Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gerd Knorr | 2343 | 42.46% | 2 | 2.90% |
Andrew Morton | 1922 | 34.83% | 2 | 2.90% |
Mauro Carvalho Chehab | 507 | 9.19% | 16 | 23.19% |
Hans Verkuil | 292 | 5.29% | 12 | 17.39% |
Trent Piepho | 117 | 2.12% | 7 | 10.14% |
Bálint Márton | 103 | 1.87% | 1 | 1.45% |
Jorge Maidana | 40 | 0.72% | 1 | 1.45% |
Duncan Sands | 28 | 0.51% | 2 | 2.90% |
Ricardo Cerqueira | 26 | 0.47% | 1 | 1.45% |
Lawrence Rust | 20 | 0.36% | 2 | 2.90% |
Frederic Cand | 20 | 0.36% | 1 | 1.45% |
Istvan Varga | 19 | 0.34% | 3 | 4.35% |
Marcin Rudowski | 16 | 0.29% | 1 | 1.45% |
Frej Drejhammar | 14 | 0.25% | 2 | 2.90% |
Christophe Jaillet | 12 | 0.22% | 1 | 1.45% |
Ingo Molnar | 9 | 0.16% | 1 | 1.45% |
Junghak Sung | 7 | 0.13% | 2 | 2.90% |
Torsten Seeboth | 5 | 0.09% | 1 | 1.45% |
Al Viro | 4 | 0.07% | 1 | 1.45% |
Michael Ira Krufky | 3 | 0.05% | 1 | 1.45% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.45% |
Elena Reshetova | 2 | 0.04% | 1 | 1.45% |
André Goddard Rosa | 1 | 0.02% | 1 | 1.45% |
Peter Naulls | 1 | 0.02% | 1 | 1.45% |
Adrian Bunk | 1 | 0.02% | 1 | 1.45% |
Laurent Pinchart | 1 | 0.02% | 1 | 1.45% |
Michael H. Schimek | 1 | 0.02% | 1 | 1.45% |
Peter Hagervall | 1 | 0.02% | 1 | 1.45% |
Jean Delvare | 1 | 0.02% | 1 | 1.45% |
Total | 5518 | 69 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * device driver for Conexant 2388x based TV cards * driver core * * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs] * * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@kernel.org> * - Multituner support * - video_ioctl2 conversion * - PAL/M fixes */ #include "cx88.h" #include <linux/init.h> #include <linux/list.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/sound.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/videodev2.h> #include <linux/mutex.h> #include <media/v4l2-common.h> #include <media/v4l2-ioctl.h> MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards"); MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]"); MODULE_LICENSE("GPL v2"); /* ------------------------------------------------------------------ */ unsigned int cx88_core_debug; module_param_named(core_debug, cx88_core_debug, int, 0644); MODULE_PARM_DESC(core_debug, "enable debug messages [core]"); static unsigned int nicam; module_param(nicam, int, 0644); MODULE_PARM_DESC(nicam, "tv audio is nicam"); static unsigned int nocomb; module_param(nocomb, int, 0644); MODULE_PARM_DESC(nocomb, "disable comb filter"); #define dprintk0(fmt, arg...) \ printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \ __func__, ##arg) \ #define dprintk(level, fmt, arg...) do { \ if (cx88_core_debug >= level) \ printk(KERN_DEBUG pr_fmt("%s: core:" fmt), \ __func__, ##arg); \ } while (0) static unsigned int cx88_devcount; static LIST_HEAD(cx88_devlist); static DEFINE_MUTEX(devlist); #define NO_SYNC_LINE (-1U) /* * @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be * generated _after_ lpi lines are transferred. */ static __le32 *cx88_risc_field(__le32 *rp, struct scatterlist *sglist, unsigned int offset, u32 sync_line, unsigned int bpl, unsigned int padding, unsigned int lines, unsigned int lpi, bool jump) { struct scatterlist *sg; unsigned int line, todo, sol; if (jump) { (*rp++) = cpu_to_le32(RISC_JUMP); (*rp++) = 0; } /* sync instruction */ if (sync_line != NO_SYNC_LINE) *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line); /* scan lines */ sg = sglist; for (line = 0; line < lines; line++) { while (offset && offset >= sg_dma_len(sg)) { offset -= sg_dma_len(sg); sg = sg_next(sg); } if (lpi && line > 0 && !