Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woodhouse | 2999 | 46.59% | 3 | 3.19% |
Boris Brezillon | 949 | 14.74% | 13 | 13.83% |
Brian Norris | 788 | 12.24% | 41 | 43.62% |
Sebastian Andrzej Siewior | 774 | 12.02% | 4 | 4.26% |
Thomas Gleixner | 392 | 6.09% | 6 | 6.38% |
Kyle Roeschley | 125 | 1.94% | 1 | 1.06% |
Stefan Riedmueller | 122 | 1.90% | 1 | 1.06% |
Maxim Levitsky | 62 | 0.96% | 1 | 1.06% |
Artem B. Bityutskiy | 53 | 0.82% | 5 | 5.32% |
Ezequiel García | 37 | 0.57% | 1 | 1.06% |
Frieder Schrempf | 33 | 0.51% | 1 | 1.06% |
Adrian Hunter | 29 | 0.45% | 1 | 1.06% |
Stanislav Fomichev | 14 | 0.22% | 1 | 1.06% |
Wenwen Wang | 11 | 0.17% | 1 | 1.06% |
Miquel Raynal | 8 | 0.12% | 2 | 2.13% |
Richard Genoud | 7 | 0.11% | 1 | 1.06% |
Dmitry Maluka | 6 | 0.09% | 1 | 1.06% |
Jörn Engel | 6 | 0.09% | 1 | 1.06% |
Rafał Miłecki | 6 | 0.09% | 1 | 1.06% |
Sheng Yong | 5 | 0.08% | 1 | 1.06% |
Paul Gortmaker | 3 | 0.05% | 1 | 1.06% |
Vitaly Wool | 3 | 0.05% | 1 | 1.06% |
Shmulik Ladkani | 1 | 0.02% | 1 | 1.06% |
Randy Dunlap | 1 | 0.02% | 1 | 1.06% |
Burman Yan | 1 | 0.02% | 1 | 1.06% |
Mauro Carvalho Chehab | 1 | 0.02% | 1 | 1.06% |
Kieran Bingham | 1 | 0.02% | 1 | 1.06% |
Total | 6437 | 94 |
// SPDX-License-Identifier: GPL-2.0-only /* * Overview: * Bad block table support for the NAND driver * * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) * * Description: * * When nand_scan_bbt is called, then it tries to find the bad block table * depending on the options in the BBT descriptor(s). If no flash based BBT * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory * marked good / bad blocks. This information is used to create a memory BBT. * Once a new bad block is discovered then the "factory" information is updated * on the device. * If a flash based BBT is specified then the function first tries to find the * BBT on flash. If a BBT is found then the contents are read and the memory * based BBT is created. If a mirrored BBT is selected then the mirror is * searched too and the versions are compared. If the mirror has a greater * version number, then the mirror BBT is used to build the memory based BBT. * If the tables are not versioned, then we "or" the bad block information. * If one of the BBTs is out of date or does not exist it is (re)created. * If no BBT exists at all then the device is scanned for factory marked * good / bad blocks and the bad block tables are created. * * For manufacturer created BBTs like the one found on M-SYS DOC devices * the BBT is searched and read but never created * * The auto generated bad block table is located in the last good blocks * of the device. The table is mirrored, so it can be updated eventually. * The table is marked in the OOB area with an ident pattern and a version * number which indicates which of both tables is more up to date. If the NAND * controller needs the complete OOB area for the ECC information then the * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of * course): it moves the ident pattern and the version byte into the data area * and the OOB area will remain untouched. * * The table uses 2 bits per block * 11b: block is good * 00b: block is factory marked bad * 01b, 10b: block is marked bad due to wear * * The memory bad block table uses the following scheme: * 00b: block is good * 01b: block is marked bad due to wear * 10b: block is reserved (to protect the bbt area) * 11b: block is factory marked bad * * Multichip devices like DOC store the bad block info per floor. * * Following assumptions are made: * - bbts start at a page boundary, if autolocated on a block boundary * - the space necessary for a bbt in FLASH does not exceed a block boundary */ #include <linux/slab.h> #include <linux/types.h> #include <linux/mtd/mtd.h> #include <linux/mtd/bbm.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/vmalloc.h> #include <linux/export.h> #include <linux/string.h> #include "internals.h" #define BBT_BLOCK_GOOD 0x00 #define BBT_BLOCK_WORN 0x01 #define BBT_BLOCK_RESERVED 0x02 #define BBT_BLOCK_FACTORY_BAD 0x03 #define BBT_ENTRY_MASK 0x03 #define BBT_ENTRY_SHIFT 2 static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block) { uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT]; entry >>= (block & BBT_ENTRY_MASK) * 2; return entry & BBT_ENTRY_MASK; } static inline void bbt_mark_entry(struct nand_chip *chip, int block, uint8_t mark) { uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2); chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk; } static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) { if (memcmp(buf, td->pattern, td->len)) return -1; return 0; } /** * check_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @len: the length of buffer to search * @paglen: the pagelength * @td: search pattern descriptor * * Check for a pattern at the given place. Used to search bad block tables and * good / bad block identifiers. */ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) { if (td->options & NAND_BBT_NO_OOB) return check_pattern_no_oob(buf, td); /* Compare the pattern */ if (memcmp(buf + paglen + td->offs, td->pattern, td->len)) return -1; return 0; } /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @td: search pattern descriptor * * Check for a pattern at the given place. Used to search bad block tables and * good / bad block identifiers. Same as check_pattern, but no optional empty * check. */ static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) { /* Compare the pattern */ if (memcmp(buf + td->offs, td->pattern, td->len)) return -1; return 0; } /** * add_marker_len - compute the length of the marker in data area * @td: BBT descriptor used for computation * * The length will be 0 if the marker is located in OOB area. */ static u32 add_marker_len(struct nand_bbt_descr *td) { u32 len; if (!(td->options & NAND_BBT_NO_OOB)) return 0; len = td->len; if (td->options & NAND_BBT_VERSION) len++; return len; } /** * read_bbt - [GENERIC] Read the bad block table starting from page * @this: NAND chip object * @buf: temporary buffer * @page: the starting page * @num: the number of bbt descriptors to read * @td: the bbt describtion table * @offs: block number offset in the table * * Read the bad block table starting from page. */ static int read_bbt(struct nand_chip *this, uint8_t *buf, int page, int num, struct nand_bbt_descr *td, int offs) { struct mtd_info *mtd = nand_to_mtd(this); int res, ret = 0, i, j, act = 0; size_t retlen, len, totlen; loff_t from; int bits = td->options & NAND_BBT_NRBITS_MSK; uint8_t msk = (uint8_t)((1 << bits) - 1); u32 marker_len; int reserved_block_code = td->reserved_block_code; totlen = (num * bits) >> 3; marker_len = add_marker_len(td); from = ((loff_t)page) << this->page_shift; while (totlen) { len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); if (marker_len) { /* * In case the BBT marker is not in the OOB area it * will be just in the first page. */ len -= marker_len; from += marker_len; marker_len = 0; } res = mtd_read(mtd, from, len, &retlen, buf); if (res < 0) { if (mtd_is_eccerr(res)) { pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n", from & ~mtd->writesize); return res; } else if (mtd_is_bitflip(res)) { pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n", from & ~mtd->writesize); ret = res; } else { pr_info("nand_bbt: error reading BBT\n"); return res; } } /* Analyse data */ for (i = 0; i < len; i++) { uint8_t dat = buf[i]; for (j = 0; j < 8; j += bits, act++) { uint8_t tmp = (dat >> j) & msk; if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { pr_info("nand_read_bbt: reserved block at 0x%012llx\n", (loff_t)(offs + act) << this->bbt_erase_shift); bbt_mark_entry(this, offs + act, BBT_BLOCK_RESERVED); mtd->ecc_stats.bbtblocks++; continue; } /* * Leave it for now, if it's matured we can * move this message to pr_debug. */ pr_info("nand_read_bbt: bad block at 0x%012llx\n", (loff_t)(offs + act) << this->bbt_erase_shift); /* Factory marked bad or worn out? */ if (tmp == 0) bbt_mark_entry(this, offs + act, BBT_BLOCK_FACTORY_BAD); else bbt_mark_entry(this, offs + act, BBT_BLOCK_WORN); mtd->ecc_stats.badblocks++; } } totlen -= len; from += len; } return ret; } /** * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page * @this: NAND chip object * @buf: temporary buffer * @td: descriptor for the bad block table * @chip: read the table for a specific chip, -1 read all chips; applies only if * NAND_BBT_PERCHIP option is set * * Read the bad block table for all chips starting at a given page. We assume * that the bbt bits are in consecutive order. */ static int read_abs_bbt(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *td, int chip) { struct mtd_info *mtd = nand_to_mtd(this); u64 targetsize = nanddev_target_size(&this->base); int res = 0, i; if (td->options & NAND_BBT_PERCHIP) { int offs = 0; for (i = 0; i < nanddev_ntargets(&this->base); i++) { if (chip == -1 || chip == i) res = read_bbt(this, buf, td->pages[i], targetsize >> this->bbt_erase_shift, td, offs); if (res) return res; offs += targetsize >> this->bbt_erase_shift; } } else { res = read_bbt(this, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, td, 0); if (res) return res; } return 0; } /* BBT marker is in the first page, no OOB */ static int scan_read_data(struct nand_chip *this, uint8_t *buf, loff_t offs, struct nand_bbt_descr *td) { struct mtd_info *mtd = nand_to_mtd(this); size_t retlen; size_t len; len = td->len; if (td->options & NAND_BBT_VERSION) len++; return mtd_read(mtd, offs, len, &retlen, buf); } /** * scan_read_oob - [GENERIC] Scan data+OOB region to buffer * @this: NAND chip object * @buf: temporary buffer * @offs: offset at which to scan * @len: length of data region to read * * Scan read data from data+OOB. May traverse multiple pages, interleaving * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" * ECC condition (error or bitflip). May quit on the first (non-ECC) error. */ static int scan_read_oob(struct nand_chip *this, uint8_t *buf, loff_t offs, size_t len) { struct mtd_info *mtd = nand_to_mtd(this); struct mtd_oob_ops ops; int res, ret = 0; ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; while (len > 0) { ops.datbuf = buf; ops.len = min(len, (size_t)mtd->writesize); ops.oobbuf = buf + ops.len; res = mtd_read_oob(mtd, offs, &ops); if (res) { if (!mtd_is_bitflip_or_eccerr(res)) return res; else if (mtd_is_eccerr(res) || !ret) ret = res; } buf += mtd->oobsize + mtd->writesize; len -= mtd->writesize; offs += mtd->writesize; } return ret; } static int scan_read(struct nand_chip *this, uint8_t *buf, loff_t offs, size_t len, struct nand_bbt_descr *td) { if (td->options & NAND_BBT_NO_OOB) return scan_read_data(this, buf, offs, td); else return scan_read_oob(this, buf, offs, len); } /* Scan write data with oob to flash */ static int scan_write_bbt(struct nand_chip *this, loff_t offs, size_t len, uint8_t *buf, uint8_t *oob) { struct mtd_info *mtd = nand_to_mtd(this); struct mtd_oob_ops ops; ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; ops.datbuf = buf; ops.oobbuf = oob; ops.len = len; return mtd_write_oob(mtd, offs, &ops); } static u32 bbt_get_ver_offs(struct nand_chip *this, struct nand_bbt_descr *td) { struct mtd_info *mtd = nand_to_mtd(this); u32 ver_offs = td->veroffs; if (!(td->options & NAND_BBT_NO_OOB)) ver_offs += mtd->writesize; return ver_offs; } /** * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page * @this: NAND chip object * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * * Read the bad block table(s) for all chips starting at a given page. We * assume that the bbt bits are in consecutive order. */ static void read_abs_bbts(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { struct mtd_info *mtd = nand_to_mtd(this); /* Read the primary version, if available */ if (td->options & NAND_BBT_VERSION) { scan_read(this, buf, (loff_t)td->pages[0] << this->page_shift, mtd->writesize, td); td->version[0] = buf[bbt_get_ver_offs(this, td)]; pr_info("Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]); } /* Read the mirror version, if available */ if (md && (md->options & NAND_BBT_VERSION)) { scan_read(this, buf, (loff_t)md->pages[0] << this->page_shift, mtd->writesize, md); md->version[0] = buf[bbt_get_ver_offs(this, md)]; pr_info("Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); } } /* Scan a given block partially */ static int scan_block_fast(struct nand_chip *this, struct nand_bbt_descr *bd, loff_t offs, uint8_t *buf) { struct mtd_info *mtd = nand_to_mtd(this); struct mtd_oob_ops ops; int ret, page_offset; ops.ooblen = mtd->oobsize; ops.oobbuf = buf; ops.ooboffs = 0; ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; page_offset = nand_bbm_get_next_page(this, 0); while (page_offset >= 0) { /* * Read the full oob until read_oob is fixed to handle single * byte reads for 16 bit buswidth. */ ret = mtd_read_oob(mtd, offs + (page_offset * mtd->writesize), &ops); /* Ignore ECC errors when checking for BBM */ if (ret && !mtd_is_bitflip_or_eccerr(ret)) return ret; if (check_short_pattern(buf, bd)) return 1; page_offset = nand_bbm_get_next_page(this, page_offset + 1); } return 0; } /* Check if a potential BBT block is marked as bad */ static int bbt_block_checkbad(struct nand_chip *this, struct nand_bbt_descr *td, loff_t offs, uint8_t *buf) { struct nand_bbt_descr *bd = this->badblock_pattern; /* * No need to check for a bad BBT block if the BBM area overlaps with * the bad block table marker area in OOB since writing a BBM here * invalidates the bad block table marker anyway. */ if (!(td->options & NAND_BBT_NO_OOB) && td->offs >= bd->offs && td->offs < bd->offs + bd->len) return 0; /* * There is no point in checking for a bad block marker if writing * such marker is not supported */ if (this->bbt_options & NAND_BBT_NO_OOB_BBM || this->options & NAND_NO_BBM_QUIRK) return 0; if (scan_block_fast(this, bd, offs, buf) > 0) return 1; return 0; } /** * create_bbt - [GENERIC] Create a bad block table by scanning the device * @this: NAND chip object * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * @chip: create the table for a specific chip, -1 read all chips; applies only * if NAND_BBT_PERCHIP option is set * * Create a bad block table by scanning the device for the given good/bad block * identify pattern. */ static int