Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Florian Fainelli | 5571 | 94.20% | 24 | 70.59% |
Pablo Neira Ayuso | 269 | 4.55% | 1 | 2.94% |
Andrew Lunn | 25 | 0.42% | 2 | 5.88% |
Dan Carpenter | 24 | 0.41% | 1 | 2.94% |
Vivien Didelot | 15 | 0.25% | 1 | 2.94% |
Xiaomeng Tong | 4 | 0.07% | 1 | 2.94% |
Vladimir Oltean | 4 | 0.07% | 3 | 8.82% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.94% |
Total | 5914 | 34 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Broadcom Starfighter 2 DSA switch CFP support * * Copyright (C) 2016, Broadcom */ #include <linux/list.h> #include <linux/ethtool.h> #include <linux/if_ether.h> #include <linux/in.h> #include <linux/netdevice.h> #include <net/dsa.h> #include <linux/bitmap.h> #include <net/flow_offload.h> #include <net/switchdev.h> #include <uapi/linux/if_bridge.h> #include "bcm_sf2.h" #include "bcm_sf2_regs.h" struct cfp_rule { int port; struct ethtool_rx_flow_spec fs; struct list_head next; }; struct cfp_udf_slice_layout { u8 slices[UDFS_PER_SLICE]; u32 mask_value; u32 base_offset; }; struct cfp_udf_layout { struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; }; static const u8 zero_slice[UDFS_PER_SLICE] = { }; /* UDF slices layout for a TCPv4/UDPv4 specification */ static const struct cfp_udf_layout udf_tcpip4_layout = { .udfs = { [1] = { .slices = { /* End of L2, byte offset 12, src IP[0:15] */ CFG_UDF_EOL2 | 6, /* End of L2, byte offset 14, src IP[16:31] */ CFG_UDF_EOL2 | 7, /* End of L2, byte offset 16, dst IP[0:15] */ CFG_UDF_EOL2 | 8, /* End of L2, byte offset 18, dst IP[16:31] */ CFG_UDF_EOL2 | 9, /* End of L3, byte offset 0, src port */ CFG_UDF_EOL3 | 0, /* End of L3, byte offset 2, dst port */ CFG_UDF_EOL3 | 1, 0, 0, 0 }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, }, }, }; /* UDF slices layout for a TCPv6/UDPv6 specification */ static const struct cfp_udf_layout udf_tcpip6_layout = { .udfs = { [0] = { .slices = { /* End of L2, byte offset 8, src IP[0:15] */ CFG_UDF_EOL2 | 4, /* End of L2, byte offset 10, src IP[16:31] */ CFG_UDF_EOL2 | 5, /* End of L2, byte offset 12, src IP[32:47] */ CFG_UDF_EOL2 | 6, /* End of L2, byte offset 14, src IP[48:63] */ CFG_UDF_EOL2 | 7, /* End of L2, byte offset 16, src IP[64:79] */ CFG_UDF_EOL2 | 8, /* End of L2, byte offset 18, src IP[80:95] */ CFG_UDF_EOL2 | 9, /* End of L2, byte offset 20, src IP[96:111] */ CFG_UDF_EOL2 | 10, /* End of L2, byte offset 22, src IP[112:127] */ CFG_UDF_EOL2 | 11, /* End of L3, byte offset 0, src port */ CFG_UDF_EOL3 | 0, }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_B_0_8_PORT_0, }, [3] = { .slices = { /* End of L2, byte offset 24, dst IP[0:15] */ CFG_UDF_EOL2 | 12, /* End of L2, byte offset 26, dst IP[16:31] */ CFG_UDF_EOL2 | 13, /* End of L2, byte offset 28, dst IP[32:47] */ CFG_UDF_EOL2 | 14, /* End of L2, byte offset 30, dst IP[48:63] */ CFG_UDF_EOL2 | 15, /* End of L2, byte offset 32, dst IP[64:79] */ CFG_UDF_EOL2 | 16, /* End of L2, byte offset 34, dst IP[80:95] */ CFG_UDF_EOL2 | 17, /* End of L2, byte offset 36, dst IP[96:111] */ CFG_UDF_EOL2 | 18, /* End of L2, byte offset 38, dst IP[112:127] */ CFG_UDF_EOL2 | 19, /* End of L3, byte offset 2, dst port */ CFG_UDF_EOL3 | 1, }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_D_0_11_PORT_0, }, }, }; static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) { unsigned int i, count = 0; for (i = 0; i < UDFS_PER_SLICE; i++) { if (layout[i] != 0) count++; } return count; } static inline u32 udf_upper_bits(int num_udf) { return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); } static inline u32 udf_lower_bits(int num_udf) { return (u8)GENMASK(num_udf - 1, 0); } static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, unsigned int start) { const struct cfp_udf_slice_layout *slice_layout; unsigned int slice_idx; for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { slice_layout = &l->udfs[slice_idx]; if (memcmp(slice_layout->slices, zero_slice, sizeof(zero_slice))) break; } return slice_idx; } static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, const struct cfp_udf_layout *layout, unsigned int slice_num) { u32 offset = layout->udfs[slice_num].base_offset; unsigned int i; for (i = 0; i < UDFS_PER_SLICE; i++) core_writel(priv, layout->udfs[slice_num].slices[i], offset + i * 4); } static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_CFP_ACC); reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); reg |= OP_STR_DONE | op; core_writel(priv, reg, CORE_CFP_ACC); do { reg = core_readl(priv, CORE_CFP_ACC); if (!