Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jesse Brandeburg | 3932 | 17.28% | 54 | 12.68% |
Mallikarjuna R Chilakala | 3139 | 13.80% | 24 | 5.63% |
Jeff Garzik | 2953 | 12.98% | 11 | 2.58% |
Tushar Dave | 1268 | 5.57% | 6 | 1.41% |
Jeb J. Cramer | 1222 | 5.37% | 18 | 4.23% |
Auke-Jan H Kok | 1180 | 5.19% | 22 | 5.16% |
Scott Feldman | 1016 | 4.47% | 31 | 7.28% |
Florian Westphal | 1012 | 4.45% | 9 | 2.11% |
Joe Perches | 778 | 3.42% | 9 | 2.11% |
Jeff Kirsher | 772 | 3.39% | 38 | 8.92% |
Christopher Goldfarb | 751 | 3.30% | 7 | 1.64% |
Ganesh Venkatesan | 570 | 2.51% | 15 | 3.52% |
Jiri Pirko | 470 | 2.07% | 10 | 2.35% |
Alexey Kuznetsov | 347 | 1.53% | 1 | 0.23% |
Alexander Duyck | 334 | 1.47% | 10 | 2.35% |
Bruce W Allan | 267 | 1.17% | 6 | 1.41% |
Nicholas Nunley | 224 | 0.98% | 3 | 0.70% |
Taku Izumi | 203 | 0.89% | 1 | 0.23% |
Ben Greear | 190 | 0.84% | 3 | 0.70% |
Emil Tantilov | 179 | 0.79% | 3 | 0.70% |
Stephen Hemminger | 149 | 0.65% | 9 | 2.11% |
Dirk Brandewie | 121 | 0.53% | 1 | 0.23% |
Dave Graham | 116 | 0.51% | 2 | 0.47% |
Patrick McHardy | 110 | 0.48% | 7 | 1.64% |
Michał Mirosław | 107 | 0.47% | 3 | 0.70% |
Vasily Averin | 105 | 0.46% | 3 | 0.70% |
Dean Nelson | 91 | 0.40% | 4 | 0.94% |
Rafael J. Wysocki | 84 | 0.37% | 2 | 0.47% |
Anton Blanchard | 66 | 0.29% | 1 | 0.23% |
David Decotigny | 58 | 0.25% | 1 | 0.23% |
Herbert Xu | 56 | 0.25% | 6 | 1.41% |
Peter Oruba | 56 | 0.25% | 1 | 0.23% |
Otto Estuardo Solares Cabrera | 54 | 0.24% | 1 | 0.23% |
yzhu1 | 53 | 0.23% | 1 | 0.23% |
Vaibhav Gupta | 52 | 0.23% | 1 | 0.23% |
Ajit Khaparde | 45 | 0.20% | 1 | 0.23% |
Arnaldo Carvalho de Melo | 39 | 0.17% | 8 | 1.88% |
Sabrina Dubroca | 28 | 0.12% | 1 | 0.23% |
Florian Fainelli | 27 | 0.12% | 3 | 0.70% |
Ian Campbell | 26 | 0.11% | 1 | 0.23% |
Eric Dumazet | 25 | 0.11% | 7 | 1.64% |
Andrew Morton | 24 | 0.11% | 5 | 1.17% |
Linas Vepstas | 24 | 0.11% | 4 | 0.94% |
David S. Miller | 23 | 0.10% | 4 | 0.94% |
Jarod Wilson | 23 | 0.10% | 1 | 0.23% |
François Romieu | 22 | 0.10% | 2 | 0.47% |
Linus Torvalds | 20 | 0.09% | 2 | 0.47% |
Vlad Yasevich | 20 | 0.09% | 1 | 0.23% |
Vladimir Davydov | 20 | 0.09% | 2 | 0.47% |
Milind Arun Choudhary | 19 | 0.08% | 1 | 0.23% |
Rusty Russell | 17 | 0.07% | 2 | 0.47% |
Nicolas Schichan | 15 | 0.07% | 1 | 0.23% |
Yan Burman | 15 | 0.07% | 1 | 0.23% |
Francesco Ruggeri | 15 | 0.07% | 1 | 0.23% |
Alexander Lobakin | 13 | 0.06% | 2 | 0.47% |
Mitch A Williams | 12 | 0.05% | 2 | 0.47% |
Adrian Bunk | 12 | 0.05% | 2 | 0.47% |
David Howells | 12 | 0.05% | 3 | 0.70% |
Wang Chen | 10 | 0.04% | 2 | 0.47% |
Ben Hutchings | 9 | 0.04% | 3 | 0.70% |
Christopher Leech | 9 | 0.04% | 1 | 0.23% |
Andre Detsch | 9 | 0.04% | 1 | 0.23% |
Dan Aloni | 9 | 0.04% | 1 | 0.23% |
Roel Kluin | 9 | 0.04% | 1 | 0.23% |
Jean Sacren | 8 | 0.04% | 2 | 0.47% |
Sebastian Andrzej Siewior | 8 | 0.04% | 1 | 0.23% |
Michael S. Tsirkin | 8 | 0.04% | 1 | 0.23% |
Yi Zou | 8 | 0.04% | 1 | 0.23% |
Al Viro | 7 | 0.03% | 2 | 0.47% |
Benoit Taine | 6 | 0.03% | 1 | 0.23% |
Dmitriy Vyukov | 6 | 0.03% | 1 | 0.23% |
Vincenzo Maffione | 6 | 0.03% | 1 | 0.23% |
Kees Cook | 5 | 0.02% | 1 | 0.23% |
Willem de Bruijn | 5 | 0.02% | 1 | 0.23% |
Andrei Emeltchenko | 4 | 0.02% | 1 | 0.23% |
Benjamin Herrenschmidt | 4 | 0.02% | 1 | 0.23% |
Américo Wang | 4 | 0.02% | 1 | 0.23% |
Matthew Wilcox | 3 | 0.01% | 1 | 0.23% |
Paul Gortmaker | 3 | 0.01% | 1 | 0.23% |
Venkatesh Srinivas | 3 | 0.01% | 1 | 0.23% |
Pavel Machek | 3 | 0.01% | 1 | 0.23% |
Anupam Chanda | 2 | 0.01% | 1 | 0.23% |
Jakub Kiciński | 2 | 0.01% | 1 | 0.23% |
Russell King | 2 | 0.01% | 1 | 0.23% |
Alexey Dobriyan | 2 | 0.01% | 1 | 0.23% |
Denis Efremov | 2 | 0.01% | 1 | 0.23% |
Harvey Harrison | 2 | 0.01% | 1 | 0.23% |
Hao Chen | 1 | 0.00% | 1 | 0.23% |
Heiner Kallweit | 1 | 0.00% | 1 | 0.23% |
Jason Yan | 1 | 0.00% | 1 | 0.23% |
Serhey Popovych | 1 | 0.00% | 1 | 0.23% |
Uwe Kleine-König | 1 | 0.00% | 1 | 0.23% |
Arnd Bergmann | 1 | 0.00% | 1 | 0.23% |
Masatake YAMATO | 1 | 0.00% | 1 | 0.23% |
Karsten Keil | 1 | 0.00% | 1 | 0.23% |
Arjan van de Ven | 1 | 0.00% | 1 | 0.23% |