create_bbt(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *bd, int chip) { u64 targetsize = nanddev_target_size(&this->base); struct mtd_info *mtd = nand_to_mtd(this); int i, numblocks, startblock; loff_t from; pr_info("Scanning device for bad blocks\n"); if (chip == -1) { numblocks = mtd->size >> this->bbt_erase_shift; startblock = 0; from = 0; } else { if (chip >= nanddev_ntargets(&this->base)) { pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", chip + 1, nanddev_ntargets(&this->base)); return -EINVAL; } numblocks = targetsize >> this->bbt_erase_shift; startblock = chip * numblocks; numblocks += startblock; from = (loff_t)startblock << this->bbt_erase_shift; } for (i = startblock; i < numblocks; i++) { int ret; BUG_ON(bd->options & NAND_BBT_NO_OOB); ret = scan_block_fast(this, bd, from, buf); if (ret < 0) return ret; if (ret) { bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD); pr_warn("Bad eraseblock %d at 0x%012llx\n", i, (unsigned long long)from); mtd->ecc_stats.badblocks++; } from += (1 << this->bbt_erase_shift); } return 0; } /** * search_bbt - [GENERIC] scan the device for a specific bad block table * @this: NAND chip object * @buf: temporary buffer * @td: descriptor for the bad block table * * Read the bad block table by searching for a given ident pattern. Search is * preformed either from the beginning up or from the end of the device * downwards. The search starts always at the start of a block. If the option * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains * the bad block information of this chip. This is necessary to provide support * for certain DOC devices. * * The bbt ident pattern resides in the oob area of the first page in a block. */ static int search_bbt(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *td) { u64 targetsize = nanddev_target_size(&this->base); struct mtd_info *mtd = nand_to_mtd(this); int i, chips; int startblock, block, dir; int scanlen = mtd->writesize + mtd->oobsize; int bbtblocks; int blocktopage = this->bbt_erase_shift - this->page_shift; /* Search direction top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = (mtd->size >> this->bbt_erase_shift) - 1; dir = -1; } else { startblock = 0; dir = 1; } /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = nanddev_ntargets(&this->base); bbtblocks = targetsize >> this->bbt_erase_shift; startblock &= bbtblocks - 1; } else { chips = 1; bbtblocks = mtd->size >> this->bbt_erase_shift; } for (i = 0; i < chips; i++) { /* Reset version information */ td->version[i] = 0; td->pages[i] = -1; /* Scan the maximum number of blocks */ for (block = 0; block < td->maxblocks; block++) { int actblock = startblock + dir * block; loff_t offs = (loff_t)actblock << this->bbt_erase_shift; /* Check if block is marked bad */ if (bbt_block_checkbad(this, td, offs, buf)) continue; /* Read first page */ scan_read(this, buf, offs, mtd->writesize, td); if (!check_pattern(buf, scanlen, mtd->writesize, td)) { td->pages[i] = actblock << blocktopage; if (td->options & NAND_BBT_VERSION) { offs = bbt_get_ver_offs(this, td); td->version[i] = buf[offs]; } break; } } startblock += targetsize >> this->bbt_erase_shift; } /* Check, if we found a bbt for each requested chip */ for (i = 0; i < chips; i++) { if (td->pages[i] == -1) pr_warn("Bad block table not found for chip %d\n", i); else pr_info("Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]); } return 0; } /** * search_read_bbts - [GENERIC] scan the device for bad block table(s) * @this: NAND chip object * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * * Search and read the bad block table(s). */ static void search_read_bbts(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { /* Search the primary table */ search_bbt(this, buf, td); /* Search the mirror table */ if (md) search_bbt(this, buf, md); } /** * get_bbt_block - Get the first valid eraseblock suitable to store a BBT * @this: the NAND device * @td: the BBT description * @md: the mirror BBT descriptor * @chip: the CHIP selector * * This functions returns a positive block number pointing a valid eraseblock * suitable to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if * all blocks are already used of marked bad. If td->pages[chip] was already * pointing to a valid block we re-use it, otherwise we search for the next * valid one. */ static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chip) { u64 targetsize = nanddev_target_size(&this->base); int startblock, dir, page, numblocks, i; /* * There was already a version of the table, reuse the page. This * applies for absolute placement too, as we have the page number in * td->pages. */ if (td->pages[chip] != -1) return td->pages[chip] >> (this->bbt_erase_shift - this->page_shift); numblocks = (int)(targetsize >> this->bbt_erase_shift); if (!