(reg & OP_STR_DONE)) break; cpu_relax(); } while (timeout--); if (!timeout) return -ETIMEDOUT; return 0; } static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, unsigned int addr) { u32 reg; WARN_ON(addr >= priv->num_cfp_rules); reg = core_readl(priv, CORE_CFP_ACC); reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); reg |= addr << XCESS_ADDR_SHIFT; core_writel(priv, reg, CORE_CFP_ACC); } static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) { /* Entry #0 is reserved */ return priv->num_cfp_rules - 1; } static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, unsigned int rule_index, int src_port, unsigned int port_num, unsigned int queue_num, bool fwd_map_change) { int ret; u32 reg; /* Replace ARL derived destination with DST_MAP derived, define * which port and queue this should be forwarded to. */ if (fwd_map_change) reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) | CHANGE_TC | queue_num << NEW_TC_SHIFT; else reg = 0; /* Enable looping back to the original port */ if (src_port == port_num) reg |= LOOP_BK_EN; core_writel(priv, reg, CORE_ACT_POL_DATA0); /* Set classification ID that needs to be put in Broadcom tag */ core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); core_writel(priv, 0, CORE_ACT_POL_DATA2); /* Configure policer RAM now */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); if (ret) { pr_err("Policer entry at %d failed\n", rule_index); return ret; } /* Disable the policer */ core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); /* Now the rate meter */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); if (ret) { pr_err("Meter entry at %d failed\n", rule_index); return ret; } return 0; } static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, struct flow_dissector_key_ipv4_addrs *addrs, struct flow_dissector_key_ports *ports, const __be16 vlan_tci, unsigned int slice_num, u8 num_udf, bool mask) { u32 reg, offset; /* UDF_Valid[7:0] [31:24] * S-Tag [23:8] * C-Tag [7:0] */ reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8; if (mask) core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); else core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); /* C-Tag [31:24] * UDF_n_A8 [23:8] * UDF_n_A7 [7:0] */ reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); core_writel(priv, reg, offset); /* UDF_n_A7 [31:24] * UDF_n_A6 [23:8] * UDF_n_A5 [7:0] */ reg = be16_to_cpu(ports->dst) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); core_writel(priv, reg, offset); /* UDF_n_A5 [31:24] * UDF_n_A4 [23:8] * UDF_n_A3 [7:0] */ reg = (be16_to_cpu(ports->dst) & 0xff) << 24 | (u32)be16_to_cpu(ports->src) << 8 | (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); core_writel(priv, reg, offset); /* UDF_n_A3 [31:24] * UDF_n_A2 [23:8] * UDF_n_A1 [7:0] */ reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 | (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 | (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); core_writel(priv, reg, offset); /* UDF_n_A1 [31:24] * UDF_n_A0 [23:8] * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 | (u32)(be32_to_cpu(addrs->src) >> 16) << 8 | SLICE_NUM(slice_num) | SLICE_VALID; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); core_writel(priv, reg, offset); } static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, unsigned int port_num, unsigned int queue_num, struct ethtool_rx_flow_spec *fs) { __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); struct ethtool_rx_flow_spec_input input = {}; const struct cfp_udf_layout *layout; unsigned int slice_num, rule_index; struct ethtool_rx_flow_rule *flow; struct flow_match_ipv4_addrs ipv4; struct flow_match_ports ports; struct flow_match_ip ip; u8 ip_proto, ip_frag; u8 num_udf; u32 reg; int ret; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: ip_proto = IPPROTO_TCP; break; case UDP_V4_FLOW: ip_proto = IPPROTO_UDP; break; default: return -EINVAL; } ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); /* Extract VLAN TCI */ if (fs->flow_type & FLOW_EXT) { vlan_tci = fs->h_ext.vlan_tci; vlan_m_tci = fs->m_ext.vlan_tci; } /* Locate the first rule available */ if (fs->location == RX_CLS_LOC_ANY) rule_index = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); else rule_index = fs->location; if (rule_index > bcm_sf2_cfp_rule_size(priv)) return -ENOSPC; input.fs = fs; flow = ethtool_rx_flow_rule_create(&input); if (IS_ERR(flow)) return PTR_ERR(flow); flow_rule_match_ipv4_addrs(flow->rule, &ipv4); flow_rule_match_ports(flow->rule, &ports); flow_rule_match_ip(flow->rule, &ip); layout = &udf_tcpip4_layout; /* We only use one UDF slice for now */ slice_num = bcm_sf2_get_slice_number(layout, 0); if (slice_num == UDF_NUM_SLICES) { ret = -EINVAL; goto out_err_flow_rule; } num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Apply to all packets received through this port */ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); /* Source port map match */ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); /* S-Tag status [31:30] * C-Tag status [29:28] * L2 framing [27:26] * L3 framing [25:24] * IP ToS [23:16] * IP proto [15:08] * IP Fragm [7] * Non 1st frag [6] * IP Authen [5] * TTL range [4:3] * PPPoE session [2] * Reserved [1] * UDF_Valid[8] [0] */ core_writel(priv, ip.key->tos << IPTOS_SHIFT | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf), CORE_CFP_DATA_PORT(6)); /* Mask with the specific layout for IPv4 packets */ core_writel(priv, layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); /* Program the match and the mask */ bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci, slice_num, num_udf, false); bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci, SLICE_NUM_MASK, num_udf, true); /* Insert into TCAM now */ bcm_sf2_cfp_rule_addr_set(priv, rule_index); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index); goto out_err_flow_rule; } /* Insert into Action and policer RAMs now */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num, queue_num, true); if (ret) goto out_err_flow_rule; /* Turn on CFP for this rule now */ reg = core_readl(priv, CORE_CFP_CTL_REG); reg |= BIT(port); core_writel(priv, reg, CORE_CFP_CTL_REG); /* Flag the rule as being used and return it */ set_bit(rule_index, priv->cfp.used); set_bit(rule_index, priv->cfp.unique); fs->location = rule_index; return 0; out_err_flow_rule: ethtool_rx_flow_rule_destroy(flow); return ret; } static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, const __be32 *ip6_addr, const __be16 port, const __be16 vlan_tci, unsigned int slice_num, u32 udf_bits, bool mask) { u32 reg, tmp, val, offset; /* UDF_Valid[7:0] [31:24] * S-Tag [23:8] * C-Tag [7:0] */ reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8; if (mask) core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); else core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); /* C-Tag [31:24] * UDF_n_B8 [23:8] (port) * UDF_n_B7 (upper) [7:0] (addr[15:8]) */ reg = be32_to_cpu(ip6_addr[3]); val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); core_writel(priv, val, offset); /* UDF_n_B7 (lower) [31:24] (addr[7:0]) * UDF_n_B6 [23:8] (addr[31:16]) * UDF_n_B5 (upper) [7:0] (addr[47:40]) */ tmp = be32_to_cpu(ip6_addr[2]); val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | ((tmp >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); core_writel(priv, val, offset); /* UDF_n_B5 (lower) [31:24] (addr[39:32]) * UDF_n_B4 [23:8] (addr[63:48]) * UDF_n_B3 (upper) [7:0] (addr[79:72]) */ reg = be32_to_cpu(ip6_addr[1]); val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | ((reg >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); core_writel(priv, val, offset); /* UDF_n_B3 (lower) [31:24] (addr[71:64]) * UDF_n_B2 [23:8] (addr[95:80]) * UDF_n_B1 (upper) [7:0] (addr[111:104]) */ tmp = be32_to_cpu(ip6_addr[0]); val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | ((tmp >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); core_writel(priv, val, offset); /* UDF_n_B1 (lower) [31:24] (addr[103:96]) * UDF_n_B0 [23:8] (addr[127:112]) * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | SLICE_NUM(slice_num) | SLICE_VALID; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); core_writel(priv, reg, offset); } static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv, int