Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 4200 | 62.60% | 50 | 66.67% |
Rui Miguel Silva | 2022 | 30.14% | 1 | 1.33% |
Jacopo Mondi | 304 | 4.53% | 10 | 13.33% |
Steve Longerbeam | 98 | 1.46% | 4 | 5.33% |
Alexander Stein | 40 | 0.60% | 1 | 1.33% |
Tomi Valkeinen | 19 | 0.28% | 1 | 1.33% |
Sakari Ailus | 7 | 0.10% | 1 | 1.33% |
Fabio Estevam | 6 | 0.09% | 1 | 1.33% |
Wei Yongjun | 5 | 0.07% | 1 | 1.33% |
Arnd Bergmann | 3 | 0.04% | 1 | 1.33% |
Tom Rix | 2 | 0.03% | 1 | 1.33% |
Chuhong Yuan | 1 | 0.01% | 1 | 1.33% |
Wolfram Sang | 1 | 0.01% | 1 | 1.33% |
Mauro Carvalho Chehab | 1 | 0.01% | 1 | 1.33% |
Total | 6709 | 75 |
// SPDX-License-Identifier: GPL-2.0 /* * Samsung CSIS MIPI CSI-2 receiver driver. * * The Samsung CSIS IP is a MIPI CSI-2 receiver found in various NXP i.MX7 and * i.MX8 SoCs. The i.MX7 features version 3.3 of the IP, while i.MX8 features * version 3.6.3. * * Copyright (C) 2019 Linaro Ltd * Copyright (C) 2015-2016 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright (C) 2011 - 2013 Samsung Electronics Co., Ltd. * */ #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/spinlock.h> #include <media/v4l2-common.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-mc.h> #include <media/v4l2-subdev.h> #define CSIS_DRIVER_NAME "imx-mipi-csis" #define CSIS_PAD_SINK 0 #define CSIS_PAD_SOURCE 1 #define CSIS_PADS_NUM 2 #define MIPI_CSIS_DEF_PIX_WIDTH 640 #define MIPI_CSIS_DEF_PIX_HEIGHT 480 /* Register map definition */ /* CSIS version */ #define MIPI_CSIS_VERSION 0x00 #define MIPI_CSIS_VERSION_IMX7D 0x03030505 #define MIPI_CSIS_VERSION_IMX8MP 0x03060301 /* CSIS common control */ #define MIPI_CSIS_CMN_CTRL 0x04 #define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW BIT(16) #define MIPI_CSIS_CMN_CTRL_INTER_MODE BIT(10) #define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL BIT(2) #define MIPI_CSIS_CMN_CTRL_RESET BIT(1) #define MIPI_CSIS_CMN_CTRL_ENABLE BIT(0) #define MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET 8 #define MIPI_CSIS_CMN_CTRL_LANE_NR_MASK (3 << 8) /* CSIS clock control */ #define MIPI_CSIS_CLK_CTRL 0x08 #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH3(x) ((x) << 28) #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH2(x) ((x) << 24) #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH1(x) ((x) << 20) #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(x) ((x) << 16) #define MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK (0xf << 4) #define MIPI_CSIS_CLK_CTRL_WCLK_SRC BIT(0) /* CSIS Interrupt mask */ #define MIPI_CSIS_INT_MSK 0x10 #define MIPI_CSIS_INT_MSK_EVEN_BEFORE BIT(31) #define MIPI_CSIS_INT_MSK_EVEN_AFTER BIT(30) #define MIPI_CSIS_INT_MSK_ODD_BEFORE BIT(29) #define MIPI_CSIS_INT_MSK_ODD_AFTER BIT(28) #define MIPI_CSIS_INT_MSK_FRAME_START BIT(24) #define MIPI_CSIS_INT_MSK_FRAME_END BIT(20) #define MIPI_CSIS_INT_MSK_ERR_SOT_HS BIT(16) #define MIPI_CSIS_INT_MSK_ERR_LOST_FS BIT(12) #define MIPI_CSIS_INT_MSK_ERR_LOST_FE BIT(8) #define MIPI_CSIS_INT_MSK_ERR_OVER BIT(4) #define MIPI_CSIS_INT_MSK_ERR_WRONG_CFG BIT(3) #define MIPI_CSIS_INT_MSK_ERR_ECC BIT(2) #define MIPI_CSIS_INT_MSK_ERR_CRC BIT(1) #define MIPI_CSIS_INT_MSK_ERR_UNKNOWN BIT(0) /* CSIS Interrupt source */ #define MIPI_CSIS_INT_SRC 0x14 #define MIPI_CSIS_INT_SRC_EVEN_BEFORE BIT(31) #define MIPI_CSIS_INT_SRC_EVEN_AFTER BIT(30) #define MIPI_CSIS_INT_SRC_EVEN BIT(30) #define MIPI_CSIS_INT_SRC_ODD_BEFORE BIT(29) #define MIPI_CSIS_INT_SRC_ODD_AFTER BIT(28) #define MIPI_CSIS_INT_SRC_ODD (0x3 << 28) #define MIPI_CSIS_INT_SRC_NON_IMAGE_DATA (0xf << 28) #define MIPI_CSIS_INT_SRC_FRAME_START BIT(24) #define MIPI_CSIS_INT_SRC_FRAME_END BIT(20) #define MIPI_CSIS_INT_SRC_ERR_SOT_HS BIT(16) #define MIPI_CSIS_INT_SRC_ERR_LOST_FS BIT(12) #define MIPI_CSIS_INT_SRC_ERR_LOST_FE BIT(8) #define MIPI_CSIS_INT_SRC_ERR_OVER BIT(4) #define MIPI_CSIS_INT_SRC_ERR_WRONG_CFG BIT(3) #define MIPI_CSIS_INT_SRC_ERR_ECC BIT(2) #define MIPI_CSIS_INT_SRC_ERR_CRC BIT(1) #define MIPI_CSIS_INT_SRC_ERR_UNKNOWN BIT(0) #define MIPI_CSIS_INT_SRC_ERRORS 0xfffff /* D-PHY status control */ #define MIPI_CSIS_DPHY_STATUS 0x20 #define MIPI_CSIS_DPHY_STATUS_ULPS_DAT BIT(8) #define MIPI_CSIS_DPHY_STATUS_STOPSTATE_DAT BIT(4) #define MIPI_CSIS_DPHY_STATUS_ULPS_CLK BIT(1) #define MIPI_CSIS_DPHY_STATUS_STOPSTATE_CLK BIT(0) /* D-PHY common control */ #define MIPI_CSIS_DPHY_CMN_CTRL 0x24 #define MIPI_CSIS_DPHY_CMN_CTRL_HSSETTLE(n) ((n) << 24) #define MIPI_CSIS_DPHY_CMN_CTRL_HSSETTLE_MASK GENMASK(31, 24) #define MIPI_CSIS_DPHY_CMN_CTRL_CLKSETTLE(n) ((n) << 22) #define MIPI_CSIS_DPHY_CMN_CTRL_CLKSETTLE_MASK GENMASK(23, 22) #define MIPI_CSIS_DPHY_CMN_CTRL_DPDN_SWAP_CLK BIT(6) #define MIPI_CSIS_DPHY_CMN_CTRL_DPDN_SWAP_DAT BIT(5) #define MIPI_CSIS_DPHY_CMN_CTRL_ENABLE_DAT BIT(1) #define MIPI_CSIS_DPHY_CMN_CTRL_ENABLE_CLK BIT(0) #define MIPI_CSIS_DPHY_CMN_CTRL_ENABLE (0x1f << 0) /* D-PHY Master and Slave Control register Low */ #define MIPI_CSIS_DPHY_BCTRL_L 0x30 #define MIPI_CSIS_DPHY_BCTRL_L_USER_DATA_PATTERN_LOW(n) (((n) & 3U) << 30) #define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_715MV (0 << 28) #define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_724MV (1 << 28) #define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_733MV (2 << 28) #define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_706MV (3 << 28) #define MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_FREQ_3MHZ (0 << 27) #define MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_FREQ_1_5MHZ (1 << 27) #define MIPI_CSIS_DPHY_BCTRL_L_VREG12_EXTPWR_EN_CTL BIT(26) #define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_2V (0 << 24) #define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_23V (1 << 24) #define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_17V (2 << 24) #define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_26V (3 << 24) #define MIPI_CSIS_DPHY_BCTRL_L_REG_1P2_LVL_SEL BIT(23) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_80MV (0 << 21) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_100MV (1 << 21) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_120MV (2 << 21) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_140MV (3 << 21) #define MIPI_CSIS_DPHY_BCTRL_L_VREF_SRC_SEL BIT(20) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_715MV (0 << 18) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_743MV (1 << 18) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_650MV (2 << 18) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_682MV (3 << 18) #define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_PULSE_REJECT BIT(17) #define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_DOWN_0 (0 << 15) #define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_DOWN_15P (1 << 15) #define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_DOWN_30P (3 << 15) #define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_UP BIT(14) #define MIPI_CSIS_DPHY_BCTRL_L_LP_CD_HYS_60MV (0 << 13) #define MIPI_CSIS_DPHY_BCTRL_L_LP_CD_HYS_70MV (1 << 13) #define MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_EN BIT(12) #define MIPI_CSIS_DPHY_BCTRL_L_ERRCONTENTION_LP_EN BIT(11) #define MIPI_CSIS_DPHY_BCTRL_L_TXTRIGGER_CLK_EN BIT(10) #define MIPI_CSIS_DPHY_BCTRL_L_B_DPHYCTRL(n) (((n) * 25 / 1000000) << 0) /* D-PHY Master and Slave Control register High */ #define MIPI_CSIS_DPHY_BCTRL_H 0x34 /* D-PHY Slave Control register Low */ #define MIPI_CSIS_DPHY_SCTRL_L 0x38 /* D-PHY Slave Control register High */ #define MIPI_CSIS_DPHY_SCTRL_H 0x3c /* ISP Configuration register */ #define MIPI_CSIS_ISP_CONFIG_CH(n) (0x40 + (n) * 0x10) #define MIPI_CSIS_ISPCFG_MEM_FULL_GAP_MSK (0xff << 24) #define MIPI_CSIS_ISPCFG_MEM_FULL_GAP(x) ((x) << 24) #define MIPI_CSIS_ISPCFG_PIXEL_MODE_SINGLE (0 << 12) #define MIPI_CSIS_ISPCFG_PIXEL_MODE_DUAL (1 << 12) #define MIPI_CSIS_ISPCFG_PIXEL_MODE_QUAD (2 << 12) /* i.MX8M[MNP] only */ #define MIPI_CSIS_ISPCFG_PIXEL_MASK (3 << 12) #define MIPI_CSIS_ISPCFG_ALIGN_32BIT BIT(11) #define MIPI_CSIS_ISPCFG_FMT(fmt) ((fmt) << 2) #define MIPI_CSIS_ISPCFG_FMT_MASK (0x3f << 2) /* ISP Image Resolution register */ #define MIPI_CSIS_ISP_RESOL_CH(n) (0x44 + (n) * 0x10) #define CSIS_MAX_PIX_WIDTH 0xffff #define CSIS_MAX_PIX_HEIGHT 0xffff /* ISP SYNC register */ #define MIPI_CSIS_ISP_SYNC_CH(n) (0x48 + (n) * 0x10) #define MIPI_CSIS_ISP_SYNC_HSYNC_LINTV_OFFSET 18 #define MIPI_CSIS_ISP_SYNC_VSYNC_SINTV_OFFSET 12 #define MIPI_CSIS_ISP_SYNC_VSYNC_EINTV_OFFSET 0 /* ISP shadow registers */ #define MIPI_CSIS_SDW_CONFIG_CH(n) (0x80 + (n) * 0x10) #define MIPI_CSIS_SDW_RESOL_CH(n) (0x84 + (n) * 0x10) #define MIPI_CSIS_SDW_SYNC_CH(n) (0x88 + (n) * 0x10) /* Debug control register */ #define MIPI_CSIS_DBG_CTRL 0xc0 #define MIPI_CSIS_DBG_INTR_MSK 0xc4 #define MIPI_CSIS_DBG_INTR_MSK_DT_NOT_SUPPORT BIT(25) #define MIPI_CSIS_DBG_INTR_MSK_DT_IGNORE BIT(24) #define MIPI_CSIS_DBG_INTR_MSK_ERR_FRAME_SIZE BIT(20) #define MIPI_CSIS_DBG_INTR_MSK_TRUNCATED_FRAME BIT(16) #define MIPI_CSIS_DBG_INTR_MSK_EARLY_FE BIT(12) #define MIPI_CSIS_DBG_INTR_MSK_EARLY_FS BIT(8) #define MIPI_CSIS_DBG_INTR_MSK_CAM_VSYNC_FALL BIT(4) #define MIPI_CSIS_DBG_INTR_MSK_CAM_VSYNC_RISE BIT(0) #define MIPI_CSIS_DBG_INTR_SRC 0xc8 #define MIPI_CSIS_DBG_INTR_SRC_DT_NOT_SUPPORT BIT(25) #define MIPI_CSIS_DBG_INTR_SRC_DT_IGNORE BIT(24) #define MIPI_CSIS_DBG_INTR_SRC_ERR_FRAME_SIZE BIT(20) #define MIPI_CSIS_DBG_INTR_SRC_TRUNCATED_FRAME BIT(16) #define MIPI_CSIS_DBG_INTR_SRC_EARLY_FE BIT(12) #define MIPI_CSIS_DBG_INTR_SRC_EARLY_FS BIT(8) #define MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_FALL BIT(4) #define MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_RISE BIT(0) #define MIPI_CSIS_FRAME_COUNTER_CH(n) (0x0100 + (n) * 4) /* Non-image packet data buffers */ #define MIPI_CSIS_PKTDATA_ODD 0x2000 #define MIPI_CSIS_PKTDATA_EVEN 0x3000 #define MIPI_CSIS_PKTDATA_SIZE SZ_4K #define DEFAULT_SCLK_CSIS_FREQ 166000000UL /* MIPI CSI-2 Data Types */ #define MIPI_CSI2_DATA_TYPE_YUV420_8 0x18 #define MIPI_CSI2_DATA_TYPE_YUV420_10 0x19 #define MIPI_CSI2_DATA_TYPE_LE_YUV420_8 0x1a #define MIPI_CSI2_DATA_TYPE_CS_YUV420_8 0x1c #define MIPI_CSI2_DATA_TYPE_CS_YUV420_10 0x1d #define MIPI_CSI2_DATA_TYPE_YUV422_8 0x1e #define MIPI_CSI2_DATA_TYPE_YUV422_10 0x1f #define MIPI_CSI2_DATA_TYPE_RGB565 0x22 #define MIPI_CSI2_DATA_TYPE_RGB666 0x23 #define MIPI_CSI2_DATA_TYPE_RGB888 0x24 #define MIPI_CSI2_DATA_TYPE_RAW6 0x28 #define MIPI_CSI2_DATA_TYPE_RAW7 0x29 #define MIPI_CSI2_DATA_TYPE_RAW8 0x2a #define MIPI_CSI2_DATA_TYPE_RAW10 0x2b #define MIPI_CSI2_DATA_TYPE_RAW12 0x2c #define MIPI_CSI2_DATA_TYPE_RAW14 0x2d #define MIPI_CSI2_DATA_TYPE_USER(x) (0x30 + (x)) struct mipi_csis_event { bool debug; u32 mask; const char * const name; unsigned int counter; }; static const struct mipi_csis_event mipi_csis_events[] = { /* Errors */ { false, MIPI_CSIS_INT_SRC_ERR_SOT_HS, "SOT Error" }, { false, MIPI_CSIS_INT_SRC_ERR_LOST_FS, "Lost Frame Start Error" }, { false, MIPI_CSIS_INT_SRC_ERR_LOST_FE, "Lost Frame End Error" }, { false, MIPI_CSIS_INT_SRC_ERR_OVER, "FIFO Overflow Error" }, { false, MIPI_CSIS_INT_SRC_ERR_WRONG_CFG, "Wrong Configuration Error" }, { false, MIPI_CSIS_INT_SRC_ERR_ECC, "ECC Error" }, { false, MIPI_CSIS_INT_SRC_ERR_CRC, "CRC