(line % lpi)) sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC; else sol = RISC_SOL; if (bpl <= sg_dma_len(sg) - offset) { /* fits into current chunk */ *(rp++) = cpu_to_le32(RISC_WRITE | sol | RISC_EOL | bpl); *(rp++) = cpu_to_le32(sg_dma_address(sg) + offset); offset += bpl; } else { /* scanline needs to be split */ todo = bpl; *(rp++) = cpu_to_le32(RISC_WRITE | sol | (sg_dma_len(sg) - offset)); *(rp++) = cpu_to_le32(sg_dma_address(sg) + offset); todo -= (sg_dma_len(sg) - offset); offset = 0; sg = sg_next(sg); while (todo > sg_dma_len(sg)) { *(rp++) = cpu_to_le32(RISC_WRITE | sg_dma_len(sg)); *(rp++) = cpu_to_le32(sg_dma_address(sg)); todo -= sg_dma_len(sg); sg = sg_next(sg); } *(rp++) = cpu_to_le32(RISC_WRITE | RISC_EOL | todo); *(rp++) = cpu_to_le32(sg_dma_address(sg)); offset += todo; } offset += padding; } return rp; } int cx88_risc_buffer(struct pci_dev *pci, struct cx88_riscmem *risc, struct scatterlist *sglist, unsigned int top_offset, unsigned int bottom_offset, unsigned int bpl, unsigned int padding, unsigned int lines) { u32 instructions, fields; __le32 *rp; fields = 0; if (top_offset != UNSET) fields++; if (bottom_offset != UNSET) fields++; /* * estimate risc mem: worst case is one write per page border + * one write per scan line + syncs + jump (all 2 dwords). Padding * can cause next bpl to start close to a page border. First DMA * region may be smaller than PAGE_SIZE */ instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines); instructions += 4; risc->size = instructions * 8; risc->dma = 0; risc->cpu = dma_alloc_coherent(&pci->dev, risc->size, &risc->dma, GFP_KERNEL); if (!risc->cpu) return -ENOMEM; /* write risc instructions */ rp = risc->cpu; if (top_offset != UNSET) rp = cx88_risc_field(rp, sglist, top_offset, 0, bpl, padding, lines, 0, true); if (bottom_offset != UNSET) rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200, bpl, padding, lines, 0, top_offset == UNSET); /* save pointer to jmp instruction address */ risc->jmp = rp; WARN_ON((risc->jmp - risc->cpu + 2) * sizeof(*risc->cpu) > risc->size); return 0; } EXPORT_SYMBOL(cx88_risc_buffer); int cx88_risc_databuffer(struct pci_dev *pci, struct cx88_riscmem *risc, struct scatterlist *sglist, unsigned int bpl, unsigned int lines, unsigned int lpi) { u32 instructions; __le32 *rp; /* * estimate risc mem: worst case is one write per page border + * one write per scan line + syncs + jump (all 2 dwords). Here * there is no padding and no sync. First DMA region may be smaller * than PAGE_SIZE */ instructions = 1 + (bpl * lines) / PAGE_SIZE + lines; instructions += 3; risc->size = instructions * 8; risc->dma = 0; risc->cpu = dma_alloc_coherent(&pci->dev, risc->size, &risc->dma, GFP_KERNEL); if (!risc->cpu) return -ENOMEM; /* write risc instructions */ rp = risc->cpu; rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi, !lpi); /* save pointer to jmp instruction address */ risc->jmp = rp; WARN_ON((risc->jmp - risc->cpu + 2) * sizeof(*risc->cpu) > risc->size); return 0; } EXPORT_SYMBOL(cx88_risc_databuffer); /* * our SRAM memory layout */ /* * we are going to put all thr risc programs into host memory, so we * can use the whole SDRAM for the DMA fifos. To simplify things, we * use a static memory layout. That surely will waste memory in case * we don't use all DMA channels at the same time (which will be the * case most of the time). But that still gives us enough FIFO space * to be able to deal with insane long pci latencies ... * * FIFO space allocations: * channel 21 (y video) - 10.0k * channel 22 (u video) - 2.0k * channel 23 (v video) - 2.0k * channel 24 (vbi) - 4.0k * channels 25+26 (audio) - 4.0k * channel 28 (mpeg) - 4.0k * channel 27 (audio rds)- 3.0k * TOTAL = 29.0k * * Every channel has 160 bytes control data (64 bytes instruction * queue and 6 CDT entries), which is close to 2k total. * * Address layout: * 0x0000 - 0x03ff CMDs / reserved * 0x0400 - 0x0bff instruction queues + CDs * 0x0c00 - FIFOs */ const struct sram_channel cx88_sram_channels[] = { [SRAM_CH21] = { .name = "video y / packed", .cmds_start = 0x180040, .ctrl_start = 0x180400, .cdt = 0x180400 + 64, .fifo_start = 0x180c00, .fifo_size = 0x002800, .ptr1_reg = MO_DMA21_PTR1, .ptr2_reg = MO_DMA21_PTR2, .cnt1_reg = MO_DMA21_CNT1, .cnt2_reg = MO_DMA21_CNT2, }, [SRAM_CH22] = { .name = "video u", .cmds_start = 0x180080, .ctrl_start = 0x1804a0, .cdt = 0x1804a0 + 64, .fifo_start = 0x183400, .fifo_size = 0x000800, .ptr1_reg = MO_DMA22_PTR1, .ptr2_reg = MO_DMA22_PTR2, .cnt1_reg = MO_DMA22_CNT1, .cnt2_reg = MO_DMA22_CNT2, }, [SRAM_CH23] = { .name = "video v", .cmds_start = 0x1800c0, .ctrl_start = 0x180540, .cdt = 0x180540 + 64, .fifo_start = 0x183c00, .fifo_size = 0x000800, .ptr1_reg = MO_DMA23_PTR1, .ptr2_reg = MO_DMA23_PTR2, .cnt1_reg = MO_DMA23_CNT1, .cnt2_reg = MO_DMA23_CNT2, }, [SRAM_CH24] = { .name = "vbi", .cmds_start = 0x180100, .ctrl_start = 0x1805e0, .cdt = 0x1805e0 + 64, .fifo_start = 0x184400, .fifo_size = 0x001000, .ptr1_reg = MO_DMA24_PTR1, .ptr2_reg = MO_DMA24_PTR2, .cnt1_reg = MO_DMA24_CNT1, .cnt2_reg = MO_DMA24_CNT2, }, [SRAM_CH25] = { .name = "audio from", .cmds_start = 0x180140, .ctrl_start = 0x180680, .cdt = 0x180680 + 64, .fifo_start = 0x185400, .fifo_size = 0x001000, .ptr1_reg = MO_DMA25_PTR1, .ptr2_reg = MO_DMA25_PTR2, .cnt1_reg = MO_DMA25_CNT1, .cnt2_reg = MO_DMA25_CNT2, }, [SRAM_CH26] = { .name = "audio to", .cmds_start = 0x180180, .ctrl_start = 0x180720, .cdt = 0x180680 + 64, /* same as audio IN */ .fifo_start = 0x185400, /* same as audio IN */ .fifo_size = 0x001000, /* same as audio IN */ .ptr1_reg = MO_DMA26_PTR1, .ptr2_reg = MO_DMA26_PTR2, .cnt1_reg = MO_DMA26_CNT1, .cnt2_reg = MO_DMA26_CNT2, }, [SRAM_CH28] = { .name = "mpeg", .cmds_start = 0x180200, .ctrl_start = 0x1807C0, .cdt = 0x1807C0 + 64, .fifo_start = 0x186400, .fifo_size = 0x001000, .ptr1_reg = MO_DMA28_PTR1, .ptr2_reg = MO_DMA28_PTR2, .cnt1_reg = MO_DMA28_CNT1, .cnt2_reg = MO_DMA28_CNT2, }, [SRAM_CH27] = { .name = "audio rds", .cmds_start = 0x1801C0, .ctrl_start = 0x180860, .cdt = 0x180860 + 64, .fifo_start = 0x187400, .fifo_size = 0x000C00, .ptr1_reg = MO_DMA27_PTR1, .ptr2_reg = MO_DMA27_PTR2, .cnt1_reg = MO_DMA27_CNT1, .cnt2_reg = MO_DMA27_CNT2, }, }; EXPORT_SYMBOL(cx88_sram_channels); int cx88_sram_channel_setup(struct cx88_core *core, const struct sram_channel *ch, unsigned int bpl, u32 risc) { unsigned int i, lines; u32 cdt; bpl = (bpl + 7) & ~7; /* alignment */ cdt = ch->cdt; lines = ch->fifo_size / bpl; if (lines > 6) lines = 6; WARN_ON(lines < 2); /* write CDT */ for (i = 0; i < lines; i++) cx_write(cdt + 16 * i, ch->fifo_start + bpl * i); /* write CMDS */ cx_write(ch->cmds_start + 0, risc); cx_write(ch->cmds_start + 4, cdt); cx_write(ch->cmds_start + 8, (lines * 16) >> 3); cx_write(ch->cmds_start + 12, ch->ctrl_start); cx_write(ch->cmds_start + 16, 64 >> 2); for (i = 20; i < 64; i += 4) cx_write(ch->cmds_start + i, 0); /* fill registers */ cx_write(ch->ptr1_reg, ch->fifo_start); cx_write(ch->ptr2_reg, cdt); cx_write(ch->cnt1_reg, (bpl >> 3) - 1); cx_write(ch->cnt2_reg, (lines * 16) >> 3); dprintk(2, "sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines); return 0; } EXPORT_SYMBOL(cx88_sram_channel_setup); /* ------------------------------------------------------------------ */ /* debug helper code */ static int cx88_risc_decode(u32 risc) { static const char * const instr[16] = { [RISC_SYNC >> 28] = "sync", [RISC_WRITE >> 28] = "write", [RISC_WRITEC >> 28] = "writec", [RISC_READ >> 28] = "read", [RISC_READC >> 28] = "readc", [RISC_JUMP >> 28] = "jump", [RISC_SKIP >> 28] = "skip", [RISC_WRITERM >> 28] = "writerm", [RISC_WRITECM >> 28] = "writecm", [RISC_WRITECR >> 28] = "writecr", }; static int const incr[16] = { [RISC_WRITE >> 28] = 2, [RISC_JUMP >> 28] = 2, [RISC_WRITERM >> 28] = 3, [RISC_WRITECM >> 28] = 3, [RISC_WRITECR >> 28] = 4, }; static const char * const bits[] = { "12", "13", "14", "resync", "cnt0", "cnt1", "18", "19", "20", "21", "22", "23", "irq1", "irq2", "eol", "sol", }; int i; dprintk0("0x%08x [ %s", risc, instr[risc >> 28] ? instr[risc >> 28] : "INVALID"); for (i = ARRAY_SIZE(bits) - 1; i >= 0; i--) if (risc & (1 << (i + 12))) pr_cont(" %s", bits[i]); pr_cont(" count=%d ]\n", risc & 0xfff); return incr[risc >> 28] ? incr[risc >> 28] : 1; } void cx88_sram_channel_dump(struct cx88_core *core, const struct sram_channel *ch) { static const char * const name[] = { "initial risc", "cdt base", "cdt size", "iq base", "iq size", "risc pc", "iq wr ptr", "iq rd ptr", "cdt current", "pci target", "line / byte", }; u32 risc; unsigned int i, j, n; dprintk0("%s - dma channel status dump\n", ch->name); for (i = 0; i < ARRAY_SIZE(name); i++) dprintk0(" cmds: %-12s: 0x%08x\n", name[i], cx_read(ch->cmds_start + 4 * i)); for (n = 1, i = 0; i < 4; i++) { risc = cx_read(ch->cmds_start + 4 * (i + 11)); pr_cont(" risc%d: ", i); if (--n) pr_cont("0x%08x [ arg #%d ]\n", risc, n); else n = cx88_risc_decode(risc); } for (i = 0; i < 16; i += n) { risc = cx_read(ch->ctrl_start + 4 * i); dprintk0(" iq %x: ", i); n = cx88_risc_decode(risc); for (j = 1; j < n; j++) { risc = cx_read(ch->ctrl_start + 4 * (i + j)); pr_cont(" iq %x: 0x%08x [ arg #%d ]\n", i + j, risc, j); } } dprintk0("fifo: 0x%08x -> 0x%x\n", ch->fifo_start, ch->fifo_start + ch->fifo_size); dprintk0("ctrl: 0x%08x -> 0x%x\n", ch->ctrl_start, ch->ctrl_start + 6 * 16); dprintk0(" ptr1_reg: 0x%08x\n", cx_read(ch->ptr1_reg)); dprintk0(" ptr2_reg: 0x%08x\n", cx_read(ch->ptr2_reg)); dprintk0(" cnt1_reg: 0x%08x\n", cx_read(ch->cnt1_reg)); dprintk0(" cnt2_reg: 0x%08x\n", cx_read(ch->cnt2_reg)); } EXPORT_SYMBOL(cx88_sram_channel_dump); static const char *cx88_pci_irqs[32] = { "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1", "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err", "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err", "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1" }; void cx88_print_irqbits(const char *tag, const char *strings[], int len, u32 bits, u32 mask) { unsigned int i; dprintk0("%s [0x%x]", tag, bits); for (i = 0; i < len; i++) { if (!(bits & (1 << i))) continue; if (strings[i]) pr_cont(" %s", strings[i]); else pr_cont(" %d", i); if (!(mask & (1 << i))) continue; pr_cont("*"); } pr_cont("\n"); } EXPORT_SYMBOL(cx88_print_irqbits); /* ------------------------------------------------------------------ */ int cx88_core_irq(struct cx88_core *core, u32 status) { int handled = 0; if (status & PCI_INT_IR_SMPINT) { cx88_ir_irq(core); handled++; } if (!handled) cx88_print_irqbits("irq pci", cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs), status, core->pci_irqmask); return handled; } EXPORT_SYMBOL(cx88_core_irq); void cx88_wakeup(struct cx88_core *core, struct cx88_dmaqueue *q, u32 count) { struct cx88_buffer *buf; buf = list_entry(q->active.next, struct