Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Miquel Raynal | 12220 | 93.04% | 28 | 46.67% |
Boris Brezillon | 276 | 2.10% | 14 | 23.33% |
Daniel Mack | 230 | 1.75% | 2 | 3.33% |
Chris Packham | 145 | 1.10% | 3 | 5.00% |
Gregory CLEMENT | 102 | 0.78% | 1 | 1.67% |
Peter Ujfalusi | 73 | 0.56% | 2 | 3.33% |
Konstantin Porotchkin | 50 | 0.38% | 1 | 1.67% |
Krzysztof Kozlowski | 11 | 0.08% | 2 | 3.33% |
Thomas Petazzoni | 10 | 0.08% | 1 | 1.67% |
Yang Yingliang | 9 | 0.07% | 1 | 1.67% |
Gustavo A. R. Silva | 5 | 0.04% | 2 | 3.33% |
Colin Ian King | 1 | 0.01% | 1 | 1.67% |
Souptick Joarder | 1 | 0.01% | 1 | 1.67% |
Zheng Yongjun | 1 | 0.01% | 1 | 1.67% |
Total | 13134 | 60 |
// SPDX-License-Identifier: GPL-2.0 /* * Marvell NAND flash controller driver * * Copyright (C) 2017 Marvell * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> * * * This NAND controller driver handles two versions of the hardware, * one is called NFCv1 and is available on PXA SoCs and the other is * called NFCv2 and is available on Armada SoCs. * * The main visible difference is that NFCv1 only has Hamming ECC * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA * is not used with NFCv2. * * The ECC layouts are depicted in details in Marvell AN-379, but here * is a brief description. * * When using Hamming, the data is split in 512B chunks (either 1, 2 * or 4) and each chunk will have its own ECC "digest" of 6B at the * beginning of the OOB area and eventually the remaining free OOB * bytes (also called "spare" bytes in the driver). This engine * corrects up to 1 bit per chunk and detects reliably an error if * there are at most 2 bitflips. Here is the page layout used by the * controller when Hamming is chosen: * * +-------------------------------------------------------------+ * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | * +-------------------------------------------------------------+ * * When using the BCH engine, there are N identical (data + free OOB + * ECC) sections and potentially an extra one to deal with * configurations where the chosen (data + free OOB + ECC) sizes do * not align with the page (data + OOB) size. ECC bytes are always * 30B per ECC chunk. Here is the page layout used by the controller * when BCH is chosen: * * +----------------------------------------- * | Data 1 | Free OOB bytes 1 | ECC 1 | ... * +----------------------------------------- * * ------------------------------------------- * ... | Data N | Free OOB bytes N | ECC N | * ------------------------------------------- * * --------------------------------------------+ * Last Data | Last Free OOB bytes | Last ECC | * --------------------------------------------+ * * In both cases, the layout seen by the user is always: all data * first, then all free OOB bytes and finally all ECC bytes. With BCH, * ECC bytes are 30B long and are padded with 0xFF to align on 32 * bytes. * * The controller has certain limitations that are handled by the * driver: * - It can only read 2k at a time. To overcome this limitation, the * driver issues data cycles on the bus, without issuing new * CMD + ADDR cycles. The Marvell term is "naked" operations. * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 * bits. What can be tuned is the ECC block size as long as it * stays between 512B and 2kiB. It's usually chosen based on the * chip ECC requirements. For instance, using 2kiB ECC chunks * provides 4b/512B correctability. * - The controller will always treat data bytes, free OOB bytes * and ECC bytes in that order, no matter what the real layout is * (which is usually all data then all OOB bytes). The * marvell_nfc_layouts array below contains the currently * supported layouts. * - Because of these weird layouts, the Bad Block Markers can be * located in data section. In this case, the NAND_BBT_NO_OOB_BBM * option must be set to prevent scanning/writing bad block * markers. */ #include <linux/module.h> #include <linux/clk.h> #include <linux/mtd/rawnand.h> #include <linux/of_platform.h> #include <linux/iopoll.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <asm/unaligned.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dma/pxa-dma.h> #include <linux/platform_data/mtd-nand-pxa3xx.h> /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ #define FIFO_DEPTH 8 #define FIFO_REP(x) (x / sizeof(u32)) #define BCH_SEQ_READS (32 / FIFO_DEPTH) /* NFC does not support transfers of larger chunks at a time */ #define MAX_CHUNK_SIZE 2112 /* NFCv1 cannot read more that 7 bytes of ID */ #define NFCV1_READID_LEN 7 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ #define POLL_PERIOD 0 #define POLL_TIMEOUT 100000 /* Interrupt maximum wait period in ms */ #define IRQ_TIMEOUT 1000 /* Latency in clock cycles between SoC pins and NFC logic */ #define MIN_RD_DEL_CNT 3 /* Maximum number of contiguous address cycles */ #define MAX_ADDRESS_CYC_NFCV1 5 #define MAX_ADDRESS_CYC_NFCV2 7 /* System control registers/bits to enable the NAND controller on some SoCs */ #define GENCONF_SOC_DEVICE_MUX 0x208 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) #define GENCONF_CLK_GATING_CTRL 0x220 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) #define GENCONF_ND_CLK_CTRL 0x700 #define GENCONF_ND_CLK_CTRL_EN BIT(0) /* NAND controller data flash control register */ #define NDCR 0x00 #define NDCR_ALL_INT GENMASK(11, 0) #define NDCR_CS1_CMDDM BIT(7) #define NDCR_CS0_CMDDM BIT(8) #define NDCR_RDYM BIT(11) #define NDCR_ND_ARB_EN BIT(12) #define NDCR_RA_START BIT(15) #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) #define NDCR_DWIDTH_M BIT(26) #define NDCR_DWIDTH_C BIT(27) #define NDCR_ND_RUN BIT(28) #define NDCR_DMA_EN BIT(29) #define NDCR_ECC_EN BIT(30) #define NDCR_SPARE_EN BIT(31) #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ NDCR_DWIDTH_M | NDCR_DWIDTH_C)) /* NAND interface timing parameter 0 register */ #define NDTR0 0x04 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) #define NDTR0_SEL_NRE_EDGE BIT(7) #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) #define NDTR0_SELCNTR BIT(26) #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) /* NAND interface timing parameter 1 register */ #define NDTR1 0x0C #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) #define NDTR1_PRESCALE BIT(14) #define NDTR1_WAIT_MODE BIT(15) #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) /* NAND controller status register */ #define NDSR 0x14 #define NDSR_WRCMDREQ BIT(0) #define NDSR_RDDREQ BIT(1) #define NDSR_WRDREQ BIT(2) #define NDSR_CORERR BIT(3) #define NDSR_UNCERR BIT(4) #define NDSR_CMDD(cs) BIT(8 - cs) #define NDSR_RDY(rb) BIT(11 + rb) #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) /* NAND ECC control register */ #define NDECCCTRL 0x28 #define NDECCCTRL_BCH_EN BIT(0) /* NAND controller data buffer register */ #define NDDB 0x40 /* NAND controller command buffer 0 register */ #define NDCB0 0x48 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) #define NDCB0_CMD2(x) ((x & 0xFF) << 8) #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) #define NDCB0_DBC BIT(19) #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) #define NDCB0_CSEL BIT(24) #define NDCB0_RDY_BYP BIT(27) #define NDCB0_LEN_OVRD BIT(28) #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) /* NAND controller command buffer 1 register */ #define NDCB1 0x4C #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) #define NDCB1_ADDRS_PAGE(x) (x << 16) /* NAND controller command buffer 2 register */ #define NDCB2 0x50 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) /* NAND controller command buffer 3 register */ #define NDCB3 0x54 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ #define TYPE_READ 0 #define TYPE_WRITE 1 #define TYPE_ERASE 2 #define TYPE_READ_ID 3 #define TYPE_STATUS 4 #define TYPE_RESET 5 #define TYPE_NAKED_CMD 6 #define TYPE_NAKED_ADDR 7 #define TYPE_MASK 7 #define XTYPE_MONOLITHIC_RW 0 #define XTYPE_LAST_NAKED_RW 1 #define XTYPE_FINAL_COMMAND 3 #define XTYPE_READ 4 #define XTYPE_WRITE_DISPATCH 4 #define XTYPE_NAKED_RW 5 #define XTYPE_COMMAND_DISPATCH 6 #define XTYPE_MASK 7 /** * struct marvell_hw_ecc_layout - layout of Marvell ECC * * Marvell ECC engine works differently than the others, in order to limit the * size of the IP, hardware engineers chose to set a fixed strength at 16 bits * per subpage, and depending on a the desired strength needed by the NAND chip, * a particular layout mixing data/spare/ecc is defined, with a possible last * chunk smaller that the others. * * @writesize: Full page size on which the layout applies * @chunk: Desired ECC chunk size on which the layout applies * @strength: Desired ECC strength (per chunk size bytes) on which the * layout applies * @nchunks: Total number of chunks * @full_chunk_cnt: Number of full-sized chunks, which is the number of * repetitions of the pattern: * (data_bytes + spare_bytes + ecc_bytes). * @data_bytes: Number of data bytes per chunk * @spare_bytes: Number of spare bytes per chunk * @ecc_bytes: Number of ecc bytes per chunk * @last_data_bytes: Number of data bytes in the last chunk * @last_spare_bytes: Number of spare bytes in the last chunk * @last_ecc_bytes: Number of ecc bytes in the last chunk */ struct marvell_hw_ecc_layout { /* Constraints */ int writesize; int chunk; int strength; /* Corresponding