Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tom Lendacky | 12403 | 97.02% | 73 | 73.74% |
Jakub Kiciński | 200 | 1.56% | 3 | 3.03% |
Shyam Sundar S K | 38 | 0.30% | 2 | 2.02% |
Allen Pais | 35 | 0.27% | 1 | 1.01% |
Andy Shevchenko | 32 | 0.25% | 1 | 1.01% |
Kees Cook | 28 | 0.22% | 1 | 1.01% |
Gustavo A. R. Silva | 9 | 0.07% | 1 | 1.01% |
Raju Rangoju | 7 | 0.05% | 1 | 1.01% |
Joe Perches | 5 | 0.04% | 1 | 1.01% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 1.01% |
Jiri Pirko | 4 | 0.03% | 1 | 1.01% |
Florian Westphal | 3 | 0.02% | 1 | 1.01% |
Miroslav Lichvar | 3 | 0.02% | 1 | 1.01% |
Stephen Hemminger | 2 | 0.02% | 2 | 2.02% |
Eric Dumazet | 2 | 0.02% | 1 | 1.01% |
Yue haibing | 2 | 0.02% | 1 | 1.01% |
Nogah Frankel | 1 | 0.01% | 1 | 1.01% |
Matthew Wilcox | 1 | 0.01% | 1 | 1.01% |
Wolfram Sang | 1 | 0.01% | 1 | 1.01% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.01% |
Heinrich Schuchardt | 1 | 0.01% | 1 | 1.01% |
Sebastian Andrzej Siewior | 1 | 0.01% | 1 | 1.01% |
Justin Stitt | 1 | 0.01% | 1 | 1.01% |
Total | 12784 | 99 |
/* * AMD 10Gb Ethernet driver * * This file is available to you under your choice of the following two * licenses: * * License 1: GPLv2 * * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. * * This file is free software; you may copy, redistribute and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or (at * your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * * License 2: Modified BSD * * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/module.h> #include <linux/spinlock.h> #include <linux/tcp.h> #include <linux/if_vlan.h> #include <linux/interrupt.h> #include <linux/clk.h> #include <linux/if_ether.h> #include <linux/net_tstamp.h> #include <linux/phy.h> #include <net/vxlan.h> #include "xgbe.h" #include "xgbe-common.h" static unsigned int ecc_sec_info_threshold = 10; static unsigned int ecc_sec_warn_threshold = 10000; static unsigned int ecc_sec_period = 600; static unsigned int ecc_ded_threshold = 2; static unsigned int ecc_ded_period = 600; #ifdef CONFIG_AMD_XGBE_HAVE_ECC /* Only expose the ECC parameters if supported */ module_param(ecc_sec_info_threshold, uint, 0644); MODULE_PARM_DESC(ecc_sec_info_threshold, " ECC corrected error informational threshold setting"); module_param(ecc_sec_warn_threshold, uint, 0644); MODULE_PARM_DESC(ecc_sec_warn_threshold, " ECC corrected error warning threshold setting"); module_param(ecc_sec_period, uint, 0644); MODULE_PARM_DESC(ecc_sec_period, " ECC corrected error period (in seconds)"); module_param(ecc_ded_threshold, uint, 0644); MODULE_PARM_DESC(ecc_ded_threshold, " ECC detected error threshold setting"); module_param(ecc_ded_period, uint, 0644); MODULE_PARM_DESC(ecc_ded_period, " ECC detected error period (in seconds)"); #endif static int xgbe_one_poll(struct napi_struct *, int); static int xgbe_all_poll(struct napi_struct *, int); static void xgbe_stop(struct xgbe_prv_data *); static void *xgbe_alloc_node(size_t size, int node) { void *mem; mem = kzalloc_node(size, GFP_KERNEL, node); if (!mem) mem = kzalloc(size, GFP_KERNEL); return mem; } static void xgbe_free_channels(struct xgbe_prv_data *pdata) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pdata->channel); i++) { if (!pdata->channel[i]) continue; kfree(pdata->channel[i]->rx_ring); kfree(pdata->channel[i]->tx_ring); kfree(pdata->channel[i]); pdata->channel[i] = NULL; } pdata->channel_count = 0; } static int xgbe_alloc_channels(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; struct xgbe_ring *ring; unsigned int count, i; unsigned int cpu; int node; count = max_t(unsigned int, pdata->tx_ring_count, pdata->rx_ring_count); for (i = 0; i < count; i++) { /* Attempt to use a CPU on the node the device is on */ cpu = cpumask_local_spread(i, dev_to_node(pdata->dev)); /* Set the allocation node based on the returned CPU */ node = cpu_to_node(cpu); channel = xgbe_alloc_node(sizeof(*channel), node); if (!channel) goto err_mem; pdata->channel[i] = channel; snprintf(channel->name, sizeof(channel->name), "channel-%u", i); channel->pdata = pdata; channel->queue_index = i; channel->dma_regs = pdata->xgmac_regs + DMA_CH_BASE + (DMA_CH_INC * i); channel->node = node; cpumask_set_cpu(cpu, &channel->affinity_mask); if (pdata->per_channel_irq) channel->dma_irq = pdata->channel_irq[i]; if (i < pdata->tx_ring_count) { ring = xgbe_alloc_node(sizeof(*ring), node); if (!ring) goto err_mem; spin_lock_init(&ring->lock); ring->node = node; channel->tx_ring = ring; } if (i < pdata->rx_ring_count) { ring = xgbe_alloc_node(sizeof(*ring), node); if (!ring) goto err_mem; spin_lock_init(&ring->lock); ring->node = node; channel->rx_ring = ring; } netif_dbg(pdata, drv, pdata->netdev, "%s: cpu=%u, node=%d\n", channel->name, cpu, node); netif_dbg(pdata, drv, pdata->netdev, "%s: dma_regs=%p, dma_irq=%d, tx=%p, rx=%p\n", channel->name, channel->dma_regs, channel->dma_irq, channel->tx_ring, channel->rx_ring); } pdata->channel_count = count; return 0; err_mem: xgbe_free_channels(pdata); return -ENOMEM; } static inline unsigned int xgbe_tx_avail_desc(struct xgbe_ring *ring) { return (ring->rdesc_count - (ring->cur - ring->dirty)); } static inline unsigned int xgbe_rx_dirty_desc(struct xgbe_ring *ring) { return (ring->cur - ring->dirty); } static int xgbe_maybe_stop_tx_queue(struct xgbe_channel *channel, struct xgbe_ring *ring, unsigned int count) { struct xgbe_prv_data *pdata = channel->pdata; if (count > xgbe_tx_avail_desc(ring)) { netif_info(pdata, drv, pdata->netdev, "Tx queue stopped, not enough descriptors available\n"); netif_stop_subqueue(pdata->netdev, channel->queue_index); ring->tx.queue_stopped = 1; /* If we haven't notified the hardware because of xmit_more * support, tell it now */ if (ring->tx.xmit_more) pdata->hw_if.tx_start_xmit(channel, ring); return NETDEV_TX_BUSY; } return 0; } static int xgbe_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu) { unsigned int rx_buf_size; rx_buf_size = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; rx_buf_size = clamp_val(rx_buf_size, XGBE_RX_MIN_BUF_SIZE, PAGE_SIZE); rx_buf_size = (rx_buf_size + XGBE_RX_BUF_ALIGN - 1) & ~(XGBE_RX_BUF_ALIGN - 1); return rx_buf_size; } static void xgbe_enable_rx_tx_int(struct xgbe_prv_data *pdata, struct xgbe_channel *channel) { struct xgbe_hw_if *hw_if = &pdata->hw_if; enum xgbe_int int_id; if (channel->tx_ring && channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI_RI; else if (channel->tx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI; else if (channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_RI; else return; hw_if->enable_int(channel, int_id); } static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata) { unsigned int i; for (i = 0; i < pdata->channel_count; i++) xgbe_enable_rx_tx_int(pdata, pdata->channel[i]); } static void xgbe_disable_rx_tx_int(struct xgbe_prv_data *pdata, struct xgbe_channel *channel) { struct xgbe_hw_if *hw_if = &pdata->hw_if; enum xgbe_int int_id; if (channel->tx_ring && channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI_RI; else if (channel->tx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI; else if (channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_RI; else return; hw_if->disable_int(channel, int_id); } static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata) { unsigned int i; for (i = 0; i < pdata->channel_count; i++) xgbe_disable_rx_tx_int(pdata, pdata->channel[i]); } static bool xgbe_ecc_sec(struct xgbe_prv_data *pdata, unsigned long *period, unsigned int *count, const char *area) { if (time_before(jiffies, *period)) { (*count)++; } else { *period = jiffies + (ecc_sec_period * HZ); *count = 1; } if (*count > ecc_sec_info_threshold) dev_warn_once(pdata->dev, "%s ECC corrected errors exceed informational threshold\n", area); if (*count > ecc_sec_warn_threshold) { dev_warn_once(pdata->dev, "%s ECC corrected errors exceed warning threshold\n", area); return true; } return false; } static bool xgbe_ecc_ded(struct