cx88_buffer, list); buf->vb.vb2_buf.timestamp = ktime_get_ns(); buf->vb.field = core->field; buf->vb.sequence = q->count++; list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); } EXPORT_SYMBOL(cx88_wakeup); void cx88_shutdown(struct cx88_core *core) { /* disable RISC controller + IRQs */ cx_write(MO_DEV_CNTRL2, 0); /* stop dma transfers */ cx_write(MO_VID_DMACNTRL, 0x0); cx_write(MO_AUD_DMACNTRL, 0x0); cx_write(MO_TS_DMACNTRL, 0x0); cx_write(MO_VIP_DMACNTRL, 0x0); cx_write(MO_GPHST_DMACNTRL, 0x0); /* stop interrupts */ cx_write(MO_PCI_INTMSK, 0x0); cx_write(MO_VID_INTMSK, 0x0); cx_write(MO_AUD_INTMSK, 0x0); cx_write(MO_TS_INTMSK, 0x0); cx_write(MO_VIP_INTMSK, 0x0); cx_write(MO_GPHST_INTMSK, 0x0); /* stop capturing */ cx_write(VID_CAPTURE_CONTROL, 0); } EXPORT_SYMBOL(cx88_shutdown); int cx88_reset(struct cx88_core *core) { dprintk(1, ""); cx88_shutdown(core); /* clear irq status */ cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int /* wait a bit */ msleep(100); /* init sram */ cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720 * 4, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188 * 4, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0); /* misc init ... */ cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable (1 << 12) | // agc gain (1 << 11) | // adaptibe agc (0 << 10) | // chroma agc (0 << 9) | // ckillen (7))); /* setup image format */ cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000); /* setup FIFO Thresholds */ cx_write(MO_PDMA_STHRSH, 0x0807); cx_write(MO_PDMA_DTHRSH, 0x0807); /* fixes flashing of image */ cx_write(MO_AGC_SYNC_TIP1, 0x0380000F); cx_write(MO_AGC_BACK_VBI, 0x00E00555); cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int /* Reset on-board parts */ cx_write(MO_SRST_IO, 0); usleep_range(10000, 20000); cx_write(MO_SRST_IO, 1); return 0; } EXPORT_SYMBOL(cx88_reset); /* ------------------------------------------------------------------ */ static inline unsigned int norm_swidth(v4l2_std_id norm) { if (norm & (V4L2_STD_NTSC | V4L2_STD_PAL_M)) return 754; if (norm & V4L2_STD_PAL_Nc) return 745; return 922; } static inline unsigned int norm_hdelay(v4l2_std_id norm) { if (norm & (V4L2_STD_NTSC | V4L2_STD_PAL_M)) return 135; if (norm & V4L2_STD_PAL_Nc) return 149; return 186; } static inline unsigned int norm_vdelay(v4l2_std_id norm) { return (norm & V4L2_STD_625_50) ? 0x24 : 0x18; } static inline unsigned int norm_fsc8(v4l2_std_id norm) { if (norm & V4L2_STD_PAL_M) return 28604892; // 3.575611 MHz if (norm & V4L2_STD_PAL_Nc) return 28656448; // 3.582056 MHz if (norm & V4L2_STD_NTSC) // All NTSC/M and variants return 28636360; // 3.57954545 MHz +/- 10 Hz /* * SECAM have also different sub carrier for chroma, * but step_db and step_dr, at cx88_set_tvnorm already handles that. * * The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N */ return 35468950; // 4.43361875 MHz +/- 5 Hz } static inline unsigned int norm_htotal(v4l2_std_id norm) { unsigned int fsc4 = norm_fsc8(norm) / 2; /* returns 4*FSC / vtotal / frames per seconds */ return (norm & V4L2_STD_625_50) ? ((fsc4 + 312) / 625 + 12) / 25 : ((fsc4 + 262) / 525 * 1001 + 15000) / 30000; } static inline unsigned int norm_vbipack(v4l2_std_id norm) { return (norm & V4L2_STD_625_50) ? 