Error" }, { false, MIPI_CSIS_INT_SRC_ERR_UNKNOWN, "Unknown Error" }, { true, MIPI_CSIS_DBG_INTR_SRC_DT_NOT_SUPPORT, "Data Type Not Supported" }, { true, MIPI_CSIS_DBG_INTR_SRC_DT_IGNORE, "Data Type Ignored" }, { true, MIPI_CSIS_DBG_INTR_SRC_ERR_FRAME_SIZE, "Frame Size Error" }, { true, MIPI_CSIS_DBG_INTR_SRC_TRUNCATED_FRAME, "Truncated Frame" }, { true, MIPI_CSIS_DBG_INTR_SRC_EARLY_FE, "Early Frame End" }, { true, MIPI_CSIS_DBG_INTR_SRC_EARLY_FS, "Early Frame Start" }, /* Non-image data receive events */ { false, MIPI_CSIS_INT_SRC_EVEN_BEFORE, "Non-image data before even frame" }, { false, MIPI_CSIS_INT_SRC_EVEN_AFTER, "Non-image data after even frame" }, { false, MIPI_CSIS_INT_SRC_ODD_BEFORE, "Non-image data before odd frame" }, { false, MIPI_CSIS_INT_SRC_ODD_AFTER, "Non-image data after odd frame" }, /* Frame start/end */ { false, MIPI_CSIS_INT_SRC_FRAME_START, "Frame Start" }, { false, MIPI_CSIS_INT_SRC_FRAME_END, "Frame End" }, { true, MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_FALL, "VSYNC Falling Edge" }, { true, MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_RISE, "VSYNC Rising Edge" }, }; #define MIPI_CSIS_NUM_EVENTS ARRAY_SIZE(mipi_csis_events) enum mipi_csis_clk { MIPI_CSIS_CLK_PCLK, MIPI_CSIS_CLK_WRAP, MIPI_CSIS_CLK_PHY, MIPI_CSIS_CLK_AXI, }; static const char * const mipi_csis_clk_id[] = { "pclk", "wrap", "phy", "axi", }; enum mipi_csis_version { MIPI_CSIS_V3_3, MIPI_CSIS_V3_6_3, }; struct mipi_csis_info { enum mipi_csis_version version; unsigned int num_clocks; }; struct mipi_csis_device { struct device *dev; void __iomem *regs; struct clk_bulk_data *clks; struct reset_control *mrst; struct regulator *mipi_phy_regulator; const struct mipi_csis_info *info; struct v4l2_subdev sd; struct media_pad pads[CSIS_PADS_NUM]; struct v4l2_async_notifier notifier; struct v4l2_subdev *src_sd; struct v4l2_mbus_config_mipi_csi2 bus; u32 clk_frequency; u32 hs_settle; u32 clk_settle; struct mutex lock; /* Protect csis_fmt and format_mbus */ const struct csis_pix_format *csis_fmt; struct v4l2_mbus_framefmt format_mbus[CSIS_PADS_NUM]; spinlock_t slock; /* Protect events */ struct mipi_csis_event events[MIPI_CSIS_NUM_EVENTS]; struct dentry *debugfs_root; struct { bool enable; u32 hs_settle; u32 clk_settle; } debug; }; /* ----------------------------------------------------------------------------- * Format helpers */ struct csis_pix_format { u32 code; u32 output; u32 data_type; u8 width; }; static const struct csis_pix_format mipi_csis_formats[] = { /* YUV formats. */ { .code = MEDIA_BUS_FMT_UYVY8_1X16, .output = MEDIA_BUS_FMT_UYVY8_1X16, .data_type = MIPI_CSI2_DATA_TYPE_YUV422_8, .width = 16, }, /* RGB formats. */ { .code = MEDIA_BUS_FMT_RGB565_1X16, .output = MEDIA_BUS_FMT_RGB565_1X16, .data_type = MIPI_CSI2_DATA_TYPE_RGB565, .width = 16, }, { .code = MEDIA_BUS_FMT_BGR888_1X24, .output = MEDIA_BUS_FMT_RGB888_1X24, .data_type = MIPI_CSI2_DATA_TYPE_RGB888, .width = 24, }, /* RAW (Bayer and greyscale) formats. */ { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .output = MEDIA_BUS_FMT_SBGGR8_1X8, .data_type = MIPI_CSI2_DATA_TYPE_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .output = MEDIA_BUS_FMT_SGBRG8_1X8, .data_type = MIPI_CSI2_DATA_TYPE_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .output = MEDIA_BUS_FMT_SGRBG8_1X8, .data_type = MIPI_CSI2_DATA_TYPE_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .output = MEDIA_BUS_FMT_SRGGB8_1X8, .data_type = MIPI_CSI2_DATA_TYPE_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_Y8_1X8, .output = MEDIA_BUS_FMT_Y8_1X8, .data_type = MIPI_CSI2_DATA_TYPE_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SBGGR10_1X10, .output = MEDIA_BUS_FMT_SBGGR10_1X10, .data_type = MIPI_CSI2_DATA_TYPE_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SGBRG10_1X10, .output = MEDIA_BUS_FMT_SGBRG10_1X10, .data_type = MIPI_CSI2_DATA_TYPE_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SGRBG10_1X10, .output = MEDIA_BUS_FMT_SGRBG10_1X10, .data_type = MIPI_CSI2_DATA_TYPE_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SRGGB10_1X10, .output = MEDIA_BUS_FMT_SRGGB10_1X10, .data_type = MIPI_CSI2_DATA_TYPE_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_Y10_1X10, .output = MEDIA_BUS_FMT_Y10_1X10, .data_type = MIPI_CSI2_DATA_TYPE_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SBGGR12_1X12, .output = MEDIA_BUS_FMT_SBGGR12_1X12, .data_type = MIPI_CSI2_DATA_TYPE_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SGBRG12_1X12, .output = MEDIA_BUS_FMT_SGBRG12_1X12, .data_type = MIPI_CSI2_DATA_TYPE_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SGRBG12_1X12, .output = MEDIA_BUS_FMT_SGRBG12_1X12, .data_type = MIPI_CSI2_DATA_TYPE_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SRGGB12_1X12, .output = MEDIA_BUS_FMT_SRGGB12_1X12, .data_type = MIPI_CSI2_DATA_TYPE_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_Y12_1X12, .output = MEDIA_BUS_FMT_Y12_1X12, .data_type = MIPI_CSI2_DATA_TYPE_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SBGGR14_1X14, .output = MEDIA_BUS_FMT_SBGGR14_1X14, .data_type = MIPI_CSI2_DATA_TYPE_RAW14, .width = 14, }, { .code = MEDIA_BUS_FMT_SGBRG14_1X14, .output = MEDIA_BUS_FMT_SGBRG14_1X14, .data_type = MIPI_CSI2_DATA_TYPE_RAW14, .width = 14, }, { .code = MEDIA_BUS_FMT_SGRBG14_1X14, .output = MEDIA_BUS_FMT_SGRBG14_1X14, .data_type = MIPI_CSI2_DATA_TYPE_RAW14, .width = 14, }, { .code = MEDIA_BUS_FMT_SRGGB14_1X14, .output = MEDIA_BUS_FMT_SRGGB14_1X14, .data_type = MIPI_CSI2_DATA_TYPE_RAW14, .width = 14, }, /* JPEG */ { .code = MEDIA_BUS_FMT_JPEG_1X8, .output = MEDIA_BUS_FMT_JPEG_1X8, /* * Map JPEG_1X8 to the RAW8 datatype. * * The CSI-2 specification suggests in Annex A "JPEG8 Data * Format (informative)" to transmit JPEG data using one of the * Data Types aimed to represent arbitrary data, such as the * "User Defined Data Type 1" (0x30). * * However, when configured with a User Defined Data Type, the * CSIS outputs data in quad pixel mode regardless of the mode * selected in the MIPI_CSIS_ISP_CONFIG_CH register. Neither of * the IP cores connected to the CSIS in i.MX SoCs (CSI bridge * or ISI) support quad pixel mode, so this will never work in * practice. * * Some sensors (such as the OV5640) send JPEG data using the * RAW8 data type. This is usable and works, so map the JPEG * format to RAW8. If the CSIS ends up being integrated in an * SoC that can support quad pixel mode, this will have to be * revisited. */ .data_type = MIPI_CSI2_DATA_TYPE_RAW8, .width = 8, } }; static const struct csis_pix_format *find_csis_format(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(mipi_csis_formats); i++) if (code == mipi_csis_formats[i].code) return &mipi_csis_formats[i]; return NULL; } /* ----------------------------------------------------------------------------- * Hardware configuration */ static inline u32 mipi_csis_read(struct mipi_csis_device *csis, u32 reg) { return readl(csis->regs + reg); } static inline void mipi_csis_write(struct mipi_csis_device *csis, u32 reg, u32 val) { writel(val, csis->regs + reg); } static void mipi_csis_enable_interrupts(struct mipi_csis_device *csis, bool on) { mipi_csis_write(csis, MIPI_CSIS_INT_MSK, on ? 0xffffffff : 0); mipi_csis_write(csis, MIPI_CSIS_DBG_INTR_MSK, on ? 0xffffffff : 0); } static void mipi_csis_sw_reset(struct mipi_csis_device *csis) { u32 val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL); mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL, val | MIPI_CSIS_CMN_CTRL_RESET); usleep_range(10, 20); } static void mipi_csis_system_enable(struct mipi_csis_device *csis, int on) { u32 val, mask; val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL); if (on) val |= MIPI_CSIS_CMN_CTRL_ENABLE; else val &= ~MIPI_CSIS_CMN_CTRL_ENABLE; mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL, val); val = mipi_csis_read(csis, MIPI_CSIS_DPHY_CMN_CTRL); val &= ~MIPI_CSIS_DPHY_CMN_CTRL_ENABLE; if (on) { mask = (1 << (csis->bus.num_data_lanes + 1)) - 1; val |= (mask & MIPI_CSIS_DPHY_CMN_CTRL_ENABLE); } mipi_csis_write(csis, MIPI_CSIS_DPHY_CMN_CTRL, val); } /* Called with the csis.lock mutex held */ static void __mipi_csis_set_format(struct mipi_csis_device *csis) { struct v4l2_mbus_framefmt *mf = &csis->format_mbus[CSIS_PAD_SINK]; u32 val; /* Color format */ val = mipi_csis_read(csis, MIPI_CSIS_ISP_CONFIG_CH(0)); val &= ~(MIPI_CSIS_ISPCFG_ALIGN_32BIT | MIPI_CSIS_ISPCFG_FMT_MASK | MIPI_CSIS_ISPCFG_PIXEL_MASK); /* * YUV 4:2:2 can be transferred with 8 or 16 bits per clock sample * (referred to in the documentation as single and dual pixel modes * respectively, although the 8-bit mode transfers half a pixel per * clock sample and the 16-bit mode one pixel). While both mode work * when the CSIS is connected to a receiver that supports either option, * single pixel mode requires clock rates twice as high. As all SoCs * that integrate the CSIS can operate in 16-bit bit mode, and some do * not support 8-bit mode (this is the case of the i.MX8MP), use dual * pixel mode unconditionally. * * TODO: Verify which other formats require DUAL (or QUAD) modes. */ if (csis->csis_fmt->data_type == MIPI_CSI2_DATA_TYPE_YUV422_8) val |= MIPI_CSIS_ISPCFG_PIXEL_MODE_DUAL; val |= MIPI_CSIS_ISPCFG_FMT(csis->csis_fmt->data_type); mipi_csis_write(csis, MIPI_CSIS_ISP_CONFIG_CH(0), val); /* Pixel resolution */ val = mf->width | (mf->height << 16); mipi_csis_write(csis, MIPI_CSIS_ISP_RESOL_CH(0), val); } static int mipi_csis_calculate_params(struct mipi_csis_device *csis) { s64 link_freq; u32 lane_rate; /* Calculate the line rate from the pixel rate. */ link_freq = v4l2_get_link_freq(csis->src_sd->ctrl_handler, csis->csis_fmt->width, csis->bus.num_data_lanes * 2); if (link_freq < 0) { dev_err(csis->dev, "Unable to obtain link frequency: %d\n", (int)link_freq); return link_freq; } lane_rate = link_freq * 2; if (lane_rate < 80000000 || lane_rate > 1500000000) { dev_dbg(csis->dev, "Out-of-bound lane rate %u\n", lane_rate); return -EINVAL; } /* * The HSSETTLE counter value is document in a table, but can also * easily be calculated. Hardcode the CLKSETTLE value to 0 for now * (which is documented as corresponding to CSI-2 v0.87 to v1.00) until * we figure out how to compute it correctly. */ csis->hs_settle = (lane_rate - 5000000) / 45000000; csis->clk_settle = 0; dev_dbg(csis->dev, "lane rate %u, Tclk_settle %u, Ths_settle %u\n", lane_rate, csis->clk_settle, csis->hs_settle); if (csis->debug.hs_settle < 0xff) { dev_dbg(csis->dev, "overriding Ths_settle with %u\n", csis->debug.hs_settle); csis->hs_settle = csis->debug.hs_settle; } if (csis->debug.clk_settle < 4) { dev_dbg(csis->dev, "overriding Tclk_settle with %u\n", csis->debug.clk_settle); csis->clk_settle = csis->debug.clk_settle; } return 0; } static void mipi_csis_set_params(struct mipi_csis_device *csis) { int lanes = csis->bus.num_data_lanes; u32 val; val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL); val &= ~MIPI_CSIS_CMN_CTRL_LANE_NR_MASK; val |= (lanes - 1) << MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET; if (csis->info->version == MIPI_CSIS_V3_3) val |= MIPI_CSIS_CMN_CTRL_INTER_MODE; mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL, val); __mipi_csis_set_format(csis); mipi_csis_write(csis, MIPI_CSIS_DPHY_CMN_CTRL, MIPI_CSIS_DPHY_CMN_CTRL_HSSETTLE(csis->hs_settle) | MIPI_CSIS_DPHY_CMN_CTRL_CLKSETTLE(csis->clk_settle)); val = (0 << MIPI_CSIS_ISP_SYNC_HSYNC_LINTV_OFFSET) | (0 << MIPI_CSIS_ISP_SYNC_VSYNC_SINTV_OFFSET) | (0 << MIPI_CSIS_ISP_SYNC_VSYNC_EINTV_OFFSET); mipi_csis_write(csis, MIPI_CSIS_ISP_SYNC_CH(0), val); val = mipi_csis_read(csis, MIPI_CSIS_CLK_CTRL); val |= MIPI_CSIS_CLK_CTRL_WCLK_SRC; val |= MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(15); val &= ~MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK; mipi_csis_write(csis, MIPI_CSIS_CLK_CTRL, val); mipi_csis_write(csis, MIPI_CSIS_DPHY_BCTRL_L, MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_715MV | MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_FREQ_3MHZ | MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_2V | MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_80MV | MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_715MV | MIPI_CSIS_DPHY_BCTRL_L_LP_CD_HYS_60MV | MIPI_CSIS_DPHY_BCTRL_L_B_DPHYCTRL(20000000)); mipi_csis_write(csis, MIPI_CSIS_DPHY_BCTRL_H, 0); /* Update the shadow register. */ val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL); mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL, val | MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW | MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL); } static int mipi_csis_clk_enable(struct mipi_csis_device *csis) { return clk_bulk_prepare_enable(csis->info->num_clocks, csis->clks); } static void mipi_csis_clk_disable(struct mipi_csis_device *csis) { clk_bulk_disable_unprepare(csis->info->num_clocks, csis->clks); } static int mipi_csis_clk_get(struct mipi_csis_device *csis) { unsigned int i; int ret; csis->clks = devm_kcalloc(csis->dev, csis->info->num_clocks, sizeof(*csis->clks), GFP_KERNEL); if (!csis->clks) return -ENOMEM; for (i = 0; i < csis->info->num_clocks; i++) csis->clks[i].id = mipi_csis_clk_id[i]; ret = devm_clk_bulk_get(csis->dev, csis->info->num_clocks, csis->clks); if (ret < 0) return ret; /* Set clock rate */ ret = clk_set_rate(csis->clks[MIPI_CSIS_CLK_WRAP].clk, csis->clk_frequency); if (ret < 0) dev_err(csis->dev, "set rate=%d failed: %d\n", csis->clk_frequency, ret); return ret; } static void mipi_csis_start_stream(struct mipi_csis_device *csis) { mipi_csis_sw_reset(csis); mipi_csis_set_params(csis); mipi_csis_system_enable(csis, true); mipi_csis_enable_interrupts(csis, true); } static void mipi_csis_stop_stream(struct mipi_csis_device *csis) { mipi_csis_enable_interrupts(csis, false); mipi_csis_system_enable(csis, false); } static irqreturn_t mipi_csis_irq_handler(int irq, void *dev_id) { struct mipi_csis_device *csis = dev_id; unsigned long flags; unsigned int i; u32 status; u32 dbg_status; status = mipi_csis_read(csis, MIPI_CSIS_INT_SRC); dbg_status = mipi_csis_read(csis, MIPI_CSIS_DBG_INTR_SRC); spin_lock_irqsave(&csis->slock, flags); /* Update the event/error counters */ if ((status & MIPI_CSIS_INT_SRC_ERRORS) || csis->debug.enable) { for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++) { struct mipi_csis_event *event = &csis->events[i]; if ((!event->debug && (status & event->mask)) || (event->debug && (dbg_status & event->mask))) event->counter++; } } spin_unlock_irqrestore(&csis->slock, flags); mipi_csis_write(csis, MIPI_CSIS_INT_SRC, status); mipi_csis_write(csis, MIPI_CSIS_DBG_INTR_SRC, dbg_status); return IRQ_HANDLED; } /* ----------------------------------------------------------------------------- * PHY regulator and reset */ static int mipi_csis_phy_enable(struct mipi_csis_device *csis) { if (csis->info->version != MIPI_CSIS_V3_3) return 0; return regulator_enable(csis->mipi_phy_regulator); } static int mipi_csis_phy_disable(struct mipi_csis_device *csis) { if (csis->info->version != MIPI_CSIS_V3_3) return 0; return regulator_disable(csis->mipi_phy_regulator); } static void mipi_csis_phy_reset(struct mipi_csis_device *csis) { if (csis->info->version != MIPI_CSIS_V3_3) return; reset_control_assert(csis->mrst); msleep(20); reset_control_deassert(csis->mrst); } static int mipi_csis_phy_init(struct mipi_csis_device *csis) { if (csis->info->version != MIPI_CSIS_V3_3) return 0; /* Get MIPI PHY reset and regulator. */ csis->mrst = devm_reset_control_get_exclusive(csis->dev, NULL); if (IS_ERR(csis->mrst)) return PTR_ERR(csis->mrst); csis->mipi_phy_regulator = devm_regulator_get(csis->dev, "phy"); if (IS_ERR(csis->mipi_phy_regulator)) return PTR_ERR(csis->mipi_phy_regulator); return regulator_set_voltage(csis->mipi_phy_regulator, 1000000, 1000000); } /* ----------------------------------------------------------------------------- * Debug */ static void mipi_csis_clear_counters(struct mipi_csis_device *csis) { unsigned long flags; unsigned int i; spin_lock_irqsave(&csis->slock, flags); for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++) csis->events[i].counter = 0; spin_unlock_irqrestore(&csis->slock, flags); } static void mipi_csis_log_counters(struct mipi_csis_device *csis, bool non_errors) { unsigned int num_events = non_errors ? MIPI_CSIS_NUM_EVENTS : MIPI_CSIS_NUM_EVENTS - 8; unsigned long flags; unsigned int i; spin_lock_irqsave(&csis->slock, flags); for (i = 0; i < num_events; ++i) { if (csis->events[i].counter > 0 || csis->debug.enable) dev_info(csis->dev, "%s events: %d\n", csis->events[i].name, csis->events[i].counter); } spin_unlock_irqrestore(&csis->slock, flags); } static int mipi_csis_dump_regs(struct mipi_csis_device *csis) { static const struct { u32 offset; const char * const