xgbe_prv_data *pdata, unsigned long *period, unsigned int *count, const char *area) { if (time_before(jiffies, *period)) { (*count)++; } else { *period = jiffies + (ecc_ded_period * HZ); *count = 1; } if (*count > ecc_ded_threshold) { netdev_alert(pdata->netdev, "%s ECC detected errors exceed threshold\n", area); return true; } return false; } static void xgbe_ecc_isr_task(struct tasklet_struct *t) { struct xgbe_prv_data *pdata = from_tasklet(pdata, t, tasklet_ecc); unsigned int ecc_isr; bool stop = false; /* Mask status with only the interrupts we care about */ ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR); ecc_isr &= XP_IOREAD(pdata, XP_ECC_IER); netif_dbg(pdata, intr, pdata->netdev, "ECC_ISR=%#010x\n", ecc_isr); if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_DED)) { stop |= xgbe_ecc_ded(pdata, &pdata->tx_ded_period, &pdata->tx_ded_count, "TX fifo"); } if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_DED)) { stop |= xgbe_ecc_ded(pdata, &pdata->rx_ded_period, &pdata->rx_ded_count, "RX fifo"); } if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_DED)) { stop |= xgbe_ecc_ded(pdata, &pdata->desc_ded_period, &pdata->desc_ded_count, "descriptor cache"); } if (stop) { pdata->hw_if.disable_ecc_ded(pdata); schedule_work(&pdata->stopdev_work); goto out; } if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_SEC)) { if (xgbe_ecc_sec(pdata, &pdata->tx_sec_period, &pdata->tx_sec_count, "TX fifo")) pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_TX); } if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_SEC)) if (xgbe_ecc_sec(pdata, &pdata->rx_sec_period, &pdata->rx_sec_count, "RX fifo")) pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_RX); if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_SEC)) if (xgbe_ecc_sec(pdata, &pdata->desc_sec_period, &pdata->desc_sec_count, "descriptor cache")) pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_DESC); out: /* Clear all ECC interrupts */ XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr); /* Reissue interrupt if status is not clear */ if (pdata->vdata->irq_reissue_support) XP_IOWRITE(pdata, XP_INT_REISSUE_EN, 1 << 1); } static irqreturn_t xgbe_ecc_isr(int irq, void *data) { struct xgbe_prv_data *pdata = data; if (pdata->isr_as_tasklet) tasklet_schedule(&pdata->tasklet_ecc); else xgbe_ecc_isr_task(&pdata->tasklet_ecc); return IRQ_HANDLED; } static void xgbe_isr_task(struct tasklet_struct *t) { struct xgbe_prv_data *pdata = from_tasklet(pdata, t, tasklet_dev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_channel *channel; unsigned int dma_isr, dma_ch_isr; unsigned int mac_isr, mac_tssr, mac_mdioisr; unsigned int i; /* The DMA interrupt status register also reports MAC and MTL * interrupts. So for polling mode, we just need to check for * this register to be non-zero */ dma_isr = XGMAC_IOREAD(pdata, DMA_ISR); if (!dma_isr) goto isr_done; netif_dbg(pdata, intr, pdata->netdev, "DMA_ISR=%#010x\n", dma_isr); for (i = 0; i < pdata->channel_count; i++) { if (!(dma_isr & (1 << i))) continue; channel = pdata->channel[i]; dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR); netif_dbg(pdata, intr, pdata->netdev, "DMA_CH%u_ISR=%#010x\n", i, dma_ch_isr); /* The TI or RI interrupt bits may still be set even if using * per channel DMA interrupts. Check to be sure those are not * enabled before using the private data napi structure. */ if (!pdata->per_channel_irq && (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, TI) || XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RI))) { if (napi_schedule_prep(&pdata->napi)) { /* Disable Tx and Rx interrupts */ xgbe_disable_rx_tx_ints(pdata); /* Turn on polling */ __napi_schedule(&pdata->napi); } } else { /* Don't clear Rx/Tx status if doing per channel DMA * interrupts, these will be cleared by the ISR for * per channel DMA interrupts. */ XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, TI, 0); XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, RI, 0); } if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RBU)) pdata->ext_stats.rx_buffer_unavailable++; /* Restart the device on a Fatal Bus Error */ if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE)) schedule_work(&pdata->restart_work); /* Clear interrupt signals */ XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr); } if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) { mac_isr = XGMAC_IOREAD(pdata, MAC_ISR); netif_dbg(pdata, intr, pdata->netdev, "MAC_ISR=%#010x\n", mac_isr); if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS)) hw_if->tx_mmc_int(pdata); if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCRXIS)) hw_if->rx_mmc_int(pdata); if (XGMAC_GET_BITS(mac_isr, MAC_ISR, TSIS)) { mac_tssr = XGMAC_IOREAD(pdata, MAC_TSSR); netif_dbg(pdata, intr, pdata->netdev, "MAC_TSSR=%#010x\n", mac_tssr); if (XGMAC_GET_BITS(mac_tssr, MAC_TSSR, TXTSC)) { /* Read Tx Timestamp to clear interrupt */ pdata->tx_tstamp = hw_if->get_tx_tstamp(pdata); queue_work(pdata->dev_workqueue, &pdata->tx_tstamp_work); } } if (XGMAC_GET_BITS(mac_isr, MAC_ISR, SMI)) { mac_mdioisr = XGMAC_IOREAD(pdata, MAC_MDIOISR); netif_dbg(pdata, intr, pdata->netdev, "MAC_MDIOISR=%#010x\n", mac_mdioisr); if (XGMAC_GET_BITS(mac_mdioisr, MAC_MDIOISR, SNGLCOMPINT)) complete(&pdata->mdio_complete); } } isr_done: /* If there is not a separate AN irq, handle it here */ if (pdata->dev_irq == pdata->an_irq) pdata->phy_if.an_isr(pdata); /* If there is not a separate ECC irq, handle it here */ if (pdata->vdata->ecc_support && (pdata->dev_irq == pdata->ecc_irq)) xgbe_ecc_isr_task(&pdata->tasklet_ecc); /* If there is not a separate I2C irq, handle it here */ if (pdata->vdata->i2c_support && (pdata->dev_irq == pdata->i2c_irq)) pdata->i2c_if.i2c_isr(pdata); /* Reissue interrupt if status is not clear */ if (pdata->vdata->irq_reissue_support) { unsigned int reissue_mask; reissue_mask = 1 << 0; if (!pdata->per_channel_irq) reissue_mask |= 0xffff << 4; XP_IOWRITE(pdata, XP_INT_REISSUE_EN, reissue_mask); } } static irqreturn_t xgbe_isr(int irq, void *data) { struct xgbe_prv_data *pdata = data; if (pdata->isr_as_tasklet) tasklet_schedule(&pdata->tasklet_dev); else xgbe_isr_task(&pdata->tasklet_dev); return IRQ_HANDLED; } static irqreturn_t xgbe_dma_isr(int irq, void *data) { struct xgbe_channel *channel = data; struct xgbe_prv_data *pdata = channel->pdata; unsigned int dma_status; /* Per channel DMA interrupts are enabled, so we use the per * channel napi structure and not the private data napi structure */ if (napi_schedule_prep(&channel->napi)) { /* Disable Tx and Rx interrupts */ if (pdata->channel_irq_mode) xgbe_disable_rx_tx_int(pdata, channel); else disable_irq_nosync(channel->dma_irq); /* Turn on polling */ __napi_schedule_irqoff(&channel->napi); } /* Clear Tx/Rx signals */ dma_status = 0; XGMAC_SET_BITS(dma_status, DMA_CH_SR, TI, 1); XGMAC_SET_BITS(dma_status, DMA_CH_SR, RI, 1); XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_status); return IRQ_HANDLED; } static void xgbe_tx_timer(struct timer_list *t) { struct xgbe_channel *channel = from_timer(channel, t, tx_timer); struct xgbe_prv_data *pdata = channel->pdata; struct napi_struct *napi; DBGPR("-->xgbe_tx_timer\n"); napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi; if (napi_schedule_prep(napi)) { /* Disable Tx and Rx interrupts */ if (pdata->per_channel_irq) if (pdata->channel_irq_mode) xgbe_disable_rx_tx_int(pdata, channel); else disable_irq_nosync(channel->dma_irq); else xgbe_disable_rx_tx_ints(pdata); /* Turn on polling */ __napi_schedule(napi); } channel->tx_timer_active = 0; DBGPR("<--xgbe_tx_timer\n"); } static void xgbe_service(struct work_struct *work) { struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data, service_work); pdata->phy_if.phy_status(pdata); } static void xgbe_service_timer(struct timer_list *t) { struct xgbe_prv_data *pdata = from_timer(pdata, t, service_timer); queue_work(pdata->dev_workqueue, &pdata->service_work); mod_timer(&pdata->service_timer, jiffies + HZ); } static void xgbe_init_timers(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; timer_setup(&pdata->service_timer, xgbe_service_timer, 0); for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; if (!channel->tx_ring) break; timer_setup(&channel->tx_timer, xgbe_tx_timer, 0); } } static void xgbe_start_timers(struct xgbe_prv_data *pdata) { mod_timer(&pdata->service_timer, jiffies + HZ); } static void xgbe_stop_timers(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; del_timer_sync(&pdata->service_timer); for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; if (!channel->tx_ring) break; /* Deactivate the Tx timer */ del_timer_sync(&channel->tx_timer); channel->tx_timer_active = 0; } } void xgbe_get_all_hw_features(struct xgbe_prv_data *pdata) { unsigned int mac_hfr0, mac_hfr1, mac_hfr2; struct xgbe_hw_features *hw_feat = &pdata->hw_feat; mac_hfr0 = XGMAC_IOREAD(pdata, MAC_HWF0R); mac_hfr1 = XGMAC_IOREAD(pdata, MAC_HWF1R); mac_hfr2 = XGMAC_IOREAD(pdata, MAC_HWF2R); memset(hw_feat, 0, sizeof(*hw_feat)); hw_feat->version = XGMAC_IOREAD(pdata, MAC_VR); /* Hardware feature register 0 */ hw_feat->gmii = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, GMIISEL); hw_feat->vlhash = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, VLHASH); hw_feat->sma = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SMASEL); hw_feat->rwk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RWKSEL); hw_feat->mgk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MGKSEL); hw_feat->mmc = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MMCSEL); hw_feat->aoe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, ARPOFFSEL); hw_feat->ts = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSEL); hw_feat->eee = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, EEESEL); hw_feat->tx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TXCOESEL); hw_feat->rx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RXCOESEL); hw_feat->addn_mac = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, ADDMACADRSEL); hw_feat->ts_src = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSTSSEL); hw_feat->sa_vlan_ins = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SAVLANINS); hw_feat->vxn = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, VXN); /* Hardware feature register 1 */ hw_feat->rx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, RXFIFOSIZE); hw_feat->tx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, TXFIFOSIZE); hw_feat->adv_ts_hi = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, ADVTHWORD); hw_feat->dma_width = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, ADDR64); hw_feat->dcb = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DCBEN); hw_feat->sph = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, SPHEN); hw_feat->tso = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, TSOEN); hw_feat->dma_debug = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DBGMEMA); hw_feat->rss = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, RSSEN); hw_feat->tc_cnt = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, NUMTC); hw_feat->hash_table_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, HASHTBLSZ); hw_feat->l3l4_filter_num = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, L3L4FNUM); /* Hardware feature register 2 */ hw_feat->rx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXQCNT); hw_feat->tx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXQCNT); hw_feat->rx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXCHCNT); hw_feat->tx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXCHCNT); hw_feat->pps_out_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, PPSOUTNUM); hw_feat->aux_snap_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, AUXSNAPNUM); /* Translate the Hash Table size into actual number */ switch (hw_feat->hash_table_size) { case 0: break; case 1: hw_feat->hash_table_size = 64; break; case 2: hw_feat->hash_table_size = 128; break; case 3: hw_feat->hash_table_size = 256; break; } /* Translate the address width setting into actual number */ switch (hw_feat->dma_width) { case 0: hw_feat->dma_width = 32; break; case 1: hw_feat->dma_width = 40; break; case 2: hw_feat->dma_width = 48; break; default: hw_feat->dma_width = 32; } /* The Queue, Channel and TC counts are zero based so increment them * to get the actual number */ hw_feat->rx_q_cnt++; hw_feat->tx_q_cnt++; hw_feat->rx_ch_cnt++; hw_feat->tx_ch_cnt++; hw_feat->tc_cnt++; /* Translate the fifo sizes into actual numbers */ hw_feat->rx_fifo_size = 1 << (hw_feat->rx_fifo_size + 7); hw_feat->tx_fifo_size = 1 << (hw_feat->tx_fifo_size + 7); if (netif_msg_probe(pdata)) { dev_dbg(pdata->dev, "Hardware features:\n"); /* Hardware feature register 0 */ dev_dbg(pdata->dev, " 1GbE support : %s\n", hw_feat->gmii ? "yes" : "no"); dev_dbg(pdata->dev, " VLAN hash filter : %s\n", hw_feat->vlhash ? "yes" : "no"); dev_dbg(pdata->dev, " MDIO interface : %s\n", hw_feat->sma ? "yes" : "no"); dev_dbg(pdata->dev, " Wake-up packet support : %s\n", hw_feat->rwk ? "yes" : "no"); dev_dbg(pdata->dev, " Magic packet support : %s\n", hw_feat->mgk ? "yes" : "no"); dev_dbg(pdata->dev, " Management counters : %s\n", hw_feat->mmc ? "yes" : "no"); dev_dbg(pdata->dev, " ARP offload : %s\n", hw_feat->aoe ? "yes" : "no"); dev_dbg(pdata->dev, " IEEE 1588-2008 Timestamp : %s\n", hw_feat->ts ? "yes" : "no"); dev_dbg(pdata->dev, " Energy Efficient Ethernet : %s\n", hw_feat->eee ? "yes" : "no"); dev_dbg(pdata->dev, " TX checksum offload : %s\n", hw_feat->tx_coe ? "yes" : "no"); dev_dbg(pdata->dev, " RX checksum offload : %s\n", hw_feat->rx_coe ? "yes" : "no"); dev_dbg(pdata->dev, " Additional MAC addresses : %u\n", hw_feat->addn_mac); dev_dbg(pdata->dev, " Timestamp source : %s\n", (hw_feat->ts_src == 1) ? "internal" : (hw_feat->ts_src == 2) ? "external" : (hw_feat->ts_src == 3) ? "internal/external" : "n/a"); dev_dbg(pdata->dev, " SA/VLAN insertion : %s\n", hw_feat->sa_vlan_ins ? "yes" : "no"); dev_dbg(pdata->dev, " VXLAN/NVGRE support : %s\n", hw_feat->vxn ? "yes" : "no"); /* Hardware feature register 1 */ dev_dbg(pdata->dev, " RX fifo size : %u\n", hw_feat->rx_fifo_size); dev_dbg(pdata->dev, " TX fifo size : %u\n", hw_feat->tx_fifo_size); dev_dbg(pdata->dev, " IEEE 1588 high word : %s\n", hw_feat->adv_ts_hi ? "yes" : "no"); dev_dbg(pdata->dev, " DMA width : %u\n", hw_feat->dma_width); dev_dbg(pdata->dev, " Data Center Bridging : %s\n", hw_feat->dcb ? "yes" : "no"); dev_dbg(pdata->dev, " Split header : %s\n", hw_feat->sph ? "yes" : "no"); dev_dbg(pdata->dev, " TCP Segmentation Offload : %s\n", hw_feat->tso ? "yes" : "no"); dev_dbg(pdata->dev, " Debug memory interface : %s\n", hw_feat->dma_debug ? "yes" : "no"); dev_dbg(pdata->dev, " Receive Side Scaling : %s\n", hw_feat->rss ? "yes" : "no"); dev_dbg(pdata->dev, " Traffic Class count : %u\n", hw_feat->tc_cnt); dev_dbg(pdata->dev, " Hash table size : %u\n", hw_feat->hash_table_size); dev_dbg(pdata->dev, " L3/L4 Filters : %u\n", hw_feat->l3l4_filter_num); /* Hardware feature register 2 */ dev_dbg(pdata->dev, " RX queue count : %u\n", hw_feat->rx_q_cnt); dev_dbg(pdata->dev, " TX queue count : %u\n", hw_feat->tx_q_cnt); dev_dbg(pdata->dev, " RX DMA channel count : %u\n", hw_feat->rx_ch_cnt); dev_dbg(pdata->dev, " TX DMA channel count : %u\n", hw_feat->rx_ch_cnt); dev_dbg(pdata->dev, " PPS outputs : %u\n", hw_feat->pps_out_num); dev_dbg(pdata->dev, " Auxiliary snapshot inputs : %u\n", hw_feat->aux_snap_num); } } static int xgbe_vxlan_set_port(struct net_device *netdev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti) { struct xgbe_prv_data *pdata = netdev_priv(netdev); pdata->vxlan_port = be16_to_cpu(ti->port); pdata->hw_if.enable_vxlan(pdata); return 0; } static int xgbe_vxlan_unset_port(struct net_device *netdev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti) { struct xgbe_prv_data *pdata = netdev_priv(netdev); pdata->hw_if.disable_vxlan(pdata); pdata->vxlan_port = 0; return 0; } static const struct udp_tunnel_nic_info xgbe_udp_tunnels = { .set_port = xgbe_vxlan_set_port, .unset_port = xgbe_vxlan_unset_port, .flags = UDP_TUNNEL_NIC_INFO_OPEN_ONLY, .tables = { { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, }, }; const struct udp_tunnel_nic_info *xgbe_get_udp_tunnel_info(void) { return &xgbe_udp_tunnels; } static void xgbe_napi_enable(struct xgbe_prv_data *pdata, unsigned int add) { struct xgbe_channel *channel; unsigned int i; if (pdata->per_channel_irq) { for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; if (add) netif_napi_add(pdata->netdev, &channel->napi, xgbe_one_poll, NAPI_POLL_WEIGHT); napi_enable(&channel->napi); } } else { if (add) netif_napi_add(pdata->netdev, &pdata->napi, xgbe_all_poll, NAPI_POLL_WEIGHT); napi_enable(&pdata->napi); } } static void xgbe_napi_disable(struct xgbe_prv_data *pdata, unsigned int del) { struct xgbe_channel *channel; unsigned int i; if (pdata->per_channel_irq) { for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; napi_disable(&channel->napi); if (del) netif_napi_del(&channel->napi); } } else { napi_disable(&pdata->napi); if (del) netif_napi_del(&pdata->napi); } } static int xgbe_request_irqs(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; struct net_device *netdev = pdata->netdev; unsigned int i; int ret; tasklet_setup(&pdata->tasklet_dev, xgbe_isr_task); tasklet_setup(&pdata->tasklet_ecc, xgbe_ecc_isr_task); ret = devm_request_irq(pdata->dev, pdata->dev_irq, xgbe_isr, 0, netdev_name(netdev), pdata); if (ret) { netdev_alert(netdev, "error requesting irq %d\n", pdata->dev_irq); return ret; } if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) { ret = devm_request_irq(pdata->dev, pdata->ecc_irq, xgbe_ecc_isr, 0, pdata->ecc_name, pdata); if (ret) { netdev_alert(netdev, "error requesting ecc irq %d\n", pdata->ecc_irq); goto err_dev_irq; } } if (!pdata->per_channel_irq) return 0; for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; snprintf(channel->dma_irq_name, sizeof(channel->dma_irq_name) - 1, "%s-TxRx-%u", netdev_name(netdev), channel->queue_index); ret = devm_request_irq(pdata->dev, channel->dma_irq, xgbe_dma_isr, 0, channel->dma_irq_name, channel); if (ret) { netdev_alert(netdev, "error requesting irq %d\n", channel->dma_irq); goto err_dma_irq; } irq_set_affinity_hint(channel->dma_irq, &channel->affinity_mask); } return 0; err_dma_irq: /* Using an unsigned int, 'i' will go to UINT_MAX and exit */ for (i--; i < pdata->channel_count; i--) { channel = pdata->channel[i]; irq_set_affinity_hint(channel->dma_irq, NULL); devm_free_irq(pdata->dev, channel->dma_irq, channel); } if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) devm_free_irq(pdata->dev, pdata->ecc_irq, pdata); err_dev_irq: devm_free_irq(pdata->dev, pdata->dev_irq, pdata); return ret; } static void xgbe_free_irqs(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; devm_free_irq(pdata->dev, pdata->dev_irq, pdata); if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) devm_free_irq(pdata->dev, pdata->ecc_irq, pdata); if (!pdata->per_channel_irq) return; for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; irq_set_affinity_hint(channel->dma_irq, NULL); devm_free_irq(pdata->dev, channel->dma_irq, channel); } } void xgbe_init_tx_coalesce(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->xgbe_init_tx_coalesce\n"); pdata->tx_usecs = XGMAC_INIT_DMA_TX_USECS; pdata->tx_frames = XGMAC_INIT_DMA_TX_FRAMES; hw_if->config_tx_coalesce(pdata); DBGPR("<--xgbe_init_tx_coalesce\n"); } void xgbe_init_rx_coalesce(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->xgbe_init_rx_coalesce\n"); pdata->rx_riwt = hw_if->usec_to_riwt(pdata, XGMAC_INIT_DMA_RX_USECS); pdata->rx_usecs = XGMAC_INIT_DMA_RX_USECS; pdata->rx_frames = XGMAC_INIT_DMA_RX_FRAMES; hw_if->config_rx_coalesce(pdata); DBGPR("<--xgbe_init_rx_coalesce\n"); } static void xgbe_free_tx_data(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_ring *ring; struct xgbe_ring_data *rdata; unsigned int i, j; DBGPR("-->xgbe_free_tx_data\n"); for (i = 0; i < pdata->channel_count; i++) { ring = pdata->channel[i]->tx_ring; if (!ring) break; for (j = 0; j < ring->rdesc_count; j++) { rdata = XGBE_GET_DESC_DATA(ring, j); desc_if->unmap_rdata(pdata, rdata); } } DBGPR("<--xgbe_free_tx_data\n"); } static void xgbe_free_rx_data(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_ring *ring; struct xgbe_ring_data *rdata; unsigned int i, j; DBGPR("-->xgbe_free_rx_data\n"); for (i = 0; i < pdata->channel_count; i++) { ring = pdata->channel[i]->rx_ring; if (!ring) break; for (j = 0; j < ring->rdesc_count; j++) { rdata = XGBE_GET_DESC_DATA(ring, j); desc_if->unmap_rdata(pdata, rdata); } } DBGPR("<--xgbe_free_rx_data\n"); } static int xgbe_phy_reset(struct xgbe_prv_data *pdata) { pdata->phy_link = -1; pdata->phy_speed = SPEED_UNKNOWN; return pdata->phy_if.phy_reset(pdata); } int xgbe_powerdown(struct net_device *netdev, unsigned int caller) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; unsigned long flags; DBGPR("-->xgbe_powerdown\n"); if (!netif_running(netdev) || (caller == XGMAC_IOCTL_CONTEXT && pdata->power_down)) { netdev_alert(netdev, "Device is already powered down\n"); DBGPR("<--xgbe_powerdown\n"); return -EINVAL; } spin_lock_irqsave(&pdata->lock, flags); if (caller == XGMAC_DRIVER_CONTEXT) netif_device_detach(netdev); netif_tx_stop_all_queues(netdev); xgbe_stop_timers(pdata); flush_workqueue(pdata->dev_workqueue); hw_if->powerdown_tx(pdata); hw_if->powerdown_rx(pdata); xgbe_napi_disable(pdata, 0); pdata->power_down = 1; spin_unlock_irqrestore(&pdata->lock, flags); DBGPR("<--xgbe_powerdown\n"); return 0; } int xgbe_powerup(struct net_device *netdev, unsigned int caller) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; unsigned long flags; DBGPR("-->xgbe_powerup\n"); if (!netif_running(netdev) || (caller == XGMAC_IOCTL_CONTEXT && !pdata->power_down)) { netdev_alert(netdev, "Device is already powered up\n"); DBGPR("<--xgbe_powerup\n"); return -EINVAL; } spin_lock_irqsave(&pdata->lock, flags); pdata->power_down = 0; xgbe_napi_enable(pdata, 0); hw_if->powerup_tx(pdata); hw_if->powerup_rx(pdata); if (caller == XGMAC_DRIVER_CONTEXT) netif_device_attach(netdev); netif_tx_start_all_queues(netdev); xgbe_start_timers(pdata); spin_unlock_irqrestore(&pdata->lock, flags); DBGPR("<--xgbe_powerup\n"); return 0; } static void xgbe_free_memory(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; /* Free the ring descriptors and buffers */ desc_if->free_ring_resources(pdata); /* Free the channel and ring structures */ xgbe_free_channels(pdata); } static int xgbe_alloc_memory(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; struct net_device *netdev = pdata->netdev; int ret; if (pdata->new_tx_ring_count) { pdata->tx_ring_count = pdata->new_tx_ring_count; pdata->tx_q_count = pdata->tx_ring_count; pdata->new_tx_ring_count = 0; } if (pdata->new_rx_ring_count) { pdata->rx_ring_count = pdata->new_rx_ring_count; pdata->new_rx_ring_count = 0; } /* Calculate the Rx buffer size before allocating rings */ pdata->rx_buf_size = xgbe_calc_rx_buf_size(netdev, netdev->mtu); /* Allocate the channel and ring structures */ ret = xgbe_alloc_channels(pdata); if (ret) return ret; /* Allocate the ring descriptors and buffers */ ret = desc_if->alloc_ring_resources(pdata); if (ret) goto err_channels; /* Initialize the service and Tx timers */ xgbe_init_timers(pdata); return 0; err_channels: xgbe_free_memory(pdata); return ret; } static int xgbe_start(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_phy_if *phy_if = &pdata->phy_if; struct net_device *netdev = pdata->netdev; unsigned int i; int ret; /* Set the number of queues */ ret = netif_set_real_num_tx_queues(netdev, pdata->tx_ring_count); if (ret) { netdev_err(netdev, "error setting real tx queue count\n"); return ret; } ret = netif_set_real_num_rx_queues(netdev, pdata->rx_ring_count); if (ret) { netdev_err(netdev, "error setting