layout */ int nchunks; int full_chunk_cnt; int data_bytes; int spare_bytes; int ecc_bytes; int last_data_bytes; int last_spare_bytes; int last_ecc_bytes; }; #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ { \ .writesize = ws, \ .chunk = dc, \ .strength = ds, \ .nchunks = nc, \ .full_chunk_cnt = fcc, \ .data_bytes = db, \ .spare_bytes = sb, \ .ecc_bytes = eb, \ .last_data_bytes = ldb, \ .last_spare_bytes = lsb, \ .last_ecc_bytes = leb, \ } /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), }; /** * struct marvell_nand_chip_sel - CS line description * * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection * is made by a field in NDCB0 register, and in another field in NDCB2 register. * The datasheet describes the logic with an error: ADDR5 field is once * declared at the beginning of NDCB2, and another time at its end. Because the * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical * to use the last bit of this field instead of the first ones. * * @cs: Wanted CE lane. * @ndcb0_csel: Value of the NDCB0 register with or without the flag * selecting the wanted CE lane. This is set once when * the Device Tree is probed. * @rb: Ready/Busy pin for the flash chip */ struct marvell_nand_chip_sel { unsigned int cs; u32 ndcb0_csel; unsigned int rb; }; /** * struct marvell_nand_chip - stores NAND chip device related information * * @chip: Base NAND chip structure * @node: Used to store NAND chips into a list * @layout: NAND layout when using hardware ECC * @ndcr: Controller register value for this NAND chip * @ndtr0: Timing registers 0 value for this NAND chip * @ndtr1: Timing registers 1 value for this NAND chip * @addr_cyc: Amount of cycles needed to pass column address * @selected_die: Current active CS * @nsels: Number of CS lines required by the NAND chip * @sels: Array of CS lines descriptions */ struct marvell_nand_chip { struct nand_chip chip; struct list_head node; const struct marvell_hw_ecc_layout *layout; u32 ndcr; u32 ndtr0; u32 ndtr1; int addr_cyc; int selected_die; unsigned int nsels; struct marvell_nand_chip_sel sels[]; }; static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) { return container_of(chip, struct marvell_nand_chip, chip); } static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip *nand) { return &nand->sels[nand->selected_die]; } /** * struct marvell_nfc_caps - NAND controller capabilities for distinction * between compatible strings * * @max_cs_nb: Number of Chip Select lines available * @max_rb_nb: Number of Ready/Busy lines available * @need_system_controller: Indicates if the SoC needs to have access to the * system controller (ie. to enable the NAND controller) * @legacy_of_bindings: Indicates if DT parsing must be done using the old * fashion way * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. * BCH error detection and correction algorithm, * NDCB3 register has been added * @use_dma: Use dma for data transfers */ struct marvell_nfc_caps { unsigned int max_cs_nb; unsigned int max_rb_nb; bool need_system_controller; bool legacy_of_bindings; bool is_nfcv2; bool use_dma; }; /** * struct marvell_nfc - stores Marvell NAND controller information * * @controller: Base controller structure * @dev: Parent device (used to print error messages) * @regs: NAND controller registers * @core_clk: Core clock * @reg_clk: Registers clock * @complete: Completion object to wait for NAND controller events * @assigned_cs: Bitmask describing already assigned CS lines * @chips: List containing all the NAND chips attached to * this NAND controller * @selected_chip: Currently selected target chip * @caps: NAND controller capabilities for each compatible string * @use_dma: Whetner DMA is used * @dma_chan: DMA channel (NFCv1 only) * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) */ struct marvell_nfc { struct nand_controller controller; struct device *dev; void __iomem *regs; struct clk *core_clk; struct clk *reg_clk; struct completion complete; unsigned long assigned_cs; struct list_head chips; struct nand_chip *selected_chip; const struct marvell_nfc_caps *caps; /* DMA (NFCv1 only) */ bool use_dma; struct dma_chan *dma_chan; u8 *dma_buf; }; static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) { return container_of(ctrl, struct marvell_nfc, controller); } /** * struct marvell_nfc_timings - NAND controller timings expressed in NAND * Controller clock cycles * * @tRP: ND_nRE pulse width * @tRH: ND_nRE high duration * @tWP: ND_nWE pulse time * @tWH: ND_nWE high duration * @tCS: Enable signal setup time * @tCH: Enable signal hold time * @tADL: Address to write data delay * @tAR: ND_ALE low to ND_nRE low delay * @tWHR: ND_nWE high to ND_nRE low for status read * @tRHW: ND_nRE high duration, read to write delay * @tR: ND_nWE high to ND_nRE low for read */ struct marvell_nfc_timings { /* NDTR0 fields */ unsigned int tRP; unsigned int tRH; unsigned int tWP; unsigned int tWH; unsigned int tCS; unsigned int tCH; unsigned int tADL; /* NDTR1 fields */ unsigned int tAR; unsigned int tWHR; unsigned int tRHW; unsigned int tR; }; /** * TO_CYCLES() - Derives a duration in numbers of clock cycles. * * @ps: Duration in pico-seconds * @period_ns: Clock period in nano-seconds * * Convert the duration in nano-seconds, then divide by the period and * return the number of clock periods. */ #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ period_ns)) /** * struct marvell_nfc_op - filled during the parsing of the ->exec_op() * subop subset of instructions. * * @ndcb: Array of values written to NDCBx registers * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin * @rdy_delay_ns: Optional delay after waiting for the RB pin * @data_delay_ns: Optional delay after the data xfer * @data_instr_idx: Index of the data instruction in the subop * @data_instr: Pointer to the data instruction in the subop */ struct marvell_nfc_op { u32 ndcb[4]; unsigned int cle_ale_delay_ns; unsigned int rdy_timeout_ms; unsigned int rdy_delay_ns; unsigned int data_delay_ns; unsigned int data_instr_idx; const struct nand_op_instr *data_instr; }; /* * Internal helper to conditionnally apply a delay (from the above structure, * most of the time). */ static void cond_delay(unsigned int ns) { if (!ns) return; if (ns < 10000) ndelay(ns); else udelay(DIV_ROUND_UP(ns, 1000)); } /* * The controller has many flags that could generate interrupts, most of them * are disabled and polling is used. For the very slow signals, using interrupts * may relax the CPU charge. */ static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) { u32 reg; /* Writing 1 disables the interrupt */ reg = readl_relaxed(nfc->regs + NDCR); writel_relaxed(reg | int_mask, nfc->regs + NDCR); } static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) { u32 reg; /* Writing 0 enables the interrupt */ reg = readl_relaxed(nfc->regs + NDCR); writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); } static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) { u32 reg; reg = readl_relaxed(nfc->regs + NDSR); writel_relaxed(int_mask, nfc->regs + NDSR); return reg & int_mask; } static void marvell_nfc_force_byte_access(struct nand_chip *chip, bool force_8bit) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 ndcr; /* * Callers of this function do not verify if the NAND is using a 16-bit * an 8-bit bus for normal operations, so we need to take care of that * here by leaving the configuration unchanged if the NAND does not have * the NAND_BUSWIDTH_16 flag set. */ if (!(chip->options & NAND_BUSWIDTH_16)) return; ndcr = readl_relaxed(nfc->regs + NDCR); if (force_8bit) ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); else ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; writel_relaxed(ndcr, nfc->regs + NDCR); } static int marvell_nfc_wait_ndrun(struct nand_chip *chip) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 val; int ret; /* * The command is being processed, wait for the ND_RUN bit to be * cleared by the NFC. If not, we must clear it by hand. */ ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, (val & NDCR_ND_RUN) == 0, POLL_PERIOD, POLL_TIMEOUT); if (ret) { dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, nfc->regs + NDCR); return ret; } return 0; } /* * Any time a command has to be sent to the controller, the following sequence * has to be followed: * - call marvell_nfc_prepare_cmd() * -> activate the ND_RUN bit that will kind of 'start a job' * -> wait the signal indicating the NFC is waiting for a command * - send the command (cmd and address cycles) * - enventually send or receive the data * - call marvell_nfc_end_cmd() with the corresponding flag * -> wait the flag to be triggered or cancel the job with a timeout * * The following helpers are here to factorize the code a bit so that * specialized functions responsible for executing the actual NAND * operations do not have to replicate the same code blocks. */ static int marvell_nfc_prepare_cmd(struct nand_chip *chip) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 ndcr, val; int ret; /* Poll ND_RUN and clear NDSR before issuing any command */ ret = marvell_nfc_wait_ndrun(chip); if (ret) { dev_err(nfc->dev, "Last operation did not succeed\n"); return ret; } ndcr = readl_relaxed(nfc->regs + NDCR); writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); /* Assert