Neil Horman | 1 | 0.00% | 1 | 0.23% |
Johannes Berg | 1 | 0.00% | 1 | 0.23% |
Total | 22750 | 426 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2006 Intel Corporation. */ #include "e1000.h" #include <net/ip6_checksum.h> #include <linux/io.h> #include <linux/prefetch.h> #include <linux/bitops.h> #include <linux/if_vlan.h> char e1000_driver_name[] = "e1000"; static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; /* e1000_pci_tbl - PCI Device ID Table * * Last entry must be all 0s * * Macro expands to... * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} */ static const struct pci_device_id e1000_pci_tbl[] = { INTEL_E1000_ETHERNET_DEVICE(0x1000), INTEL_E1000_ETHERNET_DEVICE(0x1001), INTEL_E1000_ETHERNET_DEVICE(0x1004), INTEL_E1000_ETHERNET_DEVICE(0x1008), INTEL_E1000_ETHERNET_DEVICE(0x1009), INTEL_E1000_ETHERNET_DEVICE(0x100C), INTEL_E1000_ETHERNET_DEVICE(0x100D), INTEL_E1000_ETHERNET_DEVICE(0x100E), INTEL_E1000_ETHERNET_DEVICE(0x100F), INTEL_E1000_ETHERNET_DEVICE(0x1010), INTEL_E1000_ETHERNET_DEVICE(0x1011), INTEL_E1000_ETHERNET_DEVICE(0x1012), INTEL_E1000_ETHERNET_DEVICE(0x1013), INTEL_E1000_ETHERNET_DEVICE(0x1014), INTEL_E1000_ETHERNET_DEVICE(0x1015), INTEL_E1000_ETHERNET_DEVICE(0x1016), INTEL_E1000_ETHERNET_DEVICE(0x1017), INTEL_E1000_ETHERNET_DEVICE(0x1018), INTEL_E1000_ETHERNET_DEVICE(0x1019), INTEL_E1000_ETHERNET_DEVICE(0x101A), INTEL_E1000_ETHERNET_DEVICE(0x101D), INTEL_E1000_ETHERNET_DEVICE(0x101E), INTEL_E1000_ETHERNET_DEVICE(0x1026), INTEL_E1000_ETHERNET_DEVICE(0x1027), INTEL_E1000_ETHERNET_DEVICE(0x1028), INTEL_E1000_ETHERNET_DEVICE(0x1075), INTEL_E1000_ETHERNET_DEVICE(0x1076), INTEL_E1000_ETHERNET_DEVICE(0x1077), INTEL_E1000_ETHERNET_DEVICE(0x1078), INTEL_E1000_ETHERNET_DEVICE(0x1079), INTEL_E1000_ETHERNET_DEVICE(0x107A), INTEL_E1000_ETHERNET_DEVICE(0x107B), INTEL_E1000_ETHERNET_DEVICE(0x107C), INTEL_E1000_ETHERNET_DEVICE(0x108A), INTEL_E1000_ETHERNET_DEVICE(0x1099), INTEL_E1000_ETHERNET_DEVICE(0x10B5), INTEL_E1000_ETHERNET_DEVICE(0x2E6E), /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); int e1000_up(struct e1000_adapter *adapter); void e1000_down(struct e1000_adapter *adapter); void e1000_reinit_locked(struct e1000_adapter *adapter); void e1000_reset(struct e1000_adapter *adapter); int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); void e1000_free_all_tx_resources(struct e1000_adapter *adapter); void e1000_free_all_rx_resources(struct e1000_adapter *adapter); static int e1000_setup_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *txdr); static int e1000_setup_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rxdr); static void e1000_free_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring); static void e1000_free_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); void e1000_update_stats(struct e1000_adapter *adapter); static int e1000_init_module(void); static void e1000_exit_module(void); static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); static void e1000_remove(struct pci_dev *pdev); static int e1000_alloc_queues(struct e1000_adapter *adapter); static int e1000_sw_init(struct e1000_adapter *adapter); int e1000_open(struct net_device *netdev); int e1000_close(struct net_device *netdev); static void e1000_configure_tx(struct e1000_adapter *adapter); static void e1000_configure_rx(struct e1000_adapter *adapter); static void e1000_setup_rctl(struct e1000_adapter *adapter); static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); static void e1000_clean_tx_ring(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring); static void e1000_clean_rx_ring(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring); static void e1000_set_rx_mode(struct net_device *netdev); static void e1000_update_phy_info_task(struct work_struct *work); static void e1000_watchdog(struct work_struct *work); static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); static int e1000_change_mtu(struct net_device *netdev, int new_mtu); static int e1000_set_mac(struct net_device *netdev, void *p); static irqreturn_t e1000_intr(int irq, void *data); static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring); static