real rx queue count\n"); return ret; } /* Set RSS lookup table data for programming */ for (i = 0; i < XGBE_RSS_MAX_TABLE_SIZE; i++) XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, i % pdata->rx_ring_count); ret = hw_if->init(pdata); if (ret) return ret; xgbe_napi_enable(pdata, 1); ret = xgbe_request_irqs(pdata); if (ret) goto err_napi; ret = phy_if->phy_start(pdata); if (ret) goto err_irqs; hw_if->enable_tx(pdata); hw_if->enable_rx(pdata); udp_tunnel_nic_reset_ntf(netdev); netif_tx_start_all_queues(netdev); xgbe_start_timers(pdata); queue_work(pdata->dev_workqueue, &pdata->service_work); clear_bit(XGBE_STOPPED, &pdata->dev_state); return 0; err_irqs: xgbe_free_irqs(pdata); err_napi: xgbe_napi_disable(pdata, 1); hw_if->exit(pdata); return ret; } static void xgbe_stop(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_phy_if *phy_if = &pdata->phy_if; struct xgbe_channel *channel; struct net_device *netdev = pdata->netdev; struct netdev_queue *txq; unsigned int i; DBGPR("-->xgbe_stop\n"); if (test_bit(XGBE_STOPPED, &pdata->dev_state)) return; netif_tx_stop_all_queues(netdev); netif_carrier_off(pdata->netdev); xgbe_stop_timers(pdata); flush_workqueue(pdata->dev_workqueue); xgbe_vxlan_unset_port(netdev, 0, 0, NULL); hw_if->disable_tx(pdata); hw_if->disable_rx(pdata); phy_if->phy_stop(pdata); xgbe_free_irqs(pdata); xgbe_napi_disable(pdata, 1); hw_if->exit(pdata); for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; if (!channel->tx_ring) continue; txq = netdev_get_tx_queue(netdev, channel->queue_index); netdev_tx_reset_queue(txq); } set_bit(XGBE_STOPPED, &pdata->dev_state); DBGPR("<--xgbe_stop\n"); } static void xgbe_stopdev(struct work_struct *work) { struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data, stopdev_work); rtnl_lock(); xgbe_stop(pdata); xgbe_free_tx_data(pdata); xgbe_free_rx_data(pdata); rtnl_unlock(); netdev_alert(pdata->netdev, "device stopped\n"); } void xgbe_full_restart_dev(struct xgbe_prv_data *pdata) { /* If not running, "restart" will happen on open */ if (!netif_running(pdata->netdev)) return; xgbe_stop(pdata); xgbe_free_memory(pdata); xgbe_alloc_memory(pdata); xgbe_start(pdata); } void xgbe_restart_dev(struct xgbe_prv_data *pdata) { /* If not running, "restart" will happen on open */ if (!netif_running(pdata->netdev)) return; xgbe_stop(pdata); xgbe_free_tx_data(pdata); xgbe_free_rx_data(pdata); xgbe_start(pdata); } static void xgbe_restart(struct work_struct *work) { struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data, restart_work); rtnl_lock(); xgbe_restart_dev(pdata); rtnl_unlock(); } static void xgbe_tx_tstamp(struct work_struct *work) { struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data, tx_tstamp_work); struct skb_shared_hwtstamps hwtstamps; u64 nsec; unsigned long flags; spin_lock_irqsave(&pdata->tstamp_lock, flags); if (!pdata->tx_tstamp_skb) goto unlock; if (pdata->tx_tstamp) { nsec = timecounter_cyc2time(&pdata->tstamp_tc, pdata->tx_tstamp); memset(&hwtstamps, 0, sizeof(hwtstamps)); hwtstamps.hwtstamp = ns_to_ktime(nsec); skb_tstamp_tx(pdata->tx_tstamp_skb, &hwtstamps); } dev_kfree_skb_any(pdata->tx_tstamp_skb); pdata->tx_tstamp_skb = NULL; unlock: spin_unlock_irqrestore(&pdata->tstamp_lock, flags); } static int xgbe_get_hwtstamp_settings(struct xgbe_prv_data *pdata, struct ifreq *ifreq) { if (copy_to_user(ifreq->ifr_data, &pdata->tstamp_config, sizeof(pdata->tstamp_config))) return -EFAULT; return 0; } static int xgbe_set_hwtstamp_settings(struct xgbe_prv_data *pdata, struct ifreq *ifreq) { struct hwtstamp_config config; unsigned int mac_tscr; if (copy_from_user(&config, ifreq->ifr_data, sizeof(config))) return -EFAULT; mac_tscr = 0; switch (config.tx_type) { case HWTSTAMP_TX_OFF: break; case HWTSTAMP_TX_ON: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: break; case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENALL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2, UDP, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); fallthrough; /* to PTP v1, UDP, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2, UDP, Sync packet */ case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); fallthrough; /* to PTP v1, UDP, Sync packet */ case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2, UDP, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); fallthrough; /* to PTP v1, UDP, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* 802.AS1, Ethernet, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* 802.AS1, Ethernet, Sync packet */ case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* 802.AS1, Ethernet, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2/802.AS1, any layer, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V2_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2/802.AS1, any layer, Sync packet */ case HWTSTAMP_FILTER_PTP_V2_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2/802.AS1, any layer, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; default: return -ERANGE; } pdata->hw_if.config_tstamp(pdata, mac_tscr); memcpy(&pdata->tstamp_config, &config, sizeof(config)); return 0; } static void xgbe_prep_tx_tstamp(struct xgbe_prv_data *pdata, struct sk_buff *skb, struct xgbe_packet_data *packet) { unsigned long flags; if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) { spin_lock_irqsave(&pdata->tstamp_lock, flags); if (pdata->tx_tstamp_skb) { /* Another timestamp in progress, ignore this one */ XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP, 0); } else { pdata->tx_tstamp_skb = skb_get(skb); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; } spin_unlock_irqrestore(&pdata->tstamp_lock, flags); } skb_tx_timestamp(skb); } static void xgbe_prep_vlan(struct sk_buff *skb, struct xgbe_packet_data *packet) { if (skb_vlan_tag_present(skb)) packet->vlan_ctag = skb_vlan_tag_get(skb); } static int xgbe_prep_tso(struct sk_buff *skb, struct xgbe_packet_data *packet) { int ret; if (!XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, TSO_ENABLE)) return 0; ret = skb_cow_head(skb, 0); if (ret) return ret; if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, VXLAN)) { packet->header_len = skb_inner_tcp_all_headers(skb); packet->tcp_header_len = inner_tcp_hdrlen(skb); } else { packet->header_len = skb_tcp_all_headers(skb); packet->tcp_header_len = tcp_hdrlen(skb); } packet->tcp_payload_len = skb->len - packet->header_len; packet->mss = skb_shinfo(skb)->gso_size; DBGPR(" packet->header_len=%u\n", packet->header_len); DBGPR(" packet->tcp_header_len=%u, packet->tcp_payload_len=%u\n", packet->tcp_header_len, packet->tcp_payload_len); DBGPR(" packet->mss=%u\n", packet->mss); /* Update the number of packets that will ultimately be transmitted * along with the extra bytes for each extra packet */ packet->tx_packets = skb_shinfo(skb)->gso_segs; packet->tx_bytes += (packet->tx_packets - 1) * packet->header_len; return 0; } static bool xgbe_is_vxlan(struct sk_buff *skb) { if (!skb->encapsulation) return false; if (skb->ip_summed != CHECKSUM_PARTIAL) return false; switch (skb->protocol) { case htons(ETH_P_IP): if (ip_hdr(skb)->protocol != IPPROTO_UDP) return false; break; case htons(ETH_P_IPV6): if (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP) return false; break; default: return false; } if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB) || (skb_inner_mac_header(skb) - skb_transport_header(skb) != sizeof(struct udphdr) + sizeof(struct vxlanhdr))) return false; return true; } static int xgbe_is_tso(struct sk_buff *skb) { if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; DBGPR(" TSO packet to be processed\n"); return 1; } static void xgbe_packet_info(struct xgbe_prv_data *pdata, struct xgbe_ring *ring, struct sk_buff *skb, struct xgbe_packet_data *packet) { skb_frag_t *frag; unsigned int context_desc; unsigned int len; unsigned int i; packet->skb = skb; context_desc = 0; packet->rdesc_count = 0; packet->tx_packets = 1; packet->tx_bytes = skb->len; if (xgbe_is_tso(skb)) { /* TSO requires an extra descriptor if mss is different */ if (skb_shinfo(skb)->gso_size != ring->tx.cur_mss) { context_desc = 1; packet->rdesc_count++; } /* TSO requires an extra descriptor for TSO header */ packet->rdesc_count++; XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, TSO_ENABLE, 1); XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, CSUM_ENABLE, 1); } else if (skb->ip_summed == CHECKSUM_PARTIAL) XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, CSUM_ENABLE, 1); if (xgbe_is_vxlan(skb)) XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, VXLAN, 1); if (skb_vlan_tag_present(skb)) { /* VLAN requires an extra descriptor if tag is different */ if (skb_vlan_tag_get(skb) != ring->tx.cur_vlan_ctag) /* We can share with the TSO context descriptor */ if (!context_desc) { context_desc = 1; packet->rdesc_count++; } XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, VLAN_CTAG, 1); } if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && (pdata->tstamp_config.tx_type == HWTSTAMP_TX_ON)) XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP, 1); for (len = skb_headlen(skb); len;) { packet->rdesc_count++; len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE); } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; for (len = skb_frag_size(frag); len; ) { packet->rdesc_count++; len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE); } } } static int xgbe_open(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); int ret; /* Create the various names based on netdev name */ snprintf(pdata->an_name, sizeof(pdata->an_name) - 1, "%s-pcs", netdev_name(netdev)); snprintf(pdata->ecc_name, sizeof(pdata->ecc_name) - 1, "%s-ecc", netdev_name(netdev)); snprintf(pdata->i2c_name, sizeof(pdata->i2c_name) - 1, "%s-i2c", netdev_name(netdev)); /* Create workqueues */ pdata->dev_workqueue = create_singlethread_workqueue(netdev_name(netdev)); if (!pdata->dev_workqueue) { netdev_err(netdev, "device workqueue creation failed\n"); return -ENOMEM; } pdata->an_workqueue = create_singlethread_workqueue(pdata->an_name); if (!pdata->an_workqueue) { netdev_err(netdev, "phy workqueue creation failed\n"); ret = -ENOMEM; goto err_dev_wq; } /* Reset the phy settings */ ret = xgbe_phy_reset(pdata); if (ret) goto err_an_wq; /* Enable the clocks */ ret = clk_prepare_enable(pdata->sysclk); if (ret) { netdev_alert(netdev, "dma clk_prepare_enable failed\n"); goto err_an_wq; } ret = clk_prepare_enable(pdata->ptpclk); if (ret) { netdev_alert(netdev, "ptp clk_prepare_enable failed\n"); goto err_sysclk; } INIT_WORK(&pdata->service_work, xgbe_service); INIT_WORK(&pdata->restart_work, xgbe_restart); INIT_WORK(&pdata->stopdev_work, xgbe_stopdev); INIT_WORK(&pdata->tx_tstamp_work, xgbe_tx_tstamp); ret = xgbe_alloc_memory(pdata); if (ret) goto err_ptpclk; ret = xgbe_start(pdata); if (ret) goto err_mem; clear_bit(XGBE_DOWN, &pdata->dev_state); return 0; err_mem: xgbe_free_memory(pdata); err_ptpclk: clk_disable_unprepare(pdata->ptpclk); err_sysclk: clk_disable_unprepare(pdata->sysclk); err_an_wq: destroy_workqueue(pdata->an_workqueue); err_dev_wq: destroy_workqueue(pdata->dev_workqueue); return ret; } static int xgbe_close(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); /* Stop the device */ xgbe_stop(pdata); xgbe_free_memory(pdata); /* Disable the clocks */ clk_disable_unprepare(pdata->ptpclk); clk_disable_unprepare(pdata->sysclk); destroy_workqueue(pdata->an_workqueue); destroy_workqueue(pdata->dev_workqueue); set_bit(XGBE_DOWN, &pdata->dev_state); return 0; } static netdev_tx_t xgbe_xmit(struct sk_buff *skb, struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_channel *channel; struct xgbe_ring *ring; struct xgbe_packet_data *packet; struct netdev_queue *txq; netdev_tx_t ret; DBGPR("-->xgbe_xmit: skb->len = %d\n", skb->len); channel = pdata->channel[skb->queue_mapping]; txq = netdev_get_tx_queue(netdev, channel->queue_index); ring = channel->tx_ring; packet = &ring->packet_data; ret = NETDEV_TX_OK; if (skb->len == 0) { netif_err(pdata, tx_err, netdev, "empty skb received from stack\n"); dev_kfree_skb_any(skb); goto tx_netdev_return; } /* Calculate preliminary packet info */ memset(packet, 0, sizeof(*packet)); xgbe_packet_info(pdata, ring, skb, packet); /* Check that there are enough descriptors available */ ret = xgbe_maybe_stop_tx_queue(channel, ring, packet->rdesc_count); if (ret) goto tx_netdev_return; ret = xgbe_prep_tso(skb, packet); if (ret) { netif_err(pdata, tx_err, netdev, "error processing TSO packet\n"); dev_kfree_skb_any(skb); goto tx_netdev_return; } xgbe_prep_vlan(skb, packet); if (!desc_if->map_tx_skb(channel, skb)) { dev_kfree_skb_any(skb); goto tx_netdev_return; } xgbe_prep_tx_tstamp(pdata, skb, packet); /* Report on the actual number of bytes (to be) sent */ netdev_tx_sent_queue(txq, packet->tx_bytes); /* Configure required descriptor fields for transmission */ hw_if->dev_xmit(channel); if (netif_msg_pktdata(pdata)) xgbe_print_pkt(netdev, skb, true); /* Stop the queue in advance if there may not be enough descriptors */ xgbe_maybe_stop_tx_queue(channel, ring, XGBE_TX_MAX_DESCS); ret = NETDEV_TX_OK; tx_netdev_return: return ret; } static void xgbe_set_rx_mode(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->xgbe_set_rx_mode\n"); hw_if->config_rx_mode(pdata); DBGPR("<--xgbe_set_rx_mode\n"); } static int xgbe_set_mac_address(struct net_device *netdev, void *addr) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct sockaddr *saddr = addr; DBGPR("-->xgbe_set_mac_address\n"); if (!is_valid_ether_addr(saddr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(netdev, saddr->sa_data); hw_if->set_mac_address(pdata, netdev->dev_addr); DBGPR("<--xgbe_set_mac_address\n"); return 0; } static int xgbe_ioctl(struct net_device *netdev, struct ifreq *ifreq, int cmd) { struct xgbe_prv_data *pdata = netdev_priv(netdev); int ret; switch (cmd) { case SIOCGHWTSTAMP: ret = xgbe_get_hwtstamp_settings(pdata, ifreq); break; case SIOCSHWTSTAMP: ret = xgbe_set_hwtstamp_settings(pdata, ifreq); break; default: ret = -EOPNOTSUPP; } return ret; } static int xgbe_change_mtu(struct net_device *netdev, int mtu) { struct xgbe_prv_data *pdata = netdev_priv(netdev); int ret; DBGPR("-->xgbe_change_mtu\n"); ret = xgbe_calc_rx_buf_size(netdev, mtu); if (ret < 0) return ret; pdata->rx_buf_size = ret; netdev->mtu = mtu; xgbe_restart_dev(pdata); DBGPR("<--xgbe_change_mtu\n"); return 0; } static void xgbe_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct xgbe_prv_data *pdata = netdev_priv(netdev); netdev_warn(netdev, "tx timeout, device restarting\n"); schedule_work(&pdata->restart_work); } static void xgbe_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *s) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_mmc_stats *pstats = &pdata->mmc_stats; DBGPR("-->%s\n", __func__); pdata->hw_if.read_mmc_stats(pdata); s->rx_packets = pstats->rxframecount_gb; s->rx_bytes = pstats->rxoctetcount_gb; s->rx_errors = pstats->rxframecount_gb - pstats->rxbroadcastframes_g - pstats->rxmulticastframes_g - pstats->rxunicastframes_g; s->multicast = pstats->rxmulticastframes_g; s->rx_length_errors = pstats->rxlengtherror; s->rx_crc_errors = pstats->rxcrcerror; s->rx_fifo_errors = pstats->rxfifooverflow; s->tx_packets = pstats->txframecount_gb; s->tx_bytes = pstats->txoctetcount_gb; s->tx_errors = pstats->txframecount_gb - pstats->txframecount_g; s->tx_dropped = netdev->stats.tx_dropped; DBGPR("<--%s\n", __func__); } static int xgbe_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->%s\n", __func__); set_bit(vid, pdata->active_vlans); hw_if->update_vlan_hash_table(pdata); DBGPR("<--%s\n", __func__); return 0; } static int xgbe_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->%s\n", __func__); clear_bit(vid, pdata->active_vlans); hw_if->update_vlan_hash_table(pdata); DBGPR("<--%s\n", __func__); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void xgbe_poll_controller(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_channel *channel; unsigned int i; DBGPR("-->xgbe_poll_controller\n"); if (pdata->per_channel_irq) { for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; xgbe_dma_isr(channel->dma_irq, channel); } } else { disable_irq(pdata->dev_irq); xgbe_isr(pdata->dev_irq, pdata); enable_irq(pdata->dev_irq); } DBGPR("<--xgbe_poll_controller\n"); } #endif /* End CONFIG_NET_POLL_CONTROLLER */ static int xgbe_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct tc_mqprio_qopt *mqprio = type_data; u8 tc; if (type != TC_SETUP_QDISC_MQPRIO) return -EOPNOTSUPP; mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; tc = mqprio->num_tc; if (tc > pdata->hw_feat.tc_cnt) return -EINVAL; pdata->num_tcs = tc; pdata->hw_if.config_tc(pdata); return 0; } static netdev_features_t xgbe_fix_features(struct net_device *netdev, netdev_features_t features) { struct xgbe_prv_data *pdata = netdev_priv(netdev); netdev_features_t vxlan_base; vxlan_base = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RX_UDP_TUNNEL_PORT; if (!pdata->hw_feat.vxn) return features; /* VXLAN CSUM requires VXLAN base */ if ((features & NETIF_F_GSO_UDP_TUNNEL_CSUM) && !