511 : 400; } int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height, enum v4l2_field field) { unsigned int swidth = norm_swidth(core->tvnorm); unsigned int sheight = norm_maxh(core->tvnorm); u32 value; dprintk(1, "set_scale: %dx%d [%s%s,%s]\n", width, height, V4L2_FIELD_HAS_TOP(field) ? "T" : "", V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "", v4l2_norm_to_name(core->tvnorm)); if (!V4L2_FIELD_HAS_BOTH(field)) height *= 2; // recalc H delay and scale registers value = (width * norm_hdelay(core->tvnorm)) / swidth; value &= 0x3fe; cx_write(MO_HDELAY_EVEN, value); cx_write(MO_HDELAY_ODD, value); dprintk(1, "set_scale: hdelay 0x%04x (width %d)\n", value, swidth); value = (swidth * 4096 / width) - 4096; cx_write(MO_HSCALE_EVEN, value); cx_write(MO_HSCALE_ODD, value); dprintk(1, "set_scale: hscale 0x%04x\n", value); cx_write(MO_HACTIVE_EVEN, width); cx_write(MO_HACTIVE_ODD, width); dprintk(1, "set_scale: hactive 0x%04x\n", width); // recalc V scale Register (delay is constant) cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm)); cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm)); dprintk(1, "set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm)); value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff; cx_write(MO_VSCALE_EVEN, value); cx_write(MO_VSCALE_ODD, value); dprintk(1, "set_scale: vscale 0x%04x\n", value); cx_write(MO_VACTIVE_EVEN, sheight); cx_write(MO_VACTIVE_ODD, sheight); dprintk(1, "set_scale: vactive 0x%04x\n", sheight); // setup filters value = 0; value |= (1 << 19); // CFILT (default) if (core->tvnorm & V4L2_STD_SECAM) { value |= (1 << 15); value |= (1 << 16); } if (INPUT(core->input).type == CX88_VMUX_SVIDEO) value |= (1 << 13) | (1 << 5); if (field == V4L2_FIELD_INTERLACED) value |= (1 << 3); // VINT (interlaced vertical scaling) if (width < 385) value |= (1 << 0); // 3-tap interpolation if (width < 193) value |= (1 << 1); // 5-tap interpolation if (nocomb) value |= (3 << 5); // disable comb filter cx_andor(MO_FILTER_EVEN, 0x7ffc7f, value); /* preserve PEAKEN, PSEL */ cx_andor(MO_FILTER_ODD, 0x7ffc7f, value); dprintk(1, "set_scale: filter 0x%04x\n", value); return 0; } EXPORT_SYMBOL(cx88_set_scale); static const u32 xtal = 28636363; static int set_pll(struct cx88_core *core, int prescale, u32 ofreq) { static const u32 pre[] = { 0, 0, 0, 3, 2, 1 }; u64 pll; u32 reg; int i; if (prescale < 2) prescale = 2; if (prescale > 5) prescale = 5; pll = ofreq * 8 * prescale * (u64)(1 << 20); do_div(pll, xtal); reg = (pll & 0x3ffffff) | (pre[prescale] << 26); if (((reg >> 20) & 0x3f) < 14) { pr_err("pll out of range\n"); return -1; } dprintk(1, "set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n", reg, cx_read(MO_PLL_REG), ofreq); cx_write(MO_PLL_REG, reg); for (i = 0; i < 100; i++) { reg = cx_read(MO_DEVICE_STATUS); if (reg & (1 << 2)) { dprintk(1, "pll locked [pre=%d,ofreq=%d]\n", prescale, ofreq); return 0; } dprintk(1, "pll not locked yet, waiting ...\n"); usleep_range(10000, 20000); } dprintk(1, "pll NOT locked [pre=%d,ofreq=%d]\n", prescale, ofreq); return -1; } int cx88_start_audio_dma(struct cx88_core *core) { /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */ int bpl = cx88_sram_channels[SRAM_CH25].fifo_size / 4; int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size / AUD_RDS_LINES; /* If downstream RISC is enabled, bail out; ALSA is managing DMA */ if (cx_read(MO_AUD_DMACNTRL) & 0x10) return 0; /* setup fifo + format */ cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0); cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], rds_bpl, 0); cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */ cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */ /* enable Up, Down and Audio RDS fifo */ cx_write(MO_AUD_DMACNTRL, 0x0007); return 0; } int cx88_stop_audio_dma(struct cx88_core *core) { /* If downstream RISC is enabled, bail out; ALSA is managing DMA */ if (cx_read(MO_AUD_DMACNTRL) & 0x10) return 0; /* stop dma */ cx_write(MO_AUD_DMACNTRL, 0x0000); return 0; } static int set_tvaudio(struct cx88_core *core) { v4l2_std_id norm = core->tvnorm; if (INPUT(core->input).type != CX88_VMUX_TELEVISION && INPUT(core->input).type != CX88_VMUX_CABLE) return 0; if (V4L2_STD_PAL_BG & norm) { core->tvaudio = WW_BG; } else if (V4L2_STD_PAL_DK & norm) { core->tvaudio = WW_DK; } else if (V4L2_STD_PAL_I & norm) { core->tvaudio = WW_I; } else if (V4L2_STD_SECAM_L & norm) { core->tvaudio = WW_L; } else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) & norm) { core->tvaudio = WW_BG; } else if (V4L2_STD_SECAM_DK & norm) { core->tvaudio = WW_DK; } else if ((V4L2_STD_NTSC_M | V4L2_STD_PAL_M | V4L2_STD_PAL_Nc) & norm) { core->tvaudio = WW_BTSC; } else if (V4L2_STD_NTSC_M_JP & norm) { core->tvaudio = WW_EIAJ; } else { pr_info("tvaudio support needs work for this tv norm [%s], sorry\n", v4l2_norm_to_name(core->tvnorm)); core->tvaudio = WW_NONE; return 0; } cx_andor(MO_AFECFG_IO, 0x1f, 0x0); cx88_set_tvaudio(core); /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */ /* * This should be needed only on cx88-alsa. It seems that some cx88 chips have * bugs and does require DMA enabled for it to work. */ cx88_start_audio_dma(core); return 0; } int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm) { u32 fsc8; u32 adc_clock; u32 vdec_clock; u32 step_db, step_dr; u64 tmp64; u32 bdelay, agcdelay, htotal; u32 cxiformat, cxoformat; if (norm == core->tvnorm) return 0; if (core->v4ldev && (vb2_is_busy(&core->v4ldev->vb2_vidq) || vb2_is_busy(&core->v4ldev->vb2_vbiq))) return -EBUSY; if (core->dvbdev && vb2_is_busy(&core->dvbdev->vb2_mpegq)) return -EBUSY; core->tvnorm = norm; fsc8 = norm_fsc8(norm); adc_clock = xtal; vdec_clock = fsc8; step_db = fsc8; step_dr = fsc8; if (norm & V4L2_STD_NTSC_M_JP) { cxiformat = VideoFormatNTSCJapan; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_NTSC_443) { cxiformat = VideoFormatNTSC443; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_PAL_M) { cxiformat = VideoFormatPALM; cxoformat = 0x1c1f0008; } else if (norm & V4L2_STD_PAL_N) { cxiformat = VideoFormatPALN; cxoformat = 0x1c1f0008; } else if (norm & V4L2_STD_PAL_Nc) { cxiformat = VideoFormatPALNC; cxoformat = 0x1c1f0008; } else if (norm & V4L2_STD_PAL_60) { cxiformat = VideoFormatPAL60; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_NTSC) { cxiformat = VideoFormatNTSC; cxoformat = 0x181f0008; } else if (norm & V4L2_STD_SECAM) { step_db = 4250000 * 8; step_dr = 4406250 * 8; cxiformat = VideoFormatSECAM; cxoformat = 0x181f0008; } else { /* PAL */ cxiformat = VideoFormatPAL; cxoformat = 0x181f0008; } dprintk(1, "set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n", v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock, step_db, step_dr); set_pll(core, 2, vdec_clock); dprintk(1, "set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n", cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f); /* * Chroma AGC must be disabled if SECAM is used, we enable it * by default on PAL and NTSC */ cx_andor(MO_INPUT_FORMAT, 0x40f, norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400); // FIXME: as-is from DScaler dprintk(1, "set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n", cxoformat, cx_read(MO_OUTPUT_FORMAT)); cx_write(MO_OUTPUT_FORMAT, cxoformat); // MO_SCONV_REG = adc clock / video dec clock * 2^17 tmp64 = adc_clock * (u64)(1 << 17); do_div(tmp64, vdec_clock); dprintk(1, "set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n", (u32)tmp64, cx_read(MO_SCONV_REG)); cx_write(MO_SCONV_REG, (u32)tmp64); // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22 