ND_RUN bit and wait the NFC to be ready */ writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, val & NDSR_WRCMDREQ, POLL_PERIOD, POLL_TIMEOUT); if (ret) { dev_err(nfc->dev, "Timeout on WRCMDRE\n"); return -ETIMEDOUT; } /* Command may be written, clear WRCMDREQ status bit */ writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); return 0; } static void marvell_nfc_send_cmd(struct nand_chip *chip, struct marvell_nfc_op *nfc_op) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], nfc->regs + NDCB0); writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); writel(nfc_op->ndcb[2], nfc->regs + NDCB0); /* * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 * fields are used (only available on NFCv2). */ if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) writel(nfc_op->ndcb[3], nfc->regs + NDCB0); } } static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, const char *label) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 val; int ret; ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, val & flag, POLL_PERIOD, POLL_TIMEOUT); if (ret) { dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", label, val); if (nfc->dma_chan) dmaengine_terminate_all(nfc->dma_chan); return ret; } /* * DMA function uses this helper to poll on CMDD bits without wanting * them to be cleared. */ if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) return 0; writel_relaxed(flag, nfc->regs + NDSR); return 0; } static int marvell_nfc_wait_cmdd(struct nand_chip *chip) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); } static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, u32 expected_val, unsigned long timeout_ms) { unsigned long limit; u32 st; limit = jiffies + msecs_to_jiffies(timeout_ms); do { st = readl_relaxed(nfc->regs + NDSR); if (st & NDSR_RDY(1)) st |= NDSR_RDY(0); if ((st & mask) == expected_val) return 0; cpu_relax(); } while (time_after(limit, jiffies)); return -ETIMEDOUT; } static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); u32 pending; int ret; /* Timeout is expressed in ms */ if (!timeout_ms) timeout_ms = IRQ_TIMEOUT; if (mtd->oops_panic_write) { ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), NDSR_RDY(0), timeout_ms); } else { init_completion(&nfc->complete); marvell_nfc_enable_int(nfc, NDCR_RDYM); ret = wait_for_completion_timeout(&nfc->complete, msecs_to_jiffies(timeout_ms)); marvell_nfc_disable_int(nfc, NDCR_RDYM); } pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); /* * In case the interrupt was not served in the required time frame, * check if the ISR was not served or if something went actually wrong. */ if (!ret && !pending) { dev_err(nfc->dev, "Timeout waiting for RB signal\n"); return -ETIMEDOUT; } return 0; } static void marvell_nfc_select_target(struct nand_chip *chip, unsigned int die_nr) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 ndcr_generic; /* * Reset the NDCR register to a clean state for this particular chip, * also clear ND_RUN bit. */ ndcr_generic = readl_relaxed(nfc->regs + NDCR) & NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); /* Also reset the interrupt status register */ marvell_nfc_clear_int(nfc, NDCR_ALL_INT); if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) return; writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); nfc->selected_chip = chip; marvell_nand->selected_die = die_nr; } static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) { struct marvell_nfc *nfc = dev_id; u32 st = readl_relaxed(nfc->regs + NDSR); u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; /* * RDY interrupt mask is one bit in NDCR while there are two status * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). */ if (st & NDSR_RDY(1)) st |= NDSR_RDY(0); if (!(st & ien)) return IRQ_NONE; marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); if (st & (NDSR_RDY(0) | NDSR_RDY(1))) complete(&nfc->complete); return IRQ_HANDLED; } /* HW ECC related functions */ static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 ndcr = readl_relaxed(nfc->regs + NDCR); if (!(ndcr & NDCR_ECC_EN)) { writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); /* * When enabling BCH, set threshold to 0 to always know the * number of corrected bitflips. */ if (chip->ecc.algo == NAND_ECC_ALGO_BCH) writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); } } static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); u32 ndcr = readl_relaxed(nfc->regs + NDCR); if (ndcr & NDCR_ECC_EN) { writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); if (chip->ecc.algo == NAND_ECC_ALGO_BCH) writel_relaxed(0, nfc->regs + NDECCCTRL); } } /* DMA related helpers */ static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) { u32 reg; reg = readl_relaxed(nfc->regs + NDCR); writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); } static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) { u32 reg; reg = readl_relaxed(nfc->regs + NDCR); writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); } /* Read/write PIO/DMA accessors */ static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, enum dma_data_direction direction, unsigned int len) { unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); struct dma_async_tx_descriptor *tx; struct scatterlist sg; dma_cookie_t cookie; int ret; marvell_nfc_enable_dma(nfc); /* Prepare the DMA transfer */ sg_init_one(&sg, nfc->dma_buf, dma_len); dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, direction == DMA_FROM_DEVICE ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!tx) { dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); return -ENXIO; } /* Do the task and wait for it to finish */ cookie = dmaengine_submit(tx); ret = dma_submit_error(cookie); if (ret) return -EIO; dma_async_issue_pending(nfc->dma_chan); ret = marvell_nfc_wait_cmdd(nfc->selected_chip); dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); marvell_nfc_disable_dma(nfc); if (ret) { dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); dmaengine_terminate_all(nfc->dma_chan); return -ETIMEDOUT; } return 0; } static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, unsigned int len) { unsigned int last_len = len % FIFO_DEPTH; unsigned int last_full_offset = round_down(len, FIFO_DEPTH); int i; for (i = 0; i < last_full_offset; i += FIFO_DEPTH) ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); if (last_len) { u8 tmp_buf[FIFO_DEPTH]; ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); memcpy(in + last_full_offset, tmp_buf, last_len); } return 0; } static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, unsigned int len) { unsigned int last_len = len % FIFO_DEPTH; unsigned int last_full_offset = round_down(len, FIFO_DEPTH); int i; for (i = 0; i < last_full_offset; i += FIFO_DEPTH) iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); if (last_len) { u8 tmp_buf[FIFO_DEPTH]; memcpy(tmp_buf, out + last_full_offset, last_len); iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); } return 0; } static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, u8 *data, int data_len, u8 *spare, int spare_len, u8 *ecc, int ecc_len, unsigned int *max_bitflips) { struct mtd_info *mtd = nand_to_mtd(chip); int bf; /* * Blank pages (all 0xFF) that have not been written may be recognized * as bad if bitflips occur, so whenever an uncorrectable error occurs, * check if the entire page (with ECC bytes) is actually blank or not. */ if (!data) data_len = 0; if (!spare) spare_len = 0; if (!ecc) ecc_len = 0; bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, spare, spare_len, chip->ecc.strength); if (bf < 0) { mtd->ecc_stats.failed++; return; } /* Update the stats and max_bitflips */ mtd->ecc_stats.corrected += bf; *max_bitflips = max_t(unsigned int, *max_bitflips, bf); } /* * Check if a chunk is correct or not according to the hardware ECC engine. * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however * mtd->ecc_stats.failure is not, the function will instead return a non-zero * value indicating that a check on the emptyness of the subpage must be * performed before actually declaring the subpage as "corrupted". */ static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, unsigned int *max_bitflips) { struct mtd_info *mtd = nand_to_mtd(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); int bf = 0; u32 ndsr; ndsr = readl_relaxed(nfc->regs + NDSR); /* Check uncorrectable error flag */ if (ndsr & NDSR_UNCERR) { writel_relaxed(ndsr, nfc->regs + NDSR); /* * Do not increment ->ecc_stats.failed now, instead, return a * non-zero value to indicate that this chunk was apparently * bad, and it should be check to see if it empty or not. If * the chunk (with ECC bytes) is not declared empty, the calling * function must increment the failure count. */ return -EBADMSG; } /* Check correctable error flag */ if (ndsr & NDSR_CORERR) { writel_relaxed(ndsr, nfc->regs + NDSR); if (chip->ecc.algo == NAND_ECC_ALGO_BCH) bf = NDSR_ERRCNT(ndsr); else bf = 1; } /* Update the stats and max_bitflips */ mtd->ecc_stats.corrected += bf; *max_bitflips = max_t(unsigned int, *max_bitflips, bf); return 0; } /* Hamming read helpers */ static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, u8 *data_buf, u8 *oob_buf, bool raw, int page) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; struct marvell_nfc_op nfc_op = { .