(td->options & NAND_BBT_PERCHIP)) numblocks *= nanddev_ntargets(&this->base); /* * Automatic placement of the bad block table. Search direction * top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = numblocks * (chip + 1) - 1; dir = -1; } else { startblock = chip * numblocks; dir = 1; } for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; /* Check, if the block is bad */ switch (bbt_get_entry(this, block)) { case BBT_BLOCK_WORN: case BBT_BLOCK_FACTORY_BAD: continue; } page = block << (this->bbt_erase_shift - this->page_shift); /* Check, if the block is used by the mirror table */ if (!md || md->pages[chip] != page) return block; } return -ENOSPC; } /** * mark_bbt_block_bad - Mark one of the block reserved for BBT bad * @this: the NAND device * @td: the BBT description * @chip: the CHIP selector * @block: the BBT block to mark * * Blocks reserved for BBT can become bad. This functions is an helper to mark * such blocks as bad. It takes care of updating the in-memory BBT, marking the * block as bad using a bad block marker and invalidating the associated * td->pages[] entry. */ static void mark_bbt_block_bad(struct nand_chip *this, struct nand_bbt_descr *td, int chip, int block) { loff_t to; int res; bbt_mark_entry(this, block, BBT_BLOCK_WORN); to = (loff_t)block << this->bbt_erase_shift; res = nand_markbad_bbm(this, to); if (res) pr_warn("nand_bbt: error %d while marking block %d bad\n", res, block); td->pages[chip] = -1; } /** * write_bbt - [GENERIC] (Re)write the bad block table * @this: NAND chip object * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * @chipsel: selector for a specific chip, -1 for all * * (Re)write the bad block table. */ static int write_bbt(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) { u64 targetsize = nanddev_target_size(&this->base); struct mtd_info *mtd = nand_to_mtd(this); struct erase_info einfo; int i, res, chip = 0; int bits, page, offs, numblocks, sft, sftmsk; int nrchips, pageoffs, ooboffs; uint8_t msk[4]; uint8_t rcode = td->reserved_block_code; size_t retlen, len = 0; loff_t to; struct mtd_oob_ops ops; ops.ooblen = mtd->oobsize; ops.ooboffs = 0; ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; if (!rcode) rcode = 0xff; /* Write bad block table per chip rather than per device? */ if (td->options & NAND_BBT_PERCHIP) { numblocks = (int)(targetsize >> this->bbt_erase_shift); /* Full device write or specific chip? */ if (chipsel == -1) { nrchips = nanddev_ntargets(&this->base); } else { nrchips = chipsel + 1; chip = chipsel; } } else { numblocks = (int)(mtd->size >> this->bbt_erase_shift); nrchips = 1; } /* Loop through the chips */ while (chip < nrchips) { int block; block = get_bbt_block(this, td, md, chip); if (block < 0) { pr_err("No space left to write bad block table\n"); res = block; goto outerr; } /* * get_bbt_block() returns a block number, shift the value to * get a page number. */ page = block << (this->bbt_erase_shift - this->page_shift); /* Set up shift count and masks for the flash table */ bits = td->options & NAND_BBT_NRBITS_MSK; msk[2] = ~rcode; switch (bits) { case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[3] = 0x01; break; case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[3] = 0x03; break; case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[3] = 0x0f; break; case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[3] = 0xff; break; default: return -EINVAL; } to = ((loff_t)page) << this->page_shift; /* Must we save the block contents? */ if (td->options & NAND_BBT_SAVECONTENT) { /* Make it block aligned */ to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1); len = 1 << this->bbt_erase_shift; res = mtd_read(mtd, to, len, &retlen, buf); if (res < 0) { if (retlen != len) { pr_info("nand_bbt: error reading block for writing the bad block table\n"); return res; } pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n"); } /* Read oob data */ ops.ooblen = (len >> this->page_shift) * mtd->oobsize; ops.oobbuf = &buf[len]; res = mtd_read_oob(mtd, to + mtd->writesize, &ops); if (res < 0 || ops.oobretlen != ops.ooblen) goto outerr; /* Calc the byte offset in the buffer */ pageoffs = page - (int)(to >> this->page_shift); offs = pageoffs << this->page_shift; /* Preset the bbt area with 0xff */ memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); ooboffs = len + (pageoffs * mtd->oobsize); } else if (td->options & NAND_BBT_NO_OOB) { ooboffs = 0; offs = td->len; /* The version byte */ if (td->options & NAND_BBT_VERSION) offs++; /* Calc length */ len = (size_t)(numblocks >> sft); len += offs; /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len); /* Pattern is located at the begin of first page */ memcpy(buf, td->pattern, td->len); } else { /* Calc length */ len = (size_t)(numblocks >> sft); /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len + (len >> this->page_shift)* mtd->oobsize); offs = 0; ooboffs = len; /* Pattern is located in oob area of first page */ memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); } if (td->options & NAND_BBT_VERSION) buf[ooboffs + td->veroffs] = td->version[chip]; /* Walk through the memory table */ for (i = 0; i < numblocks; i++) { uint8_t dat; int sftcnt = (i << (3 - sft)) & sftmsk; dat = bbt_get_entry(this, chip * numblocks + i); /* Do not store the reserved bbt blocks! */ buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt); } memset(&einfo, 0, sizeof(einfo)); einfo.addr = to; einfo.len = 1 << this->bbt_erase_shift; res = nand_erase_nand(this, &einfo, 1); if (res < 0) { pr_warn("nand_bbt: error while erasing BBT block %d\n", res); mark_bbt_block_bad(this, td, chip, block); continue; } res = scan_write_bbt(this, to, len, buf, td->options & NAND_BBT_NO_OOB ? NULL : &buf[len]); if (res < 0) { pr_warn("nand_bbt: error while writing BBT block %d\n", res); mark_bbt_block_bad(this, td, chip, block); continue; } pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", (unsigned long long)to, td->version[chip]); /* Mark it as used */ td->pages[chip++] = page; } return 0; outerr: pr_warn("nand_bbt: error while writing bad block table %d\n", res); return res; } /** * nand_memory_bbt - [GENERIC] create a memory based bad block table * @this: NAND chip object * @bd: descriptor for the good/bad block search pattern * * The function creates a memory based bbt by scanning the device for * manufacturer / software marked good / bad blocks. */ static inline int nand_memory_bbt(struct nand_chip *this, struct nand_bbt_descr *bd) { u8 *pagebuf = nand_get_data_buf(this); return create_bbt(this, pagebuf, bd, -1); } /** * check_create - [GENERIC] create and write bbt(s) if necessary * @this: the NAND device * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * * The function checks the results of the previous call to read_bbt and creates * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found * for the chip/device. Update is necessary if one of the tables is missing or * the version nr. of one table is less than the other. */ static int check_create(struct nand_chip *this, uint8_t *buf, struct nand_bbt_descr *bd) { int i, chips, writeops, create, chipsel, res, res2; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; struct nand_bbt_descr *rd, *rd2; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) chips = nanddev_ntargets(&this->base); else chips = 1; for (i = 0; i < chips; i++) { writeops = 0; create = 0; rd = NULL; rd2 = NULL; res = res2 = 0; /* Per chip or per device? */ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; /* Mirrored table available? */ if (md) { if (td->pages[i] == -1 && md->pages[i] == -1) { create = 1; writeops = 0x03; } else if (td->pages[i] == -1) { rd = md; writeops = 0x01; } else if (md->pages[i] == -1) { rd = td; writeops = 0x02; } else if (td->version[i] == md->version[i]) { rd = td; if (!(td->options & NAND_BBT_VERSION)) rd2 = md; } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { rd = td; writeops = 0x02; } else { rd = md; writeops = 0x01; } } else { if (td->pages[i] == -1) { create = 1; writeops = 0x01; } else { rd = td; } } if (create) { /* Create the bad block table by scanning the device? */ if (!(td->options & NAND_BBT_CREATE)) continue; /* Create the table in memory by scanning the chip(s) */ if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) create_bbt(this, buf, bd, chipsel); td->version[i] = 1; if (md) md->version[i] = 1; } /* Read back first? */ if (rd) { res = read_abs_bbt(this, buf, rd, chipsel); if (mtd_is_eccerr(res)) { /* Mark table as invalid */ rd->pages[i] = -1; rd->version[i] = 0; i--; continue; } } /* If they weren't versioned, read both */ if (rd2) { res2 = read_abs_bbt(this, buf, rd2, chipsel); if (mtd_is_eccerr(res2)) { /* Mark table as invalid */ rd2->pages[i] = -1; rd2->version[i] = 0; i--; continue; } } /* Scrub the flash table(s)? */ if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) writeops = 0x03; /* Update version numbers before writing */ if (md) { td->version[i] = max(td->version[i], md->version[i]); md->version[i] = td->version[i]; } /* Write the bad block table to the device? */ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { res = write_bbt(this, buf, td, md, chipsel); if (res < 0) return res; } /* Write the mirror bad block table to the device? */ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { res = write_bbt(this, buf, md, td, chipsel); if (res < 0) return res; } } return 0; } /** * nand_update_bbt - update bad block table(s) * @this: the NAND device * @offs: the offset