name; } registers[] = { { MIPI_CSIS_CMN_CTRL, "CMN_CTRL" }, { MIPI_CSIS_CLK_CTRL, "CLK_CTRL" }, { MIPI_CSIS_INT_MSK, "INT_MSK" }, { MIPI_CSIS_DPHY_STATUS, "DPHY_STATUS" }, { MIPI_CSIS_DPHY_CMN_CTRL, "DPHY_CMN_CTRL" }, { MIPI_CSIS_DPHY_SCTRL_L, "DPHY_SCTRL_L" }, { MIPI_CSIS_DPHY_SCTRL_H, "DPHY_SCTRL_H" }, { MIPI_CSIS_ISP_CONFIG_CH(0), "ISP_CONFIG_CH0" }, { MIPI_CSIS_ISP_RESOL_CH(0), "ISP_RESOL_CH0" }, { MIPI_CSIS_SDW_CONFIG_CH(0), "SDW_CONFIG_CH0" }, { MIPI_CSIS_SDW_RESOL_CH(0), "SDW_RESOL_CH0" }, { MIPI_CSIS_DBG_CTRL, "DBG_CTRL" }, { MIPI_CSIS_FRAME_COUNTER_CH(0), "FRAME_COUNTER_CH0" }, }; unsigned int i; u32 cfg; if (!pm_runtime_get_if_in_use(csis->dev)) return 0; dev_info(csis->dev, "--- REGISTERS ---\n"); for (i = 0; i < ARRAY_SIZE(registers); i++) { cfg = mipi_csis_read(csis, registers[i].offset); dev_info(csis->dev, "%14s: 0x%08x\n", registers[i].name, cfg); } pm_runtime_put(csis->dev); return 0; } static int mipi_csis_dump_regs_show(struct seq_file *m, void *private) { struct mipi_csis_device *csis = m->private; return mipi_csis_dump_regs(csis); } DEFINE_SHOW_ATTRIBUTE(mipi_csis_dump_regs); static void mipi_csis_debugfs_init(struct mipi_csis_device *csis) { csis->debug.hs_settle = UINT_MAX; csis->debug.clk_settle = UINT_MAX; csis->debugfs_root = debugfs_create_dir(dev_name(csis->dev), NULL); debugfs_create_bool("debug_enable", 0600, csis->debugfs_root, &csis->debug.enable); debugfs_create_file("dump_regs", 0600, csis->debugfs_root, csis, &mipi_csis_dump_regs_fops); debugfs_create_u32("tclk_settle", 0600, csis->debugfs_root, &csis->debug.clk_settle); debugfs_create_u32("ths_settle", 0600, csis->debugfs_root, &csis->debug.hs_settle); } static void mipi_csis_debugfs_exit(struct mipi_csis_device *csis) { debugfs_remove_recursive(csis->debugfs_root); } /* ----------------------------------------------------------------------------- * V4L2 subdev operations */ static struct mipi_csis_device *sd_to_mipi_csis_device(struct v4l2_subdev *sdev) { return container_of(sdev, struct mipi_csis_device, sd); } static int mipi_csis_s_stream(struct v4l2_subdev *sd, int enable) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); int ret; if (!enable) { mutex_lock(&csis->lock); v4l2_subdev_call(csis->src_sd, video, s_stream, 0); mipi_csis_stop_stream(csis); if (csis->debug.enable) mipi_csis_log_counters(csis, true); mutex_unlock(&csis->lock); pm_runtime_put(csis->dev); return 0; } ret = mipi_csis_calculate_params(csis); if (ret < 0) return ret; mipi_csis_clear_counters(csis); ret = pm_runtime_resume_and_get(csis->dev); if (ret < 0) return ret; mutex_lock(&csis->lock); mipi_csis_start_stream(csis); ret = v4l2_subdev_call(csis->src_sd, video, s_stream, 1); if (ret < 0) goto error; mipi_csis_log_counters(csis, true); mutex_unlock(&csis->lock); return 0; error: mipi_csis_stop_stream(csis); mutex_unlock(&csis->lock); pm_runtime_put(csis->dev); return ret; } static struct v4l2_mbus_framefmt * mipi_csis_get_format(struct mipi_csis_device *csis, struct v4l2_subdev_state *sd_state, enum v4l2_subdev_format_whence which, unsigned int pad) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_get_try_format(&csis->sd, sd_state, pad); return &csis->format_mbus[pad]; } static int mipi_csis_init_cfg(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); struct v4l2_mbus_framefmt *fmt_sink; struct v4l2_mbus_framefmt *fmt_source; enum v4l2_subdev_format_whence which; which = sd_state ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE; fmt_sink = mipi_csis_get_format(csis, sd_state, which, CSIS_PAD_SINK); fmt_sink->code = MEDIA_BUS_FMT_UYVY8_1X16; fmt_sink->width = MIPI_CSIS_DEF_PIX_WIDTH; fmt_sink->height = MIPI_CSIS_DEF_PIX_HEIGHT; fmt_sink->field = V4L2_FIELD_NONE; fmt_sink->colorspace = V4L2_COLORSPACE_SMPTE170M; fmt_sink->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt_sink->colorspace); fmt_sink->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt_sink->colorspace); fmt_sink->quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, fmt_sink->colorspace, fmt_sink->ycbcr_enc); fmt_source = mipi_csis_get_format(csis, sd_state, which, CSIS_PAD_SOURCE); *fmt_source = *fmt_sink; return 0; } static int mipi_csis_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *sdformat) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); struct v4l2_mbus_framefmt *fmt; fmt = mipi_csis_get_format(csis, sd_state, sdformat->which, sdformat->pad); mutex_lock(&csis->lock); sdformat->format = *fmt; mutex_unlock(&csis->lock); return 0; } static int mipi_csis_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); /* * The CSIS can't transcode in any way, the source format is identical * to the sink format. */ if (code->pad == CSIS_PAD_SOURCE) { struct v4l2_mbus_framefmt *fmt; if (code->index > 0) return -EINVAL; fmt = mipi_csis_get_format(csis, sd_state, code->which, code->pad); code->code = fmt->code; return 0; } if (code->pad != CSIS_PAD_SINK) return -EINVAL; if (code->index >= ARRAY_SIZE(mipi_csis_formats)) return -EINVAL; code->code = mipi_csis_formats[code->index].code; return 0; } static int mipi_csis_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *sdformat) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); struct csis_pix_format const *csis_fmt; struct v4l2_mbus_framefmt *fmt; unsigned int align; /* * The CSIS can't transcode in any way, the source format can't be * modified. */ if (sdformat->pad == CSIS_PAD_SOURCE) return mipi_csis_get_fmt(sd, sd_state, sdformat); if (sdformat->pad != CSIS_PAD_SINK) return -EINVAL; /* * Validate the media bus code and clamp and align the size. * * The total number of bits per line must be a multiple