Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vivien Didelot | 504 | 72.31% | 3 | 42.86% |
Rasmus Villemoes | 107 | 15.35% | 1 | 14.29% |
Tobias Waldekranz | 84 | 12.05% | 2 | 28.57% |
Thomas Gleixner | 2 | 0.29% | 1 | 14.29% |
Total | 697 | 7 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Marvell 88E6xxx System Management Interface (SMI) support * * Copyright (c) 2008 Marvell Semiconductor * * Copyright (c) 2019 Vivien Didelot <vivien.didelot@gmail.com> */ #include "chip.h" #include "smi.h" /* The switch ADDR[4:1] configuration pins define the chip SMI device address * (ADDR[0] is always zero, thus only even SMI addresses can be strapped). * * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it * is the only device connected to the SMI master. In this mode it responds to * all 32 possible SMI addresses, and thus maps directly the internal devices. * * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing * multiple devices to share the SMI interface. In this mode it responds to only * 2 registers, used to indirectly access the internal SMI devices. * * Some chips use a different scheme: Only the ADDR4 pin is used for * configuration, and the device responds to 16 of the 32 SMI * addresses, allowing two to coexist on the same SMI interface. */ static int mv88e6xxx_smi_direct_read(struct mv88e6xxx_chip *chip, int dev, int reg, u16 *data) { int ret; ret = mdiobus_read_nested(chip->bus, dev, reg); if (ret < 0) return ret; *data = ret & 0xffff; return 0; } static int mv88e6xxx_smi_direct_write(struct mv88e6xxx_chip *chip, int dev, int reg, u16 data) { int ret; ret = mdiobus_write_nested(chip->bus, dev, reg, data); if (ret < 0) return ret; return 0; } static int mv88e6xxx_smi_direct_wait(struct mv88e6xxx_chip *chip, int dev, int reg, int bit, int val) { const unsigned long timeout = jiffies + msecs_to_jiffies(50); u16 data; int err; int i; /* Even if the initial poll takes longer than 50ms, always do * at least one more attempt. */ for (i = 0; time_before(jiffies, timeout) || (i < 2); i++) { err = mv88e6xxx_smi_direct_read(chip, dev, reg, &data); if (err) return err; if (!!(data & BIT(bit)) == !!val) return 0; if (i < 2) cpu_relax(); else usleep_range(1000, 2000); } return -ETIMEDOUT; } static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_direct_ops = { .read = mv88e6xxx_smi_direct_read, .write = mv88e6xxx_smi_direct_write, }; static int mv88e6xxx_smi_dual_direct_read(struct mv88e6xxx_chip *chip, int dev, int reg, u16 *data) { return mv88e6xxx_smi_direct_read(chip, chip->sw_addr + dev, reg, data); } static int mv88e6xxx_smi_dual_direct_write(struct mv88e6xxx_chip *chip, int dev, int reg, u16 data) { return mv88e6xxx_smi_direct_write(chip, chip->sw_addr + dev, reg, data); } static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_dual_direct_ops = { .read = mv88e6xxx_smi_dual_direct_read, .write = mv88e6xxx_smi_dual_direct_write, }; /* Offset 0x00: SMI Command Register * Offset 0x01: SMI Data Register */ static int mv88e6xxx_smi_indirect_read(struct mv88e6xxx_chip *chip, int dev, int reg, u16 *data) { int err; err = mv88e6xxx_smi_direct_write(chip, chip->sw_addr, MV88E6XXX_SMI_CMD, MV88E6XXX_SMI_CMD_BUSY | MV88E6XXX_SMI_CMD_MODE_22 | MV88E6XXX_SMI_CMD_OP_22_READ | (dev << 5) | reg); if (err) return err; err = mv88e6xxx_smi_direct_wait(chip, chip->sw_addr, MV88E6XXX_SMI_CMD, 15, 0); if (err) return err; return mv88e6xxx_smi_direct_read(chip, chip->sw_addr, MV88E6XXX_SMI_DATA, data); } static int mv88e6xxx_smi_indirect_write(struct mv88e6xxx_chip *chip, int dev, int reg, u16 data) { int err; err = mv88e6xxx_smi_direct_write(chip, chip->sw_addr, MV88E6XXX_SMI_DATA, data); if (err) return err; err = mv88e6xxx_smi_direct_write(chip, chip->sw_addr, MV88E6XXX_SMI_CMD, MV88E6XXX_SMI_CMD_BUSY | MV88E6XXX_SMI_CMD_MODE_22 | MV88E6XXX_SMI_CMD_OP_22_WRITE | (dev << 5) | reg); if (err) return err; return mv88e6xxx_smi_direct_wait(chip, chip->sw_addr, MV88E6XXX_SMI_CMD, 15, 0); } static int mv88e6xxx_smi_indirect_init(struct mv88e6xxx_chip *chip) { /* Ensure that the chip starts out in the ready state. As both * reads and writes always ensure this on return, they can * safely depend on the chip not being busy on entry. */ return mv88e6xxx_smi_direct_wait(chip, chip->sw_addr, MV88E6XXX_SMI_CMD, 15, 0); } static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_indirect_ops = { .read = mv88e6xxx_smi_indirect_read, .write = mv88e6xxx_smi_indirect_write, .init = mv88e6xxx_smi_indirect_init, }; int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip, struct mii_bus *bus, int sw_addr) { if (chip->info->dual_chip) chip->smi_ops = &mv88e6xxx_smi_dual_direct_ops; else if (sw_addr == 0) chip->smi_ops = &mv88e6xxx_smi_direct_ops; else if (chip->info->multi_chip) chip->smi_ops = &mv88e6xxx_smi_indirect_ops; else return -EINVAL; chip->bus = bus; chip->sw_addr = sw_addr; if (chip->smi_ops->init) return chip->smi_ops->init(chip); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1