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | NDCB0_DBC | NDCB0_CMD1(NAND_CMD_READ0) | NDCB0_CMD2(NAND_CMD_READSTART), .ndcb[1] = NDCB1_ADDRS_PAGE(page), .ndcb[2] = NDCB2_ADDR5_PAGE(page), }; unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); int ret; /* NFCv2 needs more information about the operation being executed */ if (nfc->caps->is_nfcv2) nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, "RDDREQ while draining FIFO (data/oob)"); if (ret) return ret; /* * Read the page then the OOB area. Unlike what is shown in current * documentation, spare bytes are protected by the ECC engine, and must * be at the beginning of the OOB area or running this driver on legacy * systems will prevent the discovery of the BBM/BBT. */ if (nfc->use_dma) { marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, lt->data_bytes + oob_bytes); memcpy(data_buf, nfc->dma_buf, lt->data_bytes); memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); } else { marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); } ret = marvell_nfc_wait_cmdd(chip); return ret; } static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { marvell_nfc_select_target(chip, chip->cur_cs); return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, true, page); } static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; int max_bitflips = 0, ret; u8 *raw_buf; marvell_nfc_select_target(chip, chip->cur_cs); marvell_nfc_enable_hw_ecc(chip); marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, page); ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); marvell_nfc_disable_hw_ecc(chip); if (!ret) return max_bitflips; /* * When ECC failures are detected, check if the full page has been * written or not. Ignore the failure if it is actually empty. */ raw_buf = kmalloc(full_sz, GFP_KERNEL); if (!raw_buf) return -ENOMEM; marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + lt->data_bytes, true, page); marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, &max_bitflips); kfree(raw_buf); return max_bitflips; } /* * Spare area in Hamming layouts is not protected by the ECC engine (even if * it appears before the ECC bytes when reading), the ->read_oob_raw() function * also stands for ->read_oob(). */ static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) { u8 *buf = nand_get_data_buf(chip); marvell_nfc_select_target(chip, chip->cur_cs); return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, true, page); } /* Hamming write helpers */ static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, const u8 *data_buf, const u8 *oob_buf, bool raw, int page) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(nand_get_interface_config(chip)); struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; struct marvell_nfc_op nfc_op = { .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | NDCB0_CMD1(NAND_CMD_SEQIN) | NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC, .ndcb[1] = NDCB1_ADDRS_PAGE(page), .ndcb[2] = NDCB2_ADDR5_PAGE(page), }; unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); int ret; /* NFCv2 needs more information about the operation being executed */ if (nfc->caps->is_nfcv2) nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, "WRDREQ while loading FIFO (data)"); if (ret) return ret; /* Write the page then the OOB area */ if (nfc->use_dma) { memcpy(nfc->dma_buf, data_buf, lt->data_bytes); memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + lt->ecc_bytes + lt->spare_bytes); } else { marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); } ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); return ret; } static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { marvell_nfc_select_target(chip, chip->cur_cs); return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, true, page); } static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { int ret; marvell_nfc_select_target(chip, chip->cur_cs); marvell_nfc_enable_hw_ecc(chip); ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, false, page); marvell_nfc_disable_hw_ecc(chip); return ret; } /* * Spare area in Hamming layouts is not protected by the ECC engine (even if * it appears before the ECC bytes when reading), the ->write_oob_raw() function * also stands for ->write_oob(). */ static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); u8 *buf = nand_get_data_buf(chip); memset(buf, 0xFF, mtd->writesize); marvell_nfc_select_target(chip, chip->cur_cs); return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, true, page); } /* BCH read helpers */ static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; u8 *oob = chip->oob_poi; int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + lt->last_spare_bytes; int data_len = lt->data_bytes; int spare_len = lt->spare_bytes; int ecc_len = lt->ecc_bytes; int chunk; marvell_nfc_select_target(chip, chip->cur_cs); if (oob_required) memset(chip->oob_poi, 0xFF, mtd->oobsize); nand_read_page_op(chip, page, 0, NULL, 0); for (chunk = 0; chunk < lt->nchunks; chunk++) { /* Update last chunk length */ if (chunk >= lt->full_chunk_cnt) { data_len = lt->last_data_bytes; spare_len = lt->last_spare_bytes; ecc_len = lt->last_ecc_bytes; } /* Read data bytes*/ nand_change_read_column_op(chip, chunk * chunk_size, buf + (lt->data_bytes * chunk), data_len, false); /* Read spare bytes */ nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), spare_len, false, false); /* Read ECC bytes */ nand_read_data_op(chip, oob + ecc_offset + (ALIGN(lt->ecc_bytes, 32) * chunk), ecc_len, false, false); } return 0; } static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, u8 *data, unsigned int data_len, u8 *spare, unsigned int spare_len, int page) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; int i, ret; struct marvell_nfc_op nfc_op = { .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | NDCB0_LEN_OVRD, .ndcb[1] = NDCB1_ADDRS_PAGE(page), .ndcb[2] = NDCB2_ADDR5_PAGE(page), .ndcb[3] = data_len + spare_len, }; ret = marvell_nfc_prepare_cmd(chip); if (ret) return; if (chunk == 0) nfc_op.ndcb[0] |= NDCB0_DBC | NDCB0_CMD1(NAND_CMD_READ0) | NDCB0_CMD2(NAND_CMD_READSTART); /* * Trigger the monolithic read on the first chunk, then naked read on * intermediate chunks and finally a last naked read on the last chunk. */ if (chunk == 0) nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); else if (chunk < lt->nchunks - 1) nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); else nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); marvell_nfc_send_cmd(chip, &nfc_op); /* * According to the datasheet, when reading from NDDB * with BCH enabled, after each 32 bytes reads, we * have to make sure that the NDSR.RDDREQ bit is set. * * Drain the FIFO, 8 32-bit reads at a time, and skip * the polling on the last read. * * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. */ for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { marvell_nfc_end_cmd(chip, NDSR_RDDREQ, "RDDREQ while draining FIFO (data)"); marvell_nfc_xfer_data_in_pio(nfc, data, FIFO_DEPTH * BCH_SEQ_READS); data += FIFO_DEPTH * BCH_SEQ_READS; } for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { marvell_nfc_end_cmd(chip, NDSR_RDDREQ, "RDDREQ while draining FIFO (OOB)"); marvell_nfc_xfer_data_in_pio(nfc, spare, FIFO_DEPTH * BCH_SEQ_READS); spare += FIFO_DEPTH * BCH_SEQ_READS; } } static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; int data_len = lt->data_bytes, spare_len = lt->spare_bytes; u8 *data = buf, *spare = chip->oob_poi; int max_bitflips = 0; u32 failure_mask = 0; int chunk, ret; marvell_nfc_select_target(chip, chip->cur_cs); /* * With BCH, OOB is not fully used (and thus not read entirely), not * expected bytes could show up at the end of the OOB buffer if not * explicitly erased. */ if (oob_required) memset(chip->oob_poi, 0xFF, mtd->oobsize); marvell_nfc_enable_hw_ecc(chip); for (chunk = 0; chunk < lt->nchunks; chunk++) { /* Update length for the last chunk */ if (chunk >= lt->full_chunk_cnt) { data_len = lt->last_data_bytes; spare_len = lt->last_spare_bytes; } /* Read the chunk and detect number of bitflips */ marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, spare, spare_len, page); ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); if (ret) failure_mask |= BIT(chunk); data += data_len; spare += spare_len; } marvell_nfc_disable_hw_ecc(chip); if (!failure_mask) return max_bitflips; /* * Please note that dumping the ECC bytes during a normal read with OOB * area would add a significant overhead as ECC bytes are "consumed" by * the controller in normal mode and must be re-read in raw mode. To * avoid dropping the performances, we prefer not to include them. The * user should re-read the page in raw mode if ECC bytes are required. */ /* * In case there is any subpage read error, we usually re-read only ECC * bytes in raw mode and check if the whole page is empty. In this case, * it is normal that the ECC check failed and we just ignore the error. * * However, it has been empirically observed that for some layouts (e.g * 2k page, 8b strength per 512B chunk), the controller tries to correct * bits and may create itself bitflips in the erased area. To overcome * this strange behavior, the whole page is re-read in raw mode, not * only the ECC bytes. */ for (chunk = 0; chunk < lt->nchunks; chunk++) { int data_off_in_page, spare_off_in_page, ecc_off_in_page; int data_off, spare_off, ecc_off; int data_len, spare_len, ecc_len; /* No failure reported for this chunk, move to the next one */ if (!