port, u32 location) { struct cfp_rule *rule; list_for_each_entry(rule, &priv->cfp.rules_list, next) { if (rule->port == port && rule->fs.location == location) return rule; } return NULL; } static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port, struct ethtool_rx_flow_spec *fs) { struct cfp_rule *rule = NULL; size_t fs_size = 0; int ret = 1; if (list_empty(&priv->cfp.rules_list)) return ret; list_for_each_entry(rule, &priv->cfp.rules_list, next) { ret = 1; if (rule->port != port) continue; if (rule->fs.flow_type != fs->flow_type || rule->fs.ring_cookie != fs->ring_cookie || rule->fs.h_ext.data[0] != fs->h_ext.data[0]) continue; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V6_FLOW: case UDP_V6_FLOW: fs_size = sizeof(struct ethtool_tcpip6_spec); break; case TCP_V4_FLOW: case UDP_V4_FLOW: fs_size = sizeof(struct ethtool_tcpip4_spec); break; default: continue; } ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size); ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size); /* Compare VLAN TCI values as well */ if (rule->fs.flow_type & FLOW_EXT) { ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci; ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci; } if (ret == 0) break; } return ret; } static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, unsigned int port_num, unsigned int queue_num, struct ethtool_rx_flow_spec *fs) { __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); struct ethtool_rx_flow_spec_input input = {}; unsigned int slice_num, rule_index[2]; const struct cfp_udf_layout *layout; struct ethtool_rx_flow_rule *flow; struct flow_match_ipv6_addrs ipv6; struct flow_match_ports ports; u8 ip_proto, ip_frag; int ret = 0; u8 num_udf; u32 reg; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V6_FLOW: ip_proto = IPPROTO_TCP; break; case UDP_V6_FLOW: ip_proto = IPPROTO_UDP; break; default: return -EINVAL; } ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); /* Extract VLAN TCI */ if (fs->flow_type & FLOW_EXT) { vlan_tci = fs->h_ext.vlan_tci; vlan_m_tci = fs->m_ext.vlan_tci; } layout = &udf_tcpip6_layout; slice_num = bcm_sf2_get_slice_number(layout, 0); if (slice_num == UDF_NUM_SLICES) return -EINVAL; num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Negotiate two indexes, one for the second half which we are chained * from, which is what we will return to user-space, and a second one * which is used to store its first half. That first half does not * allow any choice of placement, so it just needs to find the next * available bit. We return the second half as fs->location because * that helps with the rule lookup later on since the second half is * chained from its first half, we can easily identify IPv6 CFP rules * by looking whether they carry a CHAIN_ID. * * We also want the second half to have a lower rule_index than its * first half because the HW search is by incrementing addresses. */ if (fs->location == RX_CLS_LOC_ANY) rule_index[1] = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); else rule_index[1] = fs->location; if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) return -ENOSPC; /* Flag it as used (cleared on error path) such that we can immediately * obtain a second one to chain from. */ set_bit(rule_index[1], priv->cfp.used); rule_index[0] = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { ret = -ENOSPC; goto out_err; } input.fs = fs; flow = ethtool_rx_flow_rule_create(&input); if (IS_ERR(flow)) { ret = PTR_ERR(flow); goto out_err; } flow_rule_match_ipv6_addrs(flow->rule, &ipv6); flow_rule_match_ports(flow->rule, &ports); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Apply to all packets received through this port */ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); /* Source port map match */ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); /* S-Tag status [31:30] * C-Tag status [29:28] * L2 framing [27:26] * L3 framing [25:24] * IP ToS [23:16] * IP proto [15:08] * IP Fragm [7] * Non 1st frag [6] * IP Authen [5] * TTL range [4:3] * PPPoE session [2] * Reserved [1] * UDF_Valid[8] [0] */ reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); /* Mask with the specific layout for IPv6 packets including * UDF_Valid[8] */ reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); /* Slice the IPv6 source address and port */ bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32, ports.key->src, vlan_tci, slice_num, udf_lower_bits(num_udf), false); bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32, ports.mask->src, vlan_m_tci, SLICE_NUM_MASK, udf_lower_bits(num_udf), true); /* Insert into TCAM now because we need to insert a second rule */ bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index[0]); goto out_err_flow_rule; } /* Insert into Action and policer RAMs now */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num, queue_num, false); if (ret) goto out_err_flow_rule; /* Now deal with the second slice to chain this rule */ slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); if (slice_num == UDF_NUM_SLICES) { ret = -EINVAL; goto out_err_flow_rule; } num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Chained rule, source port match is coming from the rule we are * chained from. */ core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); /* * CHAIN ID [31:24] chain to previous slice * Reserved [23:20] * UDF_Valid[11:8] [19:16] * UDF_Valid[7:0] [15:8] * UDF_n_D11 [7:0] */ reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | udf_lower_bits(num_udf) << 8; core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | udf_lower_bits(num_udf) << 8; core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32, ports.key->dst, 0, slice_num, 0, false); bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32, ports.key->dst, 0, SLICE_NUM_MASK, 0, true); /* Insert into TCAM now */ bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index[1]); goto out_err_flow_rule; } /* Insert into Action and policer RAMs now, set chain ID to * the one we are chained to */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num, queue_num, true); if (ret) goto out_err_flow_rule; /* Turn on CFP for this rule now */ reg = core_readl(priv, CORE_CFP_CTL_REG); reg |= BIT(port); core_writel(priv, reg, CORE_CFP_CTL_REG); /* Flag the second half rule as being used now, return it as the * location, and flag it as unique while dumping rules */ set_bit(rule_index[0], priv->cfp.used); set_bit(rule_index[1], priv->cfp.unique); fs->location = rule_index[1]; return ret; out_err_flow_rule: ethtool_rx_flow_rule_destroy(flow); out_err: clear_bit(rule_index[1], priv->cfp.used); return ret; } static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port, struct ethtool_rx_flow_spec *fs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index; __u64 ring_cookie = fs->ring_cookie; struct switchdev_obj_port_vlan vlan; unsigned int queue_num, port_num; u16 vid; int ret; /* This rule is a Wake-on-LAN filter and we must specifically * target the CPU port in order for it to be working. */ if (ring_cookie == RX_CLS_FLOW_WAKE) ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES; /* We do not support discarding packets, check that the * destination port is enabled and that we are within the * number of ports supported by the switch */ port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES; if (ring_cookie == RX_CLS_FLOW_DISC || !(dsa_is_user_port(ds, port_num) || dsa_is_cpu_port(ds, port_num)) || port_num >= priv->hw_params.num_ports) return -EINVAL; /* If the rule is matching a particular VLAN, make sure that we honor * the matching and have it tagged or untagged on the destination port, * we do this on egress with a VLAN entry. The egress tagging attribute * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged, * a 0 means tagged. */ if (fs->flow_type & FLOW_EXT) { /* We cannot support matching multiple VLAN IDs yet */ if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) != VLAN_VID_MASK) return -EINVAL; vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK; vlan.vid = vid; if (be32_to_cpu(fs->h_ext.data[1]) & 1) vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED; else vlan.flags = 0; ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL); if (ret) return ret; } /* * We have a small oddity where Port 6 just does not have a * valid bit here (so we