(features & NETIF_F_GSO_UDP_TUNNEL)) { netdev_notice(netdev, "forcing tx udp tunnel support\n"); features |= NETIF_F_GSO_UDP_TUNNEL; } /* Can't do one without doing the other */ if ((features & vxlan_base) != vxlan_base) { netdev_notice(netdev, "forcing both tx and rx udp tunnel support\n"); features |= vxlan_base; } if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { if (!(features & NETIF_F_GSO_UDP_TUNNEL_CSUM)) { netdev_notice(netdev, "forcing tx udp tunnel checksumming on\n"); features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; } } else { if (features & NETIF_F_GSO_UDP_TUNNEL_CSUM) { netdev_notice(netdev, "forcing tx udp tunnel checksumming off\n"); features &= ~NETIF_F_GSO_UDP_TUNNEL_CSUM; } } return features; } static int xgbe_set_features(struct net_device *netdev, netdev_features_t features) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; netdev_features_t rxhash, rxcsum, rxvlan, rxvlan_filter; int ret = 0; rxhash = pdata->netdev_features & NETIF_F_RXHASH; rxcsum = pdata->netdev_features & NETIF_F_RXCSUM; rxvlan = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_RX; rxvlan_filter = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_FILTER; if ((features & NETIF_F_RXHASH) && !rxhash) ret = hw_if->enable_rss(pdata); else if (!(features & NETIF_F_RXHASH) && rxhash) ret = hw_if->disable_rss(pdata); if (ret) return ret; if ((features & NETIF_F_RXCSUM) && !rxcsum) hw_if->enable_rx_csum(pdata); else if (!(features & NETIF_F_RXCSUM) && rxcsum) hw_if->disable_rx_csum(pdata); if ((features & NETIF_F_HW_VLAN_CTAG_RX) && !rxvlan) hw_if->enable_rx_vlan_stripping(pdata); else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && rxvlan) hw_if->disable_rx_vlan_stripping(pdata); if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && !rxvlan_filter) hw_if->enable_rx_vlan_filtering(pdata); else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && rxvlan_filter) hw_if->disable_rx_vlan_filtering(pdata); pdata->netdev_features = features; DBGPR("<--xgbe_set_features\n"); return 0; } static netdev_features_t xgbe_features_check(struct sk_buff *skb, struct net_device *netdev, netdev_features_t features) { features = vlan_features_check(skb, features); features = vxlan_features_check(skb, features); return features; } static const struct net_device_ops xgbe_netdev_ops = { .ndo_open = xgbe_open, .ndo_stop = xgbe_close, .ndo_start_xmit = xgbe_xmit, .ndo_set_rx_mode = xgbe_set_rx_mode, .ndo_set_mac_address = xgbe_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = xgbe_ioctl, .ndo_change_mtu = xgbe_change_mtu, .ndo_tx_timeout = xgbe_tx_timeout, .ndo_get_stats64 = xgbe_get_stats64, .ndo_vlan_rx_add_vid = xgbe_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = xgbe_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = xgbe_poll_controller, #endif .ndo_setup_tc = xgbe_setup_tc, .ndo_fix_features = xgbe_fix_features, .ndo_set_features = xgbe_set_features, .ndo_features_check = xgbe_features_check, }; const struct net_device_ops *xgbe_get_netdev_ops(void) { return &xgbe_netdev_ops; } static void xgbe_rx_refresh(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_ring *ring = channel->rx_ring; struct xgbe_ring_data *rdata; while (ring->dirty != ring->cur) { rdata = XGBE_GET_DESC_DATA(ring, ring->dirty); /* Reset rdata values */ desc_if->unmap_rdata(pdata, rdata); if (desc_if->map_rx_buffer(pdata, ring, rdata)) break; hw_if->rx_desc_reset(pdata, rdata, ring->dirty); ring->dirty++; } /* Make sure everything is written before the register write */ wmb(); /* Update the Rx Tail Pointer Register with address of * the last cleaned entry */ rdata = XGBE_GET_DESC_DATA(ring, ring->dirty - 1); XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, lower_32_bits(rdata->rdesc_dma)); } static struct sk_buff *xgbe_create_skb(struct xgbe_prv_data *pdata, struct napi_struct *napi, struct xgbe_ring_data *rdata, unsigned int len) { struct sk_buff *skb; u8 *packet; skb = napi_alloc_skb(napi, rdata->rx.hdr.dma_len); if (!skb) return NULL; /* Pull in the header buffer which may contain just the header * or the header plus data */ dma_sync_single_range_for_cpu(pdata->dev, rdata->rx.hdr.dma_base, rdata->rx.hdr.dma_off, rdata->rx.hdr.dma_len, DMA_FROM_DEVICE); packet = page_address(rdata->rx.hdr.pa.pages) + rdata->rx.hdr.pa.pages_offset; skb_copy_to_linear_data(skb, packet, len); skb_put(skb, len); return skb; } static unsigned int xgbe_rx_buf1_len(struct xgbe_ring_data *rdata, struct xgbe_packet_data *packet) { /* Always zero if not the first descriptor */ if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, FIRST)) return 0; /* First descriptor with split header, return header length */ if (rdata->rx.hdr_len) return rdata->rx.hdr_len; /* First descriptor but not the last descriptor and no split header, * so the full buffer was used */ if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST)) return rdata->rx.hdr.dma_len; /* First descriptor and last descriptor and no split header, so * calculate how much of the buffer was used */ return min_t(unsigned int, rdata->rx.hdr.dma_len, rdata->rx.len); } static unsigned int xgbe_rx_buf2_len(struct xgbe_ring_data *rdata, struct xgbe_packet_data *packet, unsigned int len) { /* Always the full buffer if not the last descriptor */ if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST)) return rdata->rx.buf.dma_len; /* Last descriptor so calculate how much of the buffer was used * for the last bit of data */ return rdata->rx.len - len; } static int xgbe_tx_poll(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_ring *ring = channel->tx_ring; struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; struct net_device *netdev = pdata->netdev; struct netdev_queue *txq; int processed = 0; unsigned int tx_packets = 0, tx_bytes = 0; unsigned int cur; DBGPR("-->xgbe_tx_poll\n"); /* Nothing to do if there isn't a Tx ring for this channel */ if (!ring) return 0; cur = ring->cur; /* Be sure we get ring->cur before accessing descriptor data */ smp_rmb(); txq = netdev_get_tx_queue(netdev, channel->queue_index); while ((processed < XGBE_TX_DESC_MAX_PROC) && (ring->dirty != cur)) { rdata = XGBE_GET_DESC_DATA(ring, ring->dirty); rdesc = rdata->rdesc; if (!hw_if->tx_complete(rdesc)) break; /* Make sure descriptor fields are read after reading the OWN * bit */ dma_rmb(); if (netif_msg_tx_done(pdata)) xgbe_dump_tx_desc(pdata, ring, ring->dirty, 1, 0); if (hw_if->is_last_desc(rdesc)) { tx_packets += rdata->tx.packets; tx_bytes += rdata->tx.bytes; } /* Free the SKB and reset the descriptor for re-use */ desc_if->unmap_rdata(pdata, rdata); hw_if->tx_desc_reset(rdata); processed++; ring->dirty++; } if (!processed) return 0; netdev_tx_completed_queue(txq, tx_packets, tx_bytes); if ((ring->tx.queue_stopped == 1) && (xgbe_tx_avail_desc(ring) > XGBE_TX_DESC_MIN_FREE)) { ring->tx.queue_stopped = 0; netif_tx_wake_queue(txq); } DBGPR("<--xgbe_tx_poll: processed=%d\n", processed); return processed; } static int xgbe_rx_poll(struct xgbe_channel *channel, int budget) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_ring *ring = channel->rx_ring; struct xgbe_ring_data *rdata; struct xgbe_packet_data *packet; struct net_device *netdev = pdata->netdev; struct napi_struct *napi; struct sk_buff *skb; struct skb_shared_hwtstamps *hwtstamps; unsigned int last, error, context_next, context; unsigned int len, buf1_len, buf2_len, max_len; unsigned int received = 0; int packet_count = 0; DBGPR("-->xgbe_rx_poll: budget=%d\n", budget); /* Nothing to do if there isn't a Rx ring for this channel */ if (!ring) return 0; last = 0; context_next = 0; napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi; rdata = XGBE_GET_DESC_DATA(ring, ring->cur); packet = &ring->packet_data; while (packet_count < budget) { DBGPR(" cur = %d\n", ring->cur); /* First time in loop see if we need to restore state */ if (!received && rdata->state_saved) { skb = rdata->state.skb; error = rdata->state.error; len = rdata->state.len; } else { memset(packet, 0, sizeof(*packet)); skb = NULL; error = 0; len = 0; } read_again: rdata = XGBE_GET_DESC_DATA(ring, ring->cur); if (xgbe_rx_dirty_desc(ring) > (XGBE_RX_DESC_CNT >> 3)) xgbe_rx_refresh(channel); if (hw_if->dev_read(channel)) break; received++; ring->cur++; last = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST); context_next = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT_NEXT); context = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT); /* Earlier error, just drain the remaining data */ if ((!last || context_next) && error) goto read_again; if (error || packet->errors) { if (packet->errors) netif_err(pdata, rx_err, netdev, "error in received packet\n"); dev_kfree_skb(skb); goto next_packet; } if (!context) { /* Get the data length in the descriptor buffers */ buf1_len = xgbe_rx_buf1_len(rdata, packet); len += buf1_len; buf2_len = xgbe_rx_buf2_len(rdata, packet, len); len += buf2_len; if (buf2_len > rdata->rx.buf.dma_len) { /* Hardware inconsistency within the descriptors * that has resulted in a length underflow. */ error = 1; goto skip_data; } if (!skb) { skb = xgbe_create_skb(pdata, napi, rdata, buf1_len); if (!skb) { error = 1; goto skip_data; } } if (buf2_len) { dma_sync_single_range_for_cpu(pdata->dev, rdata->rx.buf.dma_base, rdata->rx.buf.dma_off, rdata->rx.buf.dma_len, DMA_FROM_DEVICE); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rdata->rx.buf.pa.pages, rdata->rx.buf.pa.pages_offset, buf2_len, rdata->rx.buf.dma_len); rdata->rx.buf.pa.pages = NULL; } } skip_data: if (!last || context_next) goto read_again; if (!skb || error) { dev_kfree_skb(skb); goto next_packet; } /* Be sure we don't exceed the configured MTU */ max_len = netdev->mtu + ETH_HLEN; if (!(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && (skb->protocol == htons(ETH_P_8021Q))) max_len += VLAN_HLEN; if (skb->len > max_len) { netif_err(pdata, rx_err, netdev, "packet length exceeds configured MTU\n"); dev_kfree_skb(skb); goto next_packet; } if (netif_msg_pktdata(pdata)) xgbe_print_pkt(netdev, skb, false); skb_checksum_none_assert(skb); if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CSUM_DONE)) skb->ip_summed = CHECKSUM_UNNECESSARY; if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, TNP)) { skb->encapsulation = 1; if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, TNPCSUM_DONE)) skb->csum_level = 1; } if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, VLAN_CTAG)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), packet->vlan_ctag); if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RX_TSTAMP)) { u64 nsec; nsec = timecounter_cyc2time(&pdata->tstamp_tc, packet->rx_tstamp); hwtstamps = skb_hwtstamps(skb); hwtstamps->hwtstamp = ns_to_ktime(nsec); } if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RSS_HASH)) skb_set_hash(skb, packet->rss_hash, packet->rss_hash_type); skb->dev = netdev; skb->protocol = eth_type_trans(skb, netdev); skb_record_rx_queue(skb, channel->queue_index); napi_gro_receive(napi, skb); next_packet: packet_count++; } /* Check if we need to save state before leaving */ if (received && (!last || context_next)) { rdata = XGBE_GET_DESC_DATA(ring, ring->cur); rdata->state_saved = 1; rdata->state.skb = skb; rdata->state.len = len; rdata->state.error = error; } DBGPR("<--xgbe_rx_poll: packet_count = %d\n", packet_count); return packet_count; } static int xgbe_one_poll(struct napi_struct *napi, int budget) { struct xgbe_channel *channel = container_of(napi, struct xgbe_channel, napi); struct xgbe_prv_data *pdata = channel->pdata; int processed = 0; DBGPR("-->xgbe_one_poll: budget=%d\n", budget); /* Cleanup Tx ring first */ xgbe_tx_poll(channel); /* Process Rx ring next */ processed = xgbe_rx_poll(channel, budget); /* If we processed everything, we are done */ if ((processed < budget) && napi_complete_done(napi, processed)) { /* Enable Tx and Rx interrupts */ if (pdata->channel_irq_mode) xgbe_enable_rx_tx_int(pdata, channel); else enable_irq(channel->dma_irq); } DBGPR("<--xgbe_one_poll: received = %d\n", processed); return processed; } static int xgbe_all_poll(struct napi_struct *napi, int budget) { struct xgbe_prv_data *pdata = container_of(napi, struct xgbe_prv_data, napi); struct xgbe_channel *channel; int ring_budget; int processed, last_processed; unsigned int i; DBGPR("-->xgbe_all_poll: budget=%d\n", budget); processed = 0; ring_budget = budget / pdata->rx_ring_count; do { last_processed = processed; for (i = 0; i < pdata->channel_count; i++) { channel = pdata->channel[i]; /* Cleanup Tx ring first */ xgbe_tx_poll(channel); /* Process Rx ring next */ if (ring_budget > (budget - processed)) ring_budget = budget - processed; processed += xgbe_rx_poll(channel, ring_budget); } } while ((processed < budget) && (processed != last_processed)); /* If we processed everything, we are done */ if ((processed < budget) && napi_complete_done(napi, processed)) { /* Enable Tx and Rx interrupts */ xgbe_enable_rx_tx_ints(pdata); } DBGPR("<--xgbe_all_poll: received = %d\n", processed); return processed; } void xgbe_dump_tx_desc(struct xgbe_prv_data *pdata, struct xgbe_ring *ring, unsigned int idx, unsigned int count, unsigned int flag) { struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; while (count--) { rdata = XGBE_GET_DESC_DATA(ring, idx); rdesc = rdata->rdesc; netdev_dbg(pdata->netdev, "TX_NORMAL_DESC[%d %s] = %08x:%08x:%08x:%08x\n", idx, (flag == 1) ? "QUEUED FOR TX" : "TX BY DEVICE", le32_to_cpu(rdesc->desc0), le32_to_cpu(rdesc->desc1), le32_to_cpu(rdesc->desc2), le32_to_cpu(rdesc->desc3)); idx++; } } void xgbe_dump_rx_desc(struct xgbe_prv_data *pdata, struct xgbe_ring *ring, unsigned int idx) { struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; rdata = XGBE_GET_DESC_DATA(ring, idx); rdesc = rdata->rdesc; netdev_dbg(pdata->netdev, "RX_NORMAL_DESC[%d RX BY DEVICE] = %08x:%08x:%08x:%08x\n", idx, le32_to_cpu(rdesc->desc0), le32_to_cpu(rdesc->desc1), le32_to_cpu(rdesc->desc2), le32_to_cpu(rdesc->desc3)); } void xgbe_print_pkt(struct net_device *netdev, struct sk_buff *skb, bool tx_rx) { struct ethhdr *eth = (struct ethhdr *)skb->data; unsigned char buffer[128]; unsigned int i; netdev_dbg(netdev, "\n************** SKB dump ****************\n"); netdev_dbg(netdev, "%s packet of %d bytes\n", (tx_rx ? "TX" : "RX"), skb->len); netdev_dbg(netdev, "Dst MAC addr: %pM\n", eth->h_dest); netdev_dbg(netdev, "Src MAC addr: %pM\n", eth->h_source); netdev_dbg(netdev, "Protocol: %#06x\n", ntohs(eth->h_proto)); for (i = 0; i < skb->len; i += 32) { unsigned int len = min(skb->len - i, 32U); hex_dump_to_buffer(&skb->data[i], len, 32, 1, buffer, sizeof(buffer), false); netdev_dbg(netdev, " %#06x: %s\n", i, buffer); } netdev_dbg(netdev, "\n************** SKB dump ****************\n"); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1