of the newly marked block * * The function updates the bad block table(s). */ static int nand_update_bbt(struct nand_chip *this, loff_t offs) { struct mtd_info *mtd = nand_to_mtd(this); int len, res = 0; int chip, chipsel; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; if (!this->bbt || !td) return -EINVAL; /* Allocate a temporary buffer for one eraseblock incl. oob */ len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = kmalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chip = (int)(offs >> this->chip_shift); chipsel = chip; } else { chip = 0; chipsel = -1; } td->version[chip]++; if (md) md->version[chip]++; /* Write the bad block table to the device? */ if (td->options & NAND_BBT_WRITE) { res = write_bbt(this, buf, td, md, chipsel); if (res < 0) goto out; } /* Write the mirror bad block table to the device? */ if (md && (md->options & NAND_BBT_WRITE)) { res = write_bbt(this, buf, md, td, chipsel); } out: kfree(buf); return res; } /** * mark_bbt_region - [GENERIC] mark the bad block table regions * @this: the NAND device * @td: bad block table descriptor * * The bad block table regions are marked as "bad" to prevent accidental * erasures / writes. The regions are identified by the mark 0x02. */ static void mark_bbt_region(struct nand_chip *this, struct nand_bbt_descr *td) { u64 targetsize = nanddev_target_size(&this->base); struct mtd_info *mtd = nand_to_mtd(this); int i, j, chips, block, nrblocks, update; uint8_t oldval; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = nanddev_ntargets(&this->base); nrblocks = (int)(targetsize >> this->bbt_erase_shift); } else { chips = 1; nrblocks = (int)(mtd->size >> this->bbt_erase_shift); } for (i = 0; i < chips; i++) { if ((td->options & NAND_BBT_ABSPAGE) || !(td->options & NAND_BBT_WRITE)) { if (td->pages[i] == -1) continue; block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); oldval = bbt_get_entry(this, block); bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); if ((oldval != BBT_BLOCK_RESERVED) && td->reserved_block_code) nand_update_bbt(this, (loff_t)block << this->bbt_erase_shift); continue; } update = 0; if (td->options & NAND_BBT_LASTBLOCK) block = ((i + 1) * nrblocks) - td->maxblocks; else block = i * nrblocks; for (j = 0; j < td->maxblocks; j++) { oldval = bbt_get_entry(this, block); bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); if (oldval != BBT_BLOCK_RESERVED) update = 1; block++; } /* * If we want reserved blocks to be recorded to flash, and some * new ones have been marked, then we need to update the stored * bbts. This should only happen once. */ if (update && td->reserved_block_code) nand_update_bbt(this, (loff_t)(block - 1) << this->bbt_erase_shift); } } /** * verify_bbt_descr - verify the bad block description * @this: the NAND device * @bd: the table to verify * * This functions performs a few sanity checks on the bad block description * table. */ static void verify_bbt_descr(struct nand_chip *this, struct nand_bbt_descr *bd) { u64 targetsize = nanddev_target_size(&this->base); struct mtd_info *mtd = nand_to_mtd(this); u32 pattern_len; u32 bits; u32 table_size; if (!bd) return; pattern_len = bd->len; bits = bd->options & NAND_BBT_NRBITS_MSK; BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && !(this->bbt_options & NAND_BBT_USE_FLASH)); BUG_ON(!bits); if (bd->options & NAND_BBT_VERSION) pattern_len++; if (bd->options & NAND_BBT_NO_OOB) { BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); BUG_ON(bd->offs); if (bd->options & NAND_BBT_VERSION) BUG_ON(bd->veroffs != bd->len); BUG_ON(bd->options & NAND_BBT_SAVECONTENT); } if (bd->options & NAND_BBT_PERCHIP) table_size = targetsize >> this->bbt_erase_shift; else table_size = mtd->size >> this->bbt_erase_shift; table_size >>= 3; table_size *= bits; if (bd->options & NAND_BBT_NO_OOB) table_size += pattern_len; BUG_ON(table_size > (1 << this->bbt_erase_shift)); } /** * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) * @this: the NAND device * @bd: descriptor for the good/bad block search pattern * * The function checks, if a bad block table(s) is/are already available. If * not it scans the device for manufacturer marked good / bad blocks and writes * the bad block table(s) to the selected place. * * The bad block table memory is allocated here. It must be freed by calling * the nand_free_bbt function. */ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd) { struct mtd_info *mtd = nand_to_mtd(this); int len, res; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1; /* * Allocate memory (2bit per block) and clear the memory bad block * table. */ this->bbt = kzalloc(len, GFP_KERNEL); if (!this->bbt) return -ENOMEM; /* * If no primary table descriptor is given, scan the device to build a * memory based bad block