of 8. We thus * need to align the width for formats that are not multiples of 8 * bits. */ csis_fmt = find_csis_format(sdformat->format.code); if (!csis_fmt) csis_fmt = &mipi_csis_formats[0]; switch (csis_fmt->width % 8) { case 0: align = 0; break; case 4: align = 1; break; case 2: case 6: align = 2; break; default: /* 1, 3, 5, 7 */ align = 3; break; } v4l_bound_align_image(&sdformat->format.width, 1, CSIS_MAX_PIX_WIDTH, align, &sdformat->format.height, 1, CSIS_MAX_PIX_HEIGHT, 0, 0); fmt = mipi_csis_get_format(csis, sd_state, sdformat->which, sdformat->pad); mutex_lock(&csis->lock); fmt->code = csis_fmt->code; fmt->width = sdformat->format.width; fmt->height = sdformat->format.height; fmt->colorspace = sdformat->format.colorspace; fmt->quantization = sdformat->format.quantization; fmt->xfer_func = sdformat->format.xfer_func; fmt->ycbcr_enc = sdformat->format.ycbcr_enc; sdformat->format = *fmt; /* Propagate the format from sink to source. */ fmt = mipi_csis_get_format(csis, sd_state, sdformat->which, CSIS_PAD_SOURCE); *fmt = sdformat->format; /* The format on the source pad might change due to unpacking. */ fmt->code = csis_fmt->output; /* Store the CSIS format descriptor for active formats. */ if (sdformat->which == V4L2_SUBDEV_FORMAT_ACTIVE) csis->csis_fmt = csis_fmt; mutex_unlock(&csis->lock); return 0; } static int mipi_csis_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_frame_desc *fd) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); struct v4l2_mbus_frame_desc_entry *entry = &fd->entry[0]; if (pad != CSIS_PAD_SOURCE) return -EINVAL; fd->type = V4L2_MBUS_FRAME_DESC_TYPE_PARALLEL; fd->num_entries = 1; memset(entry, 0, sizeof(*entry)); mutex_lock(&csis->lock); entry->flags = 0; entry->pixelcode = csis->csis_fmt->code; entry->bus.csi2.vc = 0; entry->bus.csi2.dt = csis->csis_fmt->data_type; mutex_unlock(&csis->lock); return 0; } static int mipi_csis_log_status(struct v4l2_subdev *sd) { struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); mipi_csis_log_counters(csis, true); if (csis->debug.enable) mipi_csis_dump_regs(csis); return 0; } static const struct v4l2_subdev_core_ops mipi_csis_core_ops = { .log_status = mipi_csis_log_status, }; static const struct v4l2_subdev_video_ops mipi_csis_video_ops = { .s_stream = mipi_csis_s_stream, }; static const struct v4l2_subdev_pad_ops mipi_csis_pad_ops = { .init_cfg = mipi_csis_init_cfg, .enum_mbus_code = mipi_csis_enum_mbus_code, .get_fmt = mipi_csis_get_fmt, .set_fmt = mipi_csis_set_fmt, .get_frame_desc = mipi_csis_get_frame_desc, }; static const struct v4l2_subdev_ops mipi_csis_subdev_ops = { .core = &mipi_csis_core_ops, .video = &mipi_csis_video_ops, .pad = &mipi_csis_pad_ops, }; /* ----------------------------------------------------------------------------- * Media entity operations */ static int mipi_csis_link_setup(struct media_entity *entity, const struct media_pad *local_pad, const struct media_pad *remote_pad, u32 flags) { struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity); struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); struct v4l2_subdev *remote_sd; dev_dbg(csis->dev, "link setup %s -> %s", remote_pad->entity->name, local_pad->entity->name); /* We only care about the link to the source. */ if (!(local_pad->flags & MEDIA_PAD_FL_SINK)) return 0; remote_sd = media_entity_to_v4l2_subdev(remote_pad->entity); if (flags & MEDIA_LNK_FL_ENABLED) { if (csis->src_sd) return -EBUSY; csis->src_sd = remote_sd; } else { csis->src_sd = NULL; } return 0; } static const struct media_entity_operations mipi_csis_entity_ops = { .link_setup = mipi_csis_link_setup, .link_validate = v4l2_subdev_link_validate, .get_fwnode_pad = v4l2_subdev_get_fwnode_pad_1_to_1, }; /* ----------------------------------------------------------------------------- * Async subdev notifier */ static struct mipi_csis_device * mipi_notifier_to_csis_state(struct v4l2_async_notifier *n) { return container_of(n, struct mipi_csis_device, notifier); } static int mipi_csis_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd) { struct mipi_csis_device *csis = mipi_notifier_to_csis_state(notifier); struct media_pad *sink = &csis->sd.entity.pads[CSIS_PAD_SINK]; return v4l2_create_fwnode_links_to_pad(sd, sink, 0); } static const struct v4l2_async_notifier_operations mipi_csis_notify_ops = { .bound = mipi_csis_notify_bound, }; static int mipi_csis_async_register(struct mipi_csis_device *csis) { struct v4l2_fwnode_endpoint vep = { .bus_type = V4L2_MBUS_CSI2_DPHY, }; struct v4l2_async_subdev *asd; struct fwnode_handle *ep; unsigned int i; int ret; v4l2_async_nf_init(&csis->notifier); ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(csis->dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!ep) return -ENOTCONN; ret = v4l2_fwnode_endpoint_parse(ep, &vep); if (ret) goto err_parse; for (i = 0; i < vep.bus.mipi_csi2.num_data_lanes; ++i) { if (vep.bus.mipi_csi2.data_lanes[i] != i + 1) { dev_err(csis->dev, "data lanes reordering is not supported"); ret = -EINVAL; goto err_parse; } } csis->bus = vep.bus.mipi_csi2; dev_dbg(csis->dev, "data lanes: %d\n", csis->bus.num_data_lanes); dev_dbg(csis->dev, "flags: 0x%08x\n", csis->bus.flags); asd = v4l2_async_nf_add_fwnode_remote(&csis->notifier, ep, struct v4l2_async_subdev); if (IS_ERR(asd)) { ret = PTR_ERR(asd); goto err_parse; } fwnode_handle_put(ep); csis->notifier.ops = &mipi_csis_notify_ops; ret = v4l2_async_subdev_nf_register(&csis->sd, &csis->notifier); if (ret) return ret; return v4l2_async_register_subdev(&csis->sd); err_parse: fwnode_handle_put(ep); return