(failure_mask & BIT(chunk))) continue; data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + lt->ecc_bytes); spare_off_in_page = data_off_in_page + (chunk < lt->full_chunk_cnt ? lt->data_bytes : lt->last_data_bytes); ecc_off_in_page = spare_off_in_page + (chunk < lt->full_chunk_cnt ? lt->spare_bytes : lt->last_spare_bytes); data_off = chunk * lt->data_bytes; spare_off = chunk * lt->spare_bytes; ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + lt->last_spare_bytes + (chunk * (lt->ecc_bytes + 2)); data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : lt->last_data_bytes; spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : lt->last_spare_bytes; ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : lt->last_ecc_bytes; /* * Only re-read the ECC bytes, unless we are using the 2k/8b * layout which is buggy in the sense that the ECC engine will * try to correct data bytes anyway, creating bitflips. In this * case, re-read the entire page. */ if (lt->writesize == 2048 && lt->strength == 8) { nand_change_read_column_op(chip, data_off_in_page, buf + data_off, data_len, false); nand_change_read_column_op(chip, spare_off_in_page, chip->oob_poi + spare_off, spare_len, false); } nand_change_read_column_op(chip, ecc_off_in_page, chip->oob_poi + ecc_off, ecc_len, false); /* Check the entire chunk (data + spare + ecc) for emptyness */ marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, chip->oob_poi + spare_off, spare_len, chip->oob_poi + ecc_off, ecc_len, &max_bitflips); } return max_bitflips; } static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) { u8 *buf = nand_get_data_buf(chip); return chip->ecc.read_page_raw(chip, buf, true, page); } static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) { u8 *buf = nand_get_data_buf(chip); return chip->ecc.read_page(chip, buf, true, page); } /* BCH write helpers */ static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; int data_len = lt->data_bytes; int spare_len = lt->spare_bytes; int ecc_len = lt->ecc_bytes; int spare_offset = 0; int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + lt->last_spare_bytes; int chunk; marvell_nfc_select_target(chip, chip->cur_cs); nand_prog_page_begin_op(chip, page, 0, NULL, 0); for (chunk = 0; chunk < lt->nchunks; chunk++) { if (chunk >= lt->full_chunk_cnt) { data_len = lt->last_data_bytes; spare_len = lt->last_spare_bytes; ecc_len = lt->last_ecc_bytes; } /* Point to the column of the next chunk */ nand_change_write_column_op(chip, chunk * full_chunk_size, NULL, 0, false); /* Write the data */ nand_write_data_op(chip, buf + (chunk * lt->data_bytes), data_len, false); if (!oob_required) continue; /* Write the spare bytes */ if (spare_len) nand_write_data_op(chip, chip->oob_poi + spare_offset, spare_len, false); /* Write the ECC bytes */ if (ecc_len) nand_write_data_op(chip, chip->oob_poi + ecc_offset, ecc_len, false); spare_offset += spare_len; ecc_offset += ALIGN(ecc_len, 32); } return nand_prog_page_end_op(chip); } static int marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, const u8 *data, unsigned int data_len, const u8 *spare, unsigned int spare_len, int page) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; u32 xtype; int ret; struct marvell_nfc_op nfc_op = { .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, .ndcb[3] = data_len + spare_len, }; /* * First operation dispatches the CMD_SEQIN command, issue the address * cycles and asks for the first chunk of data. * All operations in the middle (if any) will issue a naked write and * also ask for data. * Last operation (if any) asks for the last chunk of data through a * last naked write. */ if (chunk == 0) { if (lt->nchunks == 1) xtype = XTYPE_MONOLITHIC_RW; else xtype = XTYPE_WRITE_DISPATCH; nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | NDCB0_CMD1(NAND_CMD_SEQIN); nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); } else if (chunk < lt->nchunks - 1) { nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); } else { nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); } /* Always dispatch the PAGEPROG command on the last chunk */ if (chunk == lt->nchunks - 1) nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, "WRDREQ while loading FIFO (data)"); if (ret) return ret; /* Transfer the contents */ iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); return 0; } static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(nand_get_interface_config(chip)); struct mtd_info *mtd = nand_to_mtd(chip); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; const u8 *data = buf; const u8 *spare = chip->oob_poi; int data_len = lt->data_bytes; int spare_len = lt->spare_bytes; int chunk, ret; marvell_nfc_select_target(chip, chip->cur_cs); /* Spare data will be written anyway, so clear it to avoid garbage */ if (!oob_required) memset(chip->oob_poi, 0xFF, mtd->oobsize); marvell_nfc_enable_hw_ecc(chip); for (chunk = 0; chunk < lt->nchunks; chunk++) { if (chunk >= lt->full_chunk_cnt) { data_len = lt->last_data_bytes; spare_len = lt->last_spare_bytes; } marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, spare, spare_len, page); data += data_len; spare += spare_len; /* * Waiting only for CMDD or PAGED is not enough, ECC are * partially written. No flag is set once the operation is * really finished but the ND_RUN bit is cleared, so wait for it * before stepping into the next command. */ marvell_nfc_wait_ndrun(chip); } ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); marvell_nfc_disable_hw_ecc(chip); if (ret) return ret; return 0; } static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); u8 *buf = nand_get_data_buf(chip); memset(buf, 0xFF, mtd->writesize); return chip->ecc.write_page_raw(chip, buf, true, page); } static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); u8 *buf = nand_get_data_buf(chip); memset(buf, 0xFF, mtd->writesize); return chip->ecc.write_page(chip, buf, true, page); } /* NAND framework ->exec_op() hooks and related helpers */ static void marvell_nfc_parse_instructions(struct nand_chip *chip, const struct nand_subop *subop, struct marvell_nfc_op *nfc_op) { const struct nand_op_instr *instr = NULL; struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); bool first_cmd = true; unsigned int op_id; int i; /* Reset the input structure as most of its fields will be OR'ed */ memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); for (op_id = 0; op_id < subop->ninstrs; op_id++) { unsigned int offset, naddrs; const u8 *addrs; int len; instr = &subop->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: if (first_cmd) nfc_op->ndcb[0] |= NDCB0_CMD1(instr->ctx.cmd.opcode); else nfc_op->ndcb[0] |= NDCB0_CMD2(instr->ctx.cmd.opcode) | NDCB0_DBC; nfc_op->cle_ale_delay_ns = instr->delay_ns; first_cmd = false; break; case NAND_OP_ADDR_INSTR: offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) nfc_op->ndcb[1] |= addrs[i] << (8 * i); if (naddrs >= 5) nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); if (naddrs >= 6) nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); if (naddrs == 7) nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); nfc_op->cle_ale_delay_ns = instr->delay_ns; break; case NAND_OP_DATA_IN_INSTR: nfc_op->data_instr = instr; nfc_op->data_instr_idx = op_id; nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); if (nfc->caps->is_nfcv2) { nfc_op->ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | NDCB0_LEN_OVRD; len = nand_subop_get_data_len(subop, op_id); nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); } nfc_op->data_delay_ns = instr->delay_ns; break; case NAND_OP_DATA_OUT_INSTR: nfc_op->data_instr = instr; nfc_op->data_instr_idx = op_id; nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); if (nfc->caps->is_nfcv2) { nfc_op->ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | NDCB0_LEN_OVRD; len = nand_subop_get_data_len(subop, op_id); nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); } nfc_op->data_delay_ns = instr->delay_ns; break; case NAND_OP_WAITRDY_INSTR: nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; nfc_op->rdy_delay_ns = instr->delay_ns; break; } } } static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, const struct nand_subop *subop, struct marvell_nfc_op *nfc_op) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); const struct nand_op_instr *instr = nfc_op->data_instr; unsigned int op_id = nfc_op->data_instr_idx; unsigned int len = nand_subop_get_data_len(subop, op_id); unsigned int offset = nand_subop_get_data_start_off(subop, op_id); bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); int ret; if (instr->ctx.data.force_8bit) marvell_nfc_force_byte_access(chip, true); if (reading) { u8 *in = instr->ctx.data.buf.in + offset; ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); } else { const u8 *out = instr->ctx.data.buf.out + offset; ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); } if (instr->ctx.data.force_8bit) marvell_nfc_force_byte_access(chip, false); return ret; } static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; bool reading; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, "RDDREQ/WRDREQ while draining raw data"); if (ret) return ret; cond_delay(nfc_op.cle_ale_delay_ns); if (reading) { if (nfc_op.rdy_timeout_ms) { ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); if (ret) return ret; } cond_delay(nfc_op.rdy_delay_ns); } marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; cond_delay(nfc_op.data_delay_ns); if (!reading) { if (nfc_op.rdy_timeout_ms) { ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); if (ret) return ret; } cond_delay(nfc_op.rdy_delay_ns); } /* * NDCR ND_RUN bit should be cleared automatically at the end of each * operation but experience shows that the behavior is buggy when it * comes to writes (with LEN_OVRD). Clear it by hand in this case. */ if (!reading) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, nfc->regs + NDCR); } return 0; } static int marvell_nfc_naked_access_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); /* * Naked access are different in that they need to be flagged as naked * by the controller. Reset the controller registers fields that inform * on the type and refill them according to the ongoing operation. */ nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | NDCB0_CMD_XTYPE(XTYPE_MASK)); switch (subop->instrs[0].type) { case NAND_OP_CMD_INSTR: nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); break; case NAND_OP_ADDR_INSTR: nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); break; case NAND_OP_DATA_IN_INSTR: nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); break; case NAND_OP_DATA_OUT_INSTR: nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); break; default: /* This should never happen */ break; } ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); if (!nfc_op.data_instr) { ret = marvell_nfc_wait_cmdd(chip); cond_delay(nfc_op.cle_ale_delay_ns); return ret; } ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, "RDDREQ/WRDREQ while draining raw data"); if (ret) return ret; marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; /* * NDCR ND_RUN bit should be cleared automatically at the end of each * operation but experience shows that the behavior is buggy when it * comes to writes (with LEN_OVRD). Clear it by hand in this case. */ if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, nfc->regs + NDCR); } return 0; } static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); cond_delay(nfc_op.rdy_delay_ns); return ret; } static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, "RDDREQ while reading ID"); if (ret) return ret; cond_delay(nfc_op.cle_ale_delay_ns); if (nfc_op.rdy_timeout_ms) { ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); if (ret) return ret; } cond_delay(nfc_op.rdy_delay_ns); marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; cond_delay(nfc_op.data_delay_ns); return 0; } static int marvell_nfc_read_status_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, "RDDREQ while reading status"); if (ret) return ret; cond_delay(nfc_op.cle_ale_delay_ns); if (nfc_op.rdy_timeout_ms) { ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); if (ret) return ret; } cond_delay(nfc_op.rdy_delay_ns); marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; cond_delay(nfc_op.data_delay_ns); return 0; } static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; cond_delay(nfc_op.cle_ale_delay_ns); ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); if (ret) return ret; cond_delay(nfc_op.rdy_delay_ns); return 0; } static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct marvell_nfc_op nfc_op; int ret; marvell_nfc_parse_instructions(chip, subop, &nfc_op); nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); ret = marvell_nfc_prepare_cmd(chip); if (ret) return ret; marvell_nfc_send_cmd(chip, &nfc_op); ret = marvell_nfc_wait_cmdd(chip); if (ret) return ret; cond_delay(nfc_op.cle_ale_delay_ns); ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); if (ret) return ret; cond_delay(nfc_op.rdy_delay_ns); return 0; } static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( /* Monolithic reads/writes */ NAND_OP_PARSER_PATTERN( marvell_nfc_monolithic_access_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), NAND_OP_PARSER_PATTERN( marvell_nfc_monolithic_access_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), /* Naked commands */ NAND_OP_PARSER_PATTERN( marvell_nfc_naked_access_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false)), NAND_OP_PARSER_PATTERN( marvell_nfc_naked_access_exec, NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), NAND_OP_PARSER_PATTERN( marvell_nfc_naked_access_exec, NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), NAND_OP_PARSER_PATTERN( marvell_nfc_naked_access_exec, NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), NAND_OP_PARSER_PATTERN( marvell_nfc_naked_waitrdy_exec, NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), ); static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( /* Naked commands not supported, use a function for each pattern */ NAND_OP_PARSER_PATTERN( marvell_nfc_read_id_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), NAND_OP_PARSER_PATTERN( marvell_nfc_erase_cmd_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), NAND_OP_PARSER_PATTERN( marvell_nfc_read_status_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), NAND_OP_PARSER_PATTERN( marvell_nfc_reset_cmd_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), NAND_OP_PARSER_PATTERN( marvell_nfc_naked_waitrdy_exec, NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), ); static int marvell_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); if (!check_only) marvell_nfc_select_target(chip, op->cs); if (nfc->caps->is_nfcv2) return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, op, check_only); else return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, op, check_only); } /* * Layouts were broken in old pxa3xx_nand driver, these are supposed to be * usable. */ static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; if (section) return -ERANGE; oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + lt->last_ecc_bytes; oobregion->offset = mtd->oobsize - oobregion->length; return 0; } static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; if (section) return -ERANGE; /* * Bootrom looks in bytes 0 & 5 for bad blocks for the * 4KB page / 4bit BCH combination. */ if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) oobregion->offset = 6; else oobregion->offset = 2; oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + lt->last_spare_bytes - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { .ecc = marvell_nand_ooblayout_ecc, .free = marvell_nand_ooblayout_free, }; static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc) { struct nand_chip *chip = mtd_to_nand(mtd); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); const struct marvell_hw_ecc_layout *l; int i; if (!nfc->caps->is_nfcv2 && (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { dev_err(nfc->dev, "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); return -ENOTSUPP; } to_marvell_nand(chip)->layout = NULL; for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { l = &marvell_nfc_layouts[i]; if (mtd->writesize == l->writesize && ecc->size == l->chunk && ecc->strength == l->strength) { to_marvell_nand(chip)->layout = l; break; } } if (!to_marvell_nand(chip)->layout || (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { dev_err(nfc->dev, "ECC strength %d at page size %d is not supported\n", ecc->strength, mtd->writesize); return -ENOTSUPP; } /* Special care for the layout 2k/8-bit/512B */ if (l->writesize == 2048 && l->strength == 8) { if (mtd->oobsize < 128) { dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); return -ENOTSUPP; } else { chip->bbt_options |= NAND_BBT_NO_OOB_BBM; } } mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); ecc->steps = l->nchunks; ecc->size = l->data_bytes; if (ecc->strength == 1) { chip->ecc.algo = NAND_ECC_ALGO_HAMMING; ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; ecc->read_oob = ecc->read_oob_raw; ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; ecc->write_oob = ecc->write_oob_raw; } else { chip->ecc.algo = NAND_ECC_ALGO_BCH; ecc->strength = 16; ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; } return 0; } static int marvell_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc) { struct nand_chip *chip = mtd_to_nand(mtd); const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&chip->base); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); int ret; if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && (!ecc->size || !ecc->strength)) { if (requirements->step_size && requirements->strength) { ecc->size = requirements->step_size; ecc->strength = requirements->strength; } else { dev_info(nfc->dev, "No minimum ECC strength, using 1b/512B\n"); ecc->size = 512; ecc->strength = 1; } } switch (ecc->engine_type) { case NAND_ECC_ENGINE_TYPE_ON_HOST: ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); if (ret) return ret; break; case NAND_ECC_ENGINE_TYPE_NONE: case NAND_ECC_ENGINE_TYPE_SOFT: case NAND_ECC_ENGINE_TYPE_ON_DIE: if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && mtd->writesize != SZ_2K) { dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", mtd->writesize); return -EINVAL; } break; default: return -EINVAL; } return 0; } static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 8, .len = 6, .veroffs = 14, .maxblocks = 8, /* Last 8 blocks in each chip */ .