substract by one). */ queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES; if (port_num >= 7) port_num -= 1; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: case UDP_V4_FLOW: ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs); break; case TCP_V6_FLOW: case UDP_V6_FLOW: ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, queue_num, fs); break; default: ret = -EINVAL; break; } return ret; } static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, struct ethtool_rx_flow_spec *fs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct cfp_rule *rule = NULL; int ret = -EINVAL; /* Check for unsupported extensions */ if (fs->flow_type & FLOW_MAC_EXT) return -EINVAL; if (fs->location != RX_CLS_LOC_ANY && fs->location > bcm_sf2_cfp_rule_size(priv)) return -EINVAL; if ((fs->flow_type & FLOW_EXT) && !(ds->ops->port_vlan_add || ds->ops->port_vlan_del)) return -EOPNOTSUPP; if (fs->location != RX_CLS_LOC_ANY && test_bit(fs->location, priv->cfp.used)) return -EBUSY; ret = bcm_sf2_cfp_rule_cmp(priv, port, fs); if (ret == 0) return -EEXIST; rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return -ENOMEM; ret = bcm_sf2_cfp_rule_insert(ds, port, fs); if (ret) { kfree(rule); return ret; } rule->port = port; memcpy(&rule->fs, fs, sizeof(*fs)); list_add_tail(&rule->next, &priv->cfp.rules_list); return ret; } static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, u32 loc, u32 *next_loc) { int ret; u32 reg; /* Indicate which rule we want to read */ bcm_sf2_cfp_rule_addr_set(priv, loc); ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); if (ret) return ret; /* Check if this is possibly an IPv6 rule that would * indicate we need to delete its companion rule * as well */ reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); if (next_loc) *next_loc = (reg >> 24) & CHAIN_ID_MASK; /* Clear its valid bits */ reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); reg &= ~SLICE_VALID; core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); /* Write back this entry into the TCAM now */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) return ret; clear_bit(loc, priv->cfp.used); clear_bit(loc, priv->cfp.unique); return 0; } static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port, u32 loc) { u32 next_loc = 0; int ret; ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); if (ret) return ret; /* If this was an IPv6 rule, delete is companion rule too */ if (next_loc) ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); return ret; } static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc) { struct cfp_rule *rule; int ret; if (loc > bcm_sf2_cfp_rule_size(priv)) return -EINVAL; /* Refuse deleting unused rules, and those that are not unique since * that could leave IPv6 rules with one of the chained rule in the * table. */ if (!test_bit(loc, priv->cfp.unique) || loc == 0) return -EINVAL; rule = bcm_sf2_cfp_rule_find(priv, port, loc); if (!rule) return -EINVAL; ret = bcm_sf2_cfp_rule_remove(priv, port, loc); list_del(&rule->next); kfree(rule); return ret; } static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) { unsigned int i; for (i = 0; i < sizeof(flow->m_u); i++) flow->m_u.hdata[i] ^= 0xff; flow->m_ext.vlan_etype ^= cpu_to_be16(~0); flow->m_ext.vlan_tci ^= cpu_to_be16(~0); flow->m_ext.data[0] ^= cpu_to_be32(~0); flow->m_ext.data[1] ^= cpu_to_be32(~0); } static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc) { struct cfp_rule *rule; rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location); if (!rule) return -EINVAL; memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs)); bcm_sf2_invert_masks(&nfc->fs); /* Put the TCAM size here */ nfc->data = bcm_sf2_cfp_rule_size(priv); return 0; } /* We implement the search doing a TCAM search operation */ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc, u32 *rule_locs) { unsigned int index = 1, rules_cnt = 0; for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { rule_locs[rules_cnt] = index; rules_cnt++; } /* Put the TCAM size here */ nfc->data = bcm_sf2_cfp_rule_size(priv); nfc->rule_cnt = rules_cnt; return 0; } int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, struct ethtool_rxnfc *nfc, u32 *rule_locs) { struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret = 0; mutex_lock(&priv->cfp.lock); switch (nfc->cmd) { case ETHTOOL_GRXCLSRLCNT: /* Subtract the default, unusable rule */ nfc->rule_cnt = bitmap_weight(priv->cfp.unique, priv->num_cfp_rules) - 1; /* We support specifying rule locations */ nfc->data |= RX_CLS_LOC_SPECIAL; break; case ETHTOOL_GRXCLSRULE: ret = bcm_sf2_cfp_rule_get(priv, port, nfc); break; case ETHTOOL_GRXCLSRLALL: ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->cfp.lock); if (ret) return ret; /* Pass up the commands to the attached master network device */ if (p->ethtool_ops->get_rxnfc) { ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs); if (ret == -EOPNOTSUPP) ret = 0; } return ret; } int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, struct ethtool_rxnfc *nfc) { struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret = 0; mutex_lock(&priv->cfp.lock); switch (nfc->cmd) { case ETHTOOL_SRXCLSRLINS: ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); break; case ETHTOOL_SRXCLSRLDEL: ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->cfp.lock); if (ret) return ret; /* Pass up the commands to the attached master network device. * This can fail, so rollback the operation if we need to. */ if (p->ethtool_ops->set_rxnfc) { ret = p->ethtool_ops->set_rxnfc(p, nfc); if (ret && ret != -EOPNOTSUPP) { mutex_lock(&priv->cfp.lock); bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); mutex_unlock(&priv->cfp.lock); } else { ret = 0; } } return ret; } int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_CFP_ACC); reg |= TCAM_RESET; core_writel(priv, reg, CORE_CFP_ACC); do { reg = core_readl(priv, CORE_CFP_ACC); if (!(reg & TCAM_RESET)) break; cpu_relax(); } while (timeout--); if (!timeout) return -ETIMEDOUT; return 0; } void bcm_sf2_cfp_exit(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct cfp_rule *rule, *n; if (list_empty(&priv->cfp.rules_list)) return; list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next) bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location); } int bcm_sf2_cfp_resume(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct cfp_rule *rule; int ret = 0; u32 reg; if (list_empty(&priv->cfp.rules_list)) return ret; reg = core_readl(priv, CORE_CFP_CTL_REG); reg &= ~CFP_EN_MAP_MASK; core_writel(priv, reg, CORE_CFP_CTL_REG); ret = bcm_sf2_cfp_rst(priv); if (ret) return ret; list_for_each_entry(rule, &priv->cfp.rules_list, next) { ret = bcm_sf2_cfp_rule_remove(priv, rule->port, rule->fs.location); if (ret) { dev_err(ds->dev, "failed to remove rule\n"); return ret; } ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs); if (ret) { dev_err(ds->dev, "failed to restore rule\n"); return ret; } } return ret; } static const struct bcm_sf2_cfp_stat { unsigned int offset; unsigned int ram_loc; const char *name; } bcm_sf2_cfp_stats[] = { { .offset = CORE_STAT_GREEN_CNTR, .ram_loc = GREEN_STAT_RAM, .name = "Green" }, { .offset = CORE_STAT_YELLOW_CNTR, .ram_loc = YELLOW_STAT_RAM, .name = "Yellow" }, { .offset = CORE_STAT_RED_CNTR, .ram_loc = RED_STAT_RAM, .name = "Red" }, }; void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); char buf[ETH_GSTRING_LEN]; unsigned int i, j, iter; if (stringset != ETH_SS_STATS) return; for (i = 1; i < priv->num_cfp_rules; i++) { for (j = 0; j < s; j++) { snprintf(buf, sizeof(buf), "CFP%03d_%sCntr", i, bcm_sf2_cfp_stats[j].name); iter = (i - 1) * s + j; strlcpy(data + iter * ETH_GSTRING_LEN, buf, ETH_GSTRING_LEN); } } } void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); const struct bcm_sf2_cfp_stat *stat; unsigned int i, j, iter; struct cfp_rule *rule; int ret; mutex_lock(&priv->cfp.lock); for (i = 1; i < priv->num_cfp_rules; i++) { rule = bcm_sf2_cfp_rule_find(priv, port, i); if (!rule) continue; for (j = 0; j < s; j++) { stat = &bcm_sf2_cfp_stats[j]; bcm_sf2_cfp_rule_addr_set(priv, i); ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ); if (ret) continue; iter = (i - 1) * s + j; data[iter] = core_readl(priv, stat->offset); } } mutex_unlock(&priv->cfp.lock); } int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); if (sset != ETH_SS_STATS) return 0; /* 3 counters per CFP rules */ return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1