int e1000_clean(struct napi_struct *napi, int budget); static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do); static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do); static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count) { } static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count); static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count); static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); static void e1000_enter_82542_rst(struct e1000_adapter *adapter); static void e1000_leave_82542_rst(struct e1000_adapter *adapter); static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue); static void e1000_reset_task(struct work_struct *work); static void e1000_smartspeed(struct e1000_adapter *adapter); static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb); static bool e1000_vlan_used(struct e1000_adapter *adapter); static void e1000_vlan_mode(struct net_device *netdev, netdev_features_t features); static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, bool filter_on); static int e1000_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid); static int e1000_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid); static void e1000_restore_vlan(struct e1000_adapter *adapter); static int __maybe_unused e1000_suspend(struct device *dev); static int __maybe_unused e1000_resume(struct device *dev); static void e1000_shutdown(struct pci_dev *pdev); #ifdef CONFIG_NET_POLL_CONTROLLER /* for netdump / net console */ static void e1000_netpoll (struct net_device *netdev); #endif #define COPYBREAK_DEFAULT 256 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; module_param(copybreak, uint, 0644); MODULE_PARM_DESC(copybreak, "Maximum size of packet that is copied to a new buffer on receive"); static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); static void e1000_io_resume(struct pci_dev *pdev); static const struct pci_error_handlers e1000_err_handler = { .error_detected = e1000_io_error_detected, .slot_reset = e1000_io_slot_reset, .resume = e1000_io_resume, }; static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume); static struct pci_driver e1000_driver = { .name = e1000_driver_name, .id_table = e1000_pci_tbl, .probe = e1000_probe, .remove = e1000_remove, .driver = { .pm = &e1000_pm_ops, }, .shutdown = e1000_shutdown, .err_handler = &e1000_err_handler }; MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); MODULE_LICENSE("GPL v2"); #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); /** * e1000_get_hw_dev - helper function for getting netdev * @hw: pointer to HW struct * * return device used by hardware layer to print debugging information * **/ struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->back; return adapter->netdev; } /** * e1000_init_module - Driver Registration Routine * * e1000_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init e1000_init_module(void) { int ret; pr_info("%s\n", e1000_driver_string); pr_info("%s\n", e1000_copyright); ret = pci_register_driver(&e1000_driver); if (copybreak != COPYBREAK_DEFAULT) { if (copybreak == 0) pr_info("copybreak disabled\n"); else pr_info("copybreak enabled for " "packets <= %u bytes\n", copybreak); } return ret; } module_init(e1000_init_module); /** * e1000_exit_module - Driver Exit Cleanup Routine * * e1000_exit_module is called just before the driver is removed * from memory. **/ static void __exit e1000_exit_module(void) { pci_unregister_driver(&e1000_driver); } module_exit(e1000_exit_module); static int e1000_request_irq(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; irq_handler_t handler = e1000_intr; int irq_flags = IRQF_SHARED; int err; err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, netdev); if (err) { e_err(probe, "Unable to allocate interrupt Error: %d\n", err); } return err; } static void e1000_free_irq(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; free_irq(adapter->pdev->irq, netdev); } /** * e1000_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void e1000_irq_disable(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; ew32