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 8, .len = 6, .veroffs = 14, .maxblocks = 8, /* Last 8 blocks in each chip */ .pattern = bbt_mirror_pattern }; static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf) { struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; const struct nand_sdr_timings *sdr; struct marvell_nfc_timings nfc_tmg; int read_delay; sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); /* * SDR timings are given in pico-seconds while NFC timings must be * expressed in NAND controller clock cycles, which is half of the * frequency of the accessible ECC clock retrieved by clk_get_rate(). * This is not written anywhere in the datasheet but was observed * with an oscilloscope. * * NFC datasheet gives equations from which thoses calculations * are derived, they tend to be slightly more restrictives than the * given core timings and may improve the overall speed. */ nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; nfc_tmg.tRH = nfc_tmg.tRP; nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; nfc_tmg.tWH = nfc_tmg.tWP; nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); /* * Read delay is the time of propagation from SoC pins to NFC internal * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In * EDO mode, an additional delay of tRH must be taken into account so * the data is sampled on the falling edge instead of the rising edge. */ read_delay = sdr->tRC_min >= 30000 ? MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); /* * tWHR and tRHW are supposed to be read to write delays (and vice * versa) but in some cases, ie. when doing a change column, they must * be greater than that to be sure tCCS delay is respected. */ nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), period_ns) - 2; nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), period_ns); /* * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. * NFCv1: No WAIT_MODE, tR must be maximal. */ if (nfc->caps->is_nfcv2) { nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); } else { nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, period_ns); if (nfc_tmg.tR + 3 > nfc_tmg.tCH) nfc_tmg.tR = nfc_tmg.tCH - 3; else nfc_tmg.tR = 0; } if (chipnr < 0) return 0; marvell_nand->ndtr0 = NDTR0_TRP(nfc_tmg.tRP) | NDTR0_TRH(nfc_tmg.tRH) | NDTR0_ETRP(nfc_tmg.tRP) | NDTR0_TWP(nfc_tmg.tWP) | NDTR0_TWH(nfc_tmg.tWH) | NDTR0_TCS(nfc_tmg.tCS) | NDTR0_TCH(nfc_tmg.tCH); marvell_nand->ndtr1 = NDTR1_TAR(nfc_tmg.tAR) | NDTR1_TWHR(nfc_tmg.tWHR) | NDTR1_TR(nfc_tmg.tR); if (nfc->caps->is_nfcv2) { marvell_nand->ndtr0 |= NDTR0_RD_CNT_DEL(read_delay) | NDTR0_SELCNTR | NDTR0_TADL(nfc_tmg.tADL); marvell_nand->ndtr1 |= NDTR1_TRHW(nfc_tmg.tRHW) | NDTR1_WAIT_MODE; } return 0; } static int marvell_nand_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); int ret; if (pdata && pdata->flash_bbt) chip->bbt_options |= NAND_BBT_USE_FLASH; if (chip->bbt_options & NAND_BBT_USE_FLASH) { /* * We'll use a bad block table stored in-flash and don't * allow writing the bad block marker to the flash. */ chip->bbt_options |= NAND_BBT_NO_OOB_BBM; chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; } /* Save the chip-specific fields of NDCR */ marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); if (chip->options & NAND_BUSWIDTH_16) marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; /* * On small page NANDs, only one cycle is needed to pass the * column address. */ if (mtd->writesize <= 512) { marvell_nand->addr_cyc = 1; } else { marvell_nand->addr_cyc = 2; marvell_nand->ndcr |= NDCR_RA_START; } /* * Now add the number of cycles needed to pass the row * address. * * Addressing a chip using CS 2 or 3 should also need the third row * cycle but due to inconsistance in the documentation and lack of * hardware to test this situation, this case is not supported. */ if (chip->options & NAND_ROW_ADDR_3) marvell_nand->addr_cyc += 3; else marvell_nand->addr_cyc += 2; if (pdata) { chip->ecc.size = pdata->ecc_step_size; chip->ecc.strength = pdata->ecc_strength; } ret = marvell_nand_ecc_init(mtd, &chip->ecc); if (ret) { dev_err(nfc->dev, "ECC init failed: %d\n", ret); return ret; } if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { /* * Subpage write not available with hardware ECC, prohibit also * subpage read as in userspace subpage access would still be * allowed and subpage write, if used, would lead to numerous * uncorrectable ECC errors. */ chip->options |= NAND_NO_SUBPAGE_WRITE; } if (pdata || nfc->caps->legacy_of_bindings) { /* * We keep the MTD name unchanged to avoid breaking platforms * where the MTD cmdline parser is used and the bootloader * has not been updated to use the new naming scheme. */ mtd->name = "pxa3xx_nand-0"; } else if (!mtd->name) { /* * If the new bindings are used and the bootloader has not been * updated to pass a new mtdparts parameter on the cmdline, you * should define the following property in your NAND node, ie: * * label = "main-storage"; * * This way, mtd->name will be set by the core when * nand_set_flash_node() is called. */ mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, "%s:nand.%d", dev_name(nfc->dev), marvell_nand->sels[0].cs); if (!mtd->name) { dev_err(nfc->dev, "Failed to allocate mtd->name\n"); return -ENOMEM; } } return 0; } static const struct nand_controller_ops marvell_nand_controller_ops = { .attach_chip = marvell_nand_attach_chip, .exec_op = marvell_nfc_exec_op, .setup_interface = marvell_nfc_setup_interface, }; static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, struct device_node *np) { struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); struct marvell_nand_chip *marvell_nand; struct mtd_info *mtd; struct nand_chip *chip; int nsels, ret, i; u32 cs, rb; /* * The legacy "num-cs" property indicates the number of CS on the only * chip connected to the controller (legacy bindings does not support * more than one chip). The CS and RB pins are always the #0. * * When not using legacy bindings, a couple of "reg" and "nand-rb" * properties must be filled. For each chip, expressed as a subnode, * "reg" points to the CS lines and "nand-rb" to the RB line. */ if (pdata || nfc->caps->legacy_of_bindings) { nsels = 1; } else { nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); if (nsels <= 0) { dev_err(dev, "missing/invalid reg property\n"); return -EINVAL; } } /* Alloc the nand chip structure */ marvell_nand = devm_kzalloc(dev, struct_size(marvell_nand, sels, nsels), GFP_KERNEL); if (!marvell_nand) { dev_err(dev, "could not allocate chip structure\n"); return -ENOMEM; } marvell_nand->nsels = nsels; marvell_nand->selected_die = -1; for (i = 0; i < nsels; i++) { if (pdata || nfc->caps->legacy_of_bindings) { /* * Legacy bindings use the CS lines in natural * order (0, 1, ...) */ cs = i; } else { /* Retrieve CS id */ ret = of_property_read_u32_index(np, "reg", i, &cs); if (ret) { dev_err(dev, "could not retrieve reg property: %d\n", ret); return ret; } } if (cs >= nfc->caps->max_cs_nb) { dev_err(dev, "invalid reg value: %u (max CS = %d)\n", cs, nfc->caps->max_cs_nb); return -EINVAL; } if (test_and_set_bit(cs, &nfc->assigned_cs)) { dev_err(dev, "CS %d already assigned\n", cs); return -EINVAL; } /* * The cs variable represents the chip select id, which must be * converted in bit fields for NDCB0 and NDCB2 to select the * right chip. Unfortunately, due to a lack of information on * the subject and incoherent documentation, the user should not * use CS1 and CS3 at all as asserting them is not supported in * a reliable way (due to multiplexing inside ADDR5 field). */ marvell_nand->sels[i].cs = cs; switch (cs) { case 0: case 2: marvell_nand->sels[i].ndcb0_csel = 0; break; case 1: case 3: marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; break; default: return -EINVAL; } /* Retrieve RB id */ if (pdata || nfc->caps->legacy_of_bindings) { /* Legacy bindings always use RB #0 */ rb = 0; } else { ret = of_property_read_u32_index(np, "nand-rb", i, &rb); if (ret) { dev_err(dev, "could not retrieve RB property: %d\n", ret); return ret; } } if (rb >= nfc->caps->max_rb_nb) { dev_err(dev, "invalid reg value: %u (max RB = %d)\n", rb, nfc->caps->max_rb_nb); return -EINVAL; } marvell_nand->sels[i].rb = rb; } chip = &marvell_nand->chip; chip->controller = &nfc->controller; nand_set_flash_node(chip, np); if (!of_property_read_bool(np, "marvell,nand-keep-config")) chip->options |= NAND_KEEP_TIMINGS; mtd = nand_to_mtd(chip); mtd->dev.parent = dev; /* * Save a reference value for timing registers before * ->setup_interface() is called. */ marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); chip->options |= NAND_BUSWIDTH_AUTO; ret = nand_scan(chip, marvell_nand->nsels); if (ret) { dev_err(dev, "could not scan the nand chip\n"); return ret; } if (pdata) /* Legacy bindings support only one chip */ ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); else ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "failed to register mtd device: %d\n", ret); nand_cleanup(chip); return ret; } list_add_tail(&marvell_nand->node, &nfc->chips); return 0; } static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) { struct