ret; } /* ----------------------------------------------------------------------------- * Suspend/resume */ static int __maybe_unused mipi_csis_runtime_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); int ret = 0; mutex_lock(&csis->lock); ret = mipi_csis_phy_disable(csis); if (ret) goto unlock; mipi_csis_clk_disable(csis); unlock: mutex_unlock(&csis->lock); return ret ? -EAGAIN : 0; } static int __maybe_unused mipi_csis_runtime_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); int ret = 0; mutex_lock(&csis->lock); ret = mipi_csis_phy_enable(csis); if (ret) goto unlock; mipi_csis_clk_enable(csis); unlock: mutex_unlock(&csis->lock); return ret ? -EAGAIN : 0; } static const struct dev_pm_ops mipi_csis_pm_ops = { SET_RUNTIME_PM_OPS(mipi_csis_runtime_suspend, mipi_csis_runtime_resume, NULL) }; /* ----------------------------------------------------------------------------- * Probe/remove & platform driver */ static int mipi_csis_subdev_init(struct mipi_csis_device *csis) { struct v4l2_subdev *sd = &csis->sd; v4l2_subdev_init(sd, &mipi_csis_subdev_ops); sd->owner = THIS_MODULE; snprintf(sd->name, sizeof(sd->name), "csis-%s", dev_name(csis->dev)); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; sd->ctrl_handler = NULL; sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; sd->entity.ops = &mipi_csis_entity_ops; sd->dev = csis->dev; sd->fwnode = fwnode_graph_get_endpoint_by_id(dev_fwnode(csis->dev), 1, 0, 0); if (!sd->fwnode) { dev_err(csis->dev, "Unable to retrieve endpoint for port@1\n"); return -ENOENT; } csis->csis_fmt = &mipi_csis_formats[0]; mipi_csis_init_cfg(sd, NULL); csis->pads[CSIS_PAD_SINK].flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT; csis->pads[CSIS_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE | MEDIA_PAD_FL_MUST_CONNECT; return media_entity_pads_init(&sd->entity, CSIS_PADS_NUM, csis->pads); } static int mipi_csis_parse_dt(struct mipi_csis_device *csis) { struct device_node *node = csis->dev->of_node; if (of_property_read_u32(node, "clock-frequency", &csis->clk_frequency)) csis->clk_frequency = DEFAULT_SCLK_CSIS_FREQ; return 0; } static int mipi_csis_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mipi_csis_device *csis; int irq; int ret; csis = devm_kzalloc(dev, sizeof(*csis), GFP_KERNEL); if (!csis) return -ENOMEM; mutex_init(&csis->lock); spin_lock_init(&csis->slock); csis->dev = dev; csis->info = of_device_get_match_data(dev); memcpy(csis->events, mipi_csis_events, sizeof(csis->events)); /* Parse DT properties. */ ret = mipi_csis_parse_dt(csis); if (ret < 0) { dev_err(dev, "Failed to parse device tree: %d\n", ret); return ret; } /* Acquire resources. */ csis->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(csis->regs)) return PTR_ERR(csis->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = mipi_csis_phy_init(csis); if (ret < 0) return ret; ret = mipi_csis_clk_get(csis); if (ret < 0) return ret; /* Reset PHY and enable the clocks. */ mipi_csis_phy_reset(csis); ret = mipi_csis_clk_enable(csis); if (ret < 0) { dev_err(csis->dev, "failed to enable clocks: %d\n", ret); return ret; } /* Now that the hardware is initialized, request the interrupt. */ ret = devm_request_irq(dev, irq, mipi_csis_irq_handler, 0, dev_name(dev), csis); if (ret) { dev_err(dev, "Interrupt request failed\n"); goto disable_clock; } /* Initialize and register the subdev. */ ret = mipi_csis_subdev_init(csis); if (ret < 0) goto disable_clock; platform_set_drvdata(pdev, &csis->sd); ret = mipi_csis_async_register(csis); if (ret < 0) { dev_err(dev, "async register failed: %d\n", ret); goto cleanup; } /* Initialize debugfs. */ mipi_csis_debugfs_init(csis); /* Enable runtime PM. */ pm_runtime_enable(dev); if (!pm_runtime_enabled(dev)) { ret = mipi_csis_runtime_resume(dev); if (ret < 0) goto unregister_all; } dev_info(dev, "lanes: %d, freq: %u\n", csis->bus.num_data_lanes, csis->clk_frequency); return 0; unregister_all: mipi_csis_debugfs_exit(csis); cleanup: media_entity_cleanup(&csis->sd.entity); v4l2_async_nf_unregister(&csis->notifier); v4l2_async_nf_cleanup(&csis->notifier); v4l2_async_unregister_subdev(&csis->sd); disable_clock: mipi_csis_clk_disable(csis); fwnode_handle_put(csis->sd.fwnode); mutex_destroy(&csis->lock); return ret; } static int mipi_csis_remove(struct platform_device *pdev) { struct v4l2_subdev *sd = platform_get_drvdata(pdev); struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd); mipi_csis_debugfs_exit(csis); v4l2_async_nf_unregister(&csis->notifier); v4l2_async_nf_cleanup(&csis->notifier); v4l2_async_unregister_subdev(&csis->sd); pm_runtime_disable(&pdev->dev); mipi_csis_runtime_suspend(&pdev->dev); mipi_csis_clk_disable(csis); media_entity_cleanup(&csis->sd.entity); fwnode_handle_put(csis->sd.fwnode); mutex_destroy(&csis->lock); pm_runtime_set_suspended(&pdev->dev); return 0; } static const struct of_device_id mipi_csis_of_match[] = { { .compatible = "fsl,imx7-mipi-csi2", .data = &(const struct mipi_csis_info){ .version = MIPI_CSIS_V3_3, .num_clocks = 3, }, }, { .compatible = "fsl,imx8mm-mipi-csi2", .data = &(const struct mipi_csis_info){ .version = MIPI_CSIS_V3_6_3, .num_clocks = 4, }, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mipi_csis_of_match); static struct platform_driver mipi_csis_driver = { .probe = mipi_csis_probe, .remove = mipi_csis_remove, .driver = { .of_match_table = mipi_csis_of_match, .name = CSIS_DRIVER_NAME, .pm = &mipi_csis_pm_ops, }, }; module_platform_driver(mipi_csis_driver); MODULE_DESCRIPTION("i.MX7 & i.MX8 MIPI CSI-2 receiver driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx-mipi-csi2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1