i2c->num_msgs = num; rc = mpc_i2c_execute_msg(i2c); if (rc < 0) ret = rc; i2c->num_msgs = 0; i2c->msgs = NULL; return ret; } static u32 mpc_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL; } static int fsl_i2c_bus_recovery(struct i2c_adapter *adap) { struct mpc_i2c *i2c = i2c_get_adapdata(adap); if (i2c->has_errata_A004447) mpc_i2c_fixup_A004447(i2c); else mpc_i2c_fixup(i2c); return 0; } static const struct i2c_algorithm mpc_algo = { .master_xfer = mpc_xfer, .functionality = mpc_functionality, }; static struct i2c_adapter mpc_ops = { .owner = THIS_MODULE, .algo = &mpc_algo, .timeout = HZ, }; static struct i2c_bus_recovery_info fsl_i2c_recovery_info = { .recover_bus = fsl_i2c_bus_recovery, }; static int fsl_i2c_probe(struct platform_device *op) { const struct mpc_i2c_data *data; struct mpc_i2c *i2c; const u32 *prop; u32 clock = MPC_I2C_CLOCK_LEGACY; int result = 0; int plen; struct clk *clk; int err; i2c = devm_kzalloc(&op->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return -ENOMEM; i2c->dev = &op->dev; /* for debug and error output */ init_waitqueue_head(&i2c->waitq); spin_lock_init(&i2c->lock); i2c->base = devm_platform_ioremap_resource(op, 0); if (IS_ERR(i2c->base)) return PTR_ERR(i2c->base); i2c->irq = platform_get_irq(op, 0); if (i2c->irq < 0) return i2c->irq; result = devm_request_irq(&op->dev, i2c->irq, mpc_i2c_isr, IRQF_SHARED, "i2c-mpc", i2c); if (result < 0) { dev_err(i2c->dev, "failed to attach interrupt\n"); return result; } /* * enable clock for the I2C peripheral (non fatal), * keep a reference upon successful allocation */ clk = devm_clk_get_optional(&op->dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); err = clk_prepare_enable(clk); if (err) { dev_err(&op->dev, "failed to enable clock\n"); return err; } i2c->clk_per = clk; if (of_property_read_bool(op->dev.of_node, "fsl,preserve-clocking")) { clock = MPC_I2C_CLOCK_PRESERVE; } else { prop = of_get_property(op->dev.of_node, "clock-frequency", &plen); if (prop && plen == sizeof(u32)) clock = *prop; } data = device_get_match_data(&op->dev); if (data) { data->setup(op->dev.of_node, i2c, clock); } else { /* Backwards compatibility */ if (of_get_property(op->dev.of_node, "dfsrr", NULL)) mpc_i2c_setup_8xxx(op->dev.of_node, i2c, clock); } prop = of_get_property(op->dev.of_node, "fsl,timeout", &plen); if (prop && plen == sizeof(u32)) { mpc_ops.timeout = *prop * HZ / 1000000; if (mpc_ops.timeout < 5) mpc_ops.timeout = 5; } dev_info(i2c->dev, "timeout %u us\n", mpc_ops.timeout * 1000000 / HZ); if (of_property_read_bool(op->dev.of_node, "fsl,i2c-erratum-a004447")) i2c->has_errata_A004447 = true; i2c->adap = mpc_ops; scnprintf(i2c->adap.name, sizeof(i2c->adap.name), "MPC adapter (%s)", of_node_full_name(op->dev.of_node)); i2c->adap.dev.parent = &op->dev; i2c->adap.nr = op->id; i2c->adap.dev.of_node = of_node_get(op->dev.of_node); i2c->adap.bus_recovery_info = &fsl_i2c_recovery_info; platform_set_drvdata(op, i2c); i2c_set_adapdata(&i2c->adap, i2c); result = i2c_add_numbered_adapter(&i2c->adap); if (result) goto fail_add; return 0; fail_add: clk_disable_unprepare(i2c->clk_per); return result; }; static int fsl_i2c_remove(struct platform_device *op) { struct mpc_i2c *i2c = platform_get_drvdata(op); i2c_del_adapter(&i2c->adap); clk_disable_unprepare(i2c->clk_per); return 0; }; static int __maybe_unused mpc_i2c_suspend(struct device *dev) { struct mpc_i2c *i2c = dev_get_drvdata(dev); i2c->fdr = readb(i2c->base + MPC_I2C_FDR); i2c->dfsrr = readb(i2c->base + MPC_I2C_DFSRR); return 0; } static int __maybe_unused mpc_i2c_resume(struct device *dev) { struct mpc_i2c *i2c = dev_get_drvdata(dev); writeb(i2c->fdr, i2c->base + MPC_I2C_FDR); writeb(i2c->dfsrr, i2c->base + MPC_I2C_DFSRR); return 0; } static SIMPLE_DEV_PM_OPS(mpc_i2c_pm_ops, mpc_i2c_suspend, mpc_i2c_resume); static const struct mpc_i2c_data mpc_i2c_data_512x = { .setup = mpc_i2c_setup_512x, }; static const struct mpc_i2c_data mpc_i2c_data_52xx = { .setup = mpc_i2c_setup_52xx, }; static const struct mpc_i2c_data mpc_i2c_data_8313 = { .setup = mpc_i2c_setup_8xxx, }; static const struct mpc_i2c_data mpc_i2c_data_8543 = { .setup = mpc_i2c_setup_8xxx, }; static const struct mpc_i2c_data mpc_i2c_data_8544 = { .setup = mpc_i2c_setup_8xxx, }; static const struct of_device_id mpc_i2c_of_match[] = { {.compatible = "mpc5200-i2c", .data = &mpc_i2c_data_52xx, }, {.compatible = "fsl,mpc5200b-i2c", .data = &mpc_i2c_data_52xx, }, {.compatible = "fsl,mpc5200-i2c", .data = &mpc_i2c_data_52xx, }, {.compatible = "fsl,mpc5121-i2c", .data = &mpc_i2c_data_512x, }, {.compatible = "fsl,mpc8313-i2c", .data = &mpc_i2c_data_8313, }, {.compatible = "fsl,mpc8543-i2c", .data = &mpc_i2c_data_8543, }, {.compatible = "fsl,mpc8544-i2c", .data = &mpc_i2c_data_8544, }, /* Backward compatibility */ {.compatible = "fsl-i2c", }, {}, }; MODULE_DEVICE_TABLE(of, mpc_i2c_of_match); /* Structure for a device driver */ static struct platform_driver mpc_i2c_driver = { .probe = fsl_i2c_probe, .remove = fsl_i2c_remove, .driver = { .name = DRV_NAME, .of_match_table = mpc_i2c_of_match, .pm = &mpc_i2c_pm_ops, }, }; module_platform_driver(mpc_i2c_driver); MODULE_AUTHOR("Adrian Cox <adrian@humboldt.co.uk>"); MODULE_DESCRIPTION("I2C-Bus adapter for MPC107 bridge and " "MPC824x/83xx/85xx/86xx/512x/52xx processors"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1