marvell_nand_chip *entry, *temp; struct nand_chip *chip; int ret; list_for_each_entry_safe(entry, temp, &nfc->chips, node) { chip = &entry->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&entry->node); } } static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) { struct device_node *np = dev->of_node; struct device_node *nand_np; int max_cs = nfc->caps->max_cs_nb; int nchips; int ret; if (!np) nchips = 1; else nchips = of_get_child_count(np); if (nchips > max_cs) { dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, max_cs); return -EINVAL; } /* * Legacy bindings do not use child nodes to exhibit NAND chip * properties and layout. Instead, NAND properties are mixed with the * controller ones, and partitions are defined as direct subnodes of the * NAND controller node. */ if (nfc->caps->legacy_of_bindings) { ret = marvell_nand_chip_init(dev, nfc, np); return ret; } for_each_child_of_node(np, nand_np) { ret = marvell_nand_chip_init(dev, nfc, nand_np); if (ret) { of_node_put(nand_np); goto cleanup_chips; } } return 0; cleanup_chips: marvell_nand_chips_cleanup(nfc); return ret; } static int marvell_nfc_init_dma(struct marvell_nfc *nfc) { struct platform_device *pdev = container_of(nfc->dev, struct platform_device, dev); struct dma_slave_config config = {}; struct resource *r; int ret; if (!IS_ENABLED(CONFIG_PXA_DMA)) { dev_warn(nfc->dev, "DMA not enabled in configuration\n"); return -ENOTSUPP; } ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); if (ret) return ret; nfc->dma_chan = dma_request_chan(nfc->dev, "data"); if (IS_ERR(nfc->dma_chan)) { ret = PTR_ERR(nfc->dma_chan); nfc->dma_chan = NULL; return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { ret = -ENXIO; goto release_channel; } config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; config.src_addr = r->start + NDDB; config.dst_addr = r->start + NDDB; config.src_maxburst = 32; config.dst_maxburst = 32; ret = dmaengine_slave_config(nfc->dma_chan, &config); if (ret < 0) { dev_err(nfc->dev, "Failed to configure DMA channel\n"); goto release_channel; } /* * DMA must act on length multiple of 32 and this length may be * bigger than the destination buffer. Use this buffer instead * for DMA transfers and then copy the desired amount of data to * the provided buffer. */ nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); if (!nfc->dma_buf) { ret = -ENOMEM; goto release_channel; } nfc->use_dma = true; return 0; release_channel: dma_release_channel(nfc->dma_chan); nfc->dma_chan = NULL; return ret; } static void marvell_nfc_reset(struct marvell_nfc *nfc) { /* * ECC operations and interruptions are only enabled when specifically * needed. ECC shall not be activated in the early stages (fails probe). * Arbiter flag, even if marked as "reserved", must be set (empirical). * SPARE_EN bit must always be set or ECC bytes will not be at the same * offset in the read page and this will fail the protection. */ writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); writel_relaxed(0, nfc->regs + NDECCCTRL); } static int marvell_nfc_init(struct marvell_nfc *nfc) { struct device_node *np = nfc->dev->of_node; /* * Some SoCs like A7k/A8k need to enable manually the NAND * controller, gated clocks and reset bits to avoid being bootloader * dependent. This is done through the use of the System Functions * registers. */ if (nfc->caps->need_system_controller) { struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(np, "marvell,system-controller"); if (IS_ERR(sysctrl_base)) return PTR_ERR(sysctrl_base); regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, GENCONF_SOC_DEVICE_MUX_NFC_EN | GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, GENCONF_CLK_GATING_CTRL_ND_GATE, GENCONF_CLK_GATING_CTRL_ND_GATE); regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, GENCONF_ND_CLK_CTRL_EN, GENCONF_ND_CLK_CTRL_EN); } /* Configure the DMA if appropriate */ if (!nfc->caps->is_nfcv2) marvell_nfc_init_dma(nfc); marvell_nfc_reset(nfc); return 0; } static int marvell_nfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct marvell_nfc *nfc; int ret; int irq; nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->dev = dev; nand_controller_init(&nfc->controller); nfc->controller.ops = &marvell_nand_controller_ops; INIT_LIST_HEAD(&nfc->chips); nfc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(nfc->regs)) return PTR_ERR(nfc->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; nfc->core_clk = devm_clk_get(&pdev->dev, "core"); /* Managed the legacy case (when the first clock was not named) */ if (nfc->core_clk == ERR_PTR(-ENOENT)) nfc->core_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(nfc->core_clk)) return PTR_ERR(nfc->core_clk); ret = clk_prepare_enable(nfc->core_clk); if (ret) return ret; nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); if (IS_ERR(nfc->reg_clk)) { if (PTR_ERR(nfc->reg_clk) != -ENOENT) { ret = PTR_ERR(nfc->reg_clk); goto unprepare_core_clk; } nfc->reg_clk = NULL; } ret = clk_prepare_enable(nfc->reg_clk); if (ret) goto unprepare_core_clk; marvell_nfc_disable_int(nfc, NDCR_ALL_INT); marvell_nfc_clear_int(nfc, NDCR_ALL_INT); ret = devm_request_irq(dev, irq, marvell_nfc_isr, 0, "marvell-nfc", nfc); if (ret) goto unprepare_reg_clk; /* Get NAND controller capabilities */ if (pdev->id_entry) nfc->caps = (void *)pdev->id_entry->driver_data; else nfc->caps = of_device_get_match_data(&pdev->dev); if (!nfc->caps) { dev_err(dev, "Could not retrieve NFC caps\n"); ret = -EINVAL; goto unprepare_reg_clk; } /* Init the controller and then probe the chips */ ret = marvell_nfc_init(nfc); if (ret) goto unprepare_reg_clk; platform_set_drvdata(pdev, nfc); ret = marvell_nand_chips_init(dev, nfc); if (ret) goto release_dma; return 0; release_dma: if (nfc->use_dma) dma_release_channel(nfc->dma_chan); unprepare_reg_clk: clk_disable_unprepare(nfc->reg_clk); unprepare_core_clk: clk_disable_unprepare(nfc->core_clk); return ret; } static int marvell_nfc_remove(struct platform_device *pdev) { struct marvell_nfc *nfc = platform_get_drvdata(pdev); marvell_nand_chips_cleanup(nfc); if (nfc->use_dma) { dmaengine_terminate_all(nfc->dma_chan); dma_release_channel(nfc->dma_chan); } clk_disable_unprepare(nfc->reg_clk); clk_disable_unprepare(nfc->core_clk); return 0; } static int __maybe_unused marvell_nfc_suspend(struct device *dev) { struct marvell_nfc *nfc = dev_get_drvdata(dev); struct marvell_nand_chip *chip; list_for_each_entry(chip, &nfc->chips, node) marvell_nfc_wait_ndrun(&chip->chip); clk_disable_unprepare(nfc->reg_clk); clk_disable_unprepare(nfc->core_clk); return 0; } static int __maybe_unused marvell_nfc_resume(struct device *dev) { struct marvell_nfc *nfc = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(nfc->core_clk); if (ret < 0) return ret; ret = clk_prepare_enable(nfc->reg_clk); if (ret < 0) { clk_disable_unprepare(nfc->core_clk); return ret; } /* * Reset nfc->selected_chip so the next command will cause the timing * registers to be restored in marvell_nfc_select_target(). */ nfc->selected_chip = NULL; /* Reset registers that have lost their contents */ marvell_nfc_reset(nfc); return 0; } static const struct dev_pm_ops marvell_nfc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) }; static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { .max_cs_nb = 4, .max_rb_nb = 2, .need_system_controller = true, .is_nfcv2 = true, }; static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { .max_cs_nb = 4, .max_rb_nb = 2, .is_nfcv2 = true, }; static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { .max_cs_nb = 2, .max_rb_nb = 1, .use_dma = true, }; static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { .max_cs_nb = 4, .max_rb_nb = 2, .need_system_controller = true, .legacy_of_bindings = true, .is_nfcv2 = true, }; static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { .max_cs_nb = 4, .max_rb_nb = 2, .legacy_of_bindings = true, .is_nfcv2 = true, }; static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { .max_cs_nb = 2, .max_rb_nb = 1, .legacy_of_bindings = true, .use_dma = true, }; static const struct platform_device_id marvell_nfc_platform_ids[] = { { .name = "pxa3xx-nand", .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); static const struct of_device_id marvell_nfc_of_ids[] = { { .compatible = "marvell,armada-8k-nand-controller", .data = &marvell_armada_8k_nfc_caps, }, { .compatible = "marvell,armada370-nand-controller", .data = &marvell_armada370_nfc_caps, }, { .compatible = "marvell,pxa3xx-nand-controller", .data = &marvell_pxa3xx_nfc_caps, }, /* Support for old/deprecated bindings: */ { .compatible = "marvell,armada-8k-nand", .data = &marvell_armada_8k_nfc_legacy_caps, }, { .compatible = "marvell,armada370-nand", .data = &marvell_armada370_nfc_legacy_caps, }, { .compatible = "marvell,pxa3xx-nand", .data = &marvell_pxa3xx_nfc_legacy_caps, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); static struct platform_driver marvell_nfc_driver = { .driver = { .name = "marvell-nfc", .of_match_table = marvell_nfc_of_ids, .pm = &marvell_nfc_pm_ops, }, .id_table = marvell_nfc_platform_ids, .probe = marvell_nfc_probe, .remove = marvell_nfc_remove, }; module_platform_driver(marvell_nfc_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Marvell NAND controller driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1