table. */ if (!td) { if ((res = nand_memory_bbt(this, bd))) { pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); goto err_free_bbt; } return 0; } verify_bbt_descr(this, td); verify_bbt_descr(this, md); /* Allocate a temporary buffer for one eraseblock incl. oob */ len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = vmalloc(len); if (!buf) { res = -ENOMEM; goto err_free_bbt; } /* Is the bbt at a given page? */ if (td->options & NAND_BBT_ABSPAGE) { read_abs_bbts(this, buf, td, md); } else { /* Search the bad block table using a pattern in oob */ search_read_bbts(this, buf, td, md); } res = check_create(this, buf, bd); if (res) goto err_free_buf; /* Prevent the bbt regions from erasing / writing */ mark_bbt_region(this, td); if (md) mark_bbt_region(this, md); vfree(buf); return 0; err_free_buf: vfree(buf); err_free_bbt: kfree(this->bbt); this->bbt = NULL; return res; } /* * Define some generic bad / good block scan pattern which are used * while scanning a device for factory marked good / bad blocks. */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; /* Generic flash bbt descriptors */ static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = mirror_pattern }; static struct nand_bbt_descr bbt_main_no_oob_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB, .len = 4, .veroffs = 4, .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_no_oob_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB, .len = 4, .veroffs = 4, .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = mirror_pattern }; #define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) /** * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure * @this: NAND chip to create descriptor for * * This function allocates and initializes a nand_bbt_descr for BBM detection * based on the properties of @this. The new descriptor is stored in * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when * passed to this function. */ static int nand_create_badblock_pattern(struct nand_chip *this) { struct nand_bbt_descr *bd; if (this->badblock_pattern) { pr_warn("Bad block pattern already allocated; not replacing\n"); return -EINVAL; } bd = kzalloc(sizeof(*bd), GFP_KERNEL); if (!bd) return -ENOMEM; bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; bd->offs = this->badblockpos; bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; bd->pattern = scan_ff_pattern; bd->options |= NAND_BBT_DYNAMICSTRUCT; this->badblock_pattern = bd; return 0; } /** * nand_create_bbt - [NAND Interface] Select a default bad block table for the device * @this: NAND chip object * * This function selects the default bad block table support for the device and * calls the nand_scan_bbt function. */ int nand_create_bbt(struct nand_chip *this) { int ret; /* Is a flash based bad block table requested? */ if (this->bbt_options & NAND_BBT_USE_FLASH) { /* Use the default pattern descriptors */ if (!this->bbt_td) { if (this->bbt_options & NAND_BBT_NO_OOB) { this->bbt_td = &bbt_main_no_oob_descr; this->bbt_md = &bbt_mirror_no_oob_descr; } else { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } } } else { this->bbt_td = NULL; this->bbt_md = NULL; } if (!this->badblock_pattern) { ret = nand_create_badblock_pattern(this); if (ret) return ret; } return nand_scan_bbt(this, this->badblock_pattern); } EXPORT_SYMBOL(nand_create_bbt); /** * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved * @this: NAND chip object * @offs: offset in the device */ int nand_isreserved_bbt(struct nand_chip *this, loff_t offs) { int block; block = (int)(offs >> this->bbt_erase_shift); return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED; } /** * nand_isbad_bbt - [NAND Interface] Check if a block is bad * @this: NAND chip object * @offs: offset in the device * @allowbbt: allow access to bad block table region */ int nand_isbad_bbt(struct nand_chip *this, loff_t offs, int allowbbt) { int block, res; block = (int)(offs >> this->bbt_erase_shift); res = bbt_get_entry(this, block); pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", (unsigned int)offs, block, res); if (mtd_check_expert_analysis_mode()) return 0; switch (res) { case BBT_BLOCK_GOOD: return 0; case BBT_BLOCK_WORN: return 1; case BBT_BLOCK_RESERVED: return allowbbt ? 0 : 1; } return 1; } /** * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT * @this: NAND chip object * @offs: offset of the bad block */ int nand_markbad_bbt(struct nand_chip *this, loff_t offs) { int block, ret = 0; block = (int)(offs >> this->bbt_erase_shift); /* Mark bad block in memory */ bbt_mark_entry(this, block, BBT_BLOCK_WORN); /* Update flash-based bad block table */ if (this->bbt_options & NAND_BBT_USE_FLASH) ret = nand_update_bbt(this, offs); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1