tmp64 = step_db * (u64)(1 << 22); do_div(tmp64, vdec_clock); dprintk(1, "set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n", (u32)tmp64, cx_read(MO_SUB_STEP)); cx_write(MO_SUB_STEP, (u32)tmp64); // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22 tmp64 = step_dr * (u64)(1 << 22); do_div(tmp64, vdec_clock); dprintk(1, "set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n", (u32)tmp64, cx_read(MO_SUB_STEP_DR)); cx_write(MO_SUB_STEP_DR, (u32)tmp64); // bdelay + agcdelay bdelay = vdec_clock * 65 / 20000000 + 21; agcdelay = vdec_clock * 68 / 20000000 + 15; dprintk(1, "set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n", (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay); cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay); // htotal tmp64 = norm_htotal(norm) * (u64)vdec_clock; do_div(tmp64, fsc8); htotal = (u32)tmp64; dprintk(1, "set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n", htotal, cx_read(MO_HTOTAL), (u32)tmp64); cx_andor(MO_HTOTAL, 0x07ff, htotal); // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes // the effective vbi offset ~244 samples, the same as the Bt8x8 cx_write(MO_VBI_PACKET, (10 << 11) | norm_vbipack(norm)); // this is needed as well to set all tvnorm parameter cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED); // audio set_tvaudio(core); // tell i2c chips call_all(core, video, s_std, norm); /* * The chroma_agc control should be inaccessible * if the video format is SECAM */ v4l2_ctrl_grab(core->chroma_agc, cxiformat == VideoFormatSECAM); // done return 0; } EXPORT_SYMBOL(cx88_set_tvnorm); /* ------------------------------------------------------------------ */ void cx88_vdev_init(struct cx88_core *core, struct pci_dev *pci, struct video_device *vfd, const struct video_device *template_, const char *type) { *vfd = *template_; /* * The dev pointer of v4l2_device is NULL, instead we set the * video_device dev_parent pointer to the correct PCI bus device. * This driver is a rare example where there is one v4l2_device, * but the video nodes have different parent (PCI) devices. */ vfd->v4l2_dev = &core->v4l2_dev; vfd->dev_parent = &pci->dev; vfd->release = video_device_release_empty; vfd->lock = &core->lock; snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)", core->name, type, core->board.name); } EXPORT_SYMBOL(cx88_vdev_init); struct cx88_core *cx88_core_get(struct pci_dev *pci) { struct cx88_core *core; mutex_lock(&devlist); list_for_each_entry(core, &cx88_devlist, devlist) { if (pci->bus->number != core->pci_bus) continue; if (PCI_SLOT(pci->devfn) != core->pci_slot) continue; if (cx88_get_resources(core, pci) != 0) { mutex_unlock(&devlist); return NULL; } refcount_inc(&core->refcount); mutex_unlock(&devlist); return core; } core = cx88_core_create(pci, cx88_devcount); if (core) { cx88_devcount++; list_add_tail(&core->devlist, &cx88_devlist); } mutex_unlock(&devlist); return core; } EXPORT_SYMBOL(cx88_core_get); void cx88_core_put(struct cx88_core *core, struct pci_dev *pci) { release_mem_region(pci_resource_start(pci, 0), pci_resource_len(pci, 0)); if (!refcount_dec_and_test(&core->refcount)) return; mutex_lock(&devlist); cx88_ir_fini(core); if (core->i2c_rc == 0) { i2c_unregister_device(core->i2c_rtc); i2c_del_adapter(&core->i2c_adap); } list_del(&core->devlist); iounmap(core->lmmio); cx88_devcount--; mutex_unlock(&devlist); v4l2_ctrl_handler_free(&core->video_hdl); v4l2_ctrl_handler_free(&core->audio_hdl); v4l2_device_unregister(&core->v4l2_dev); kfree(core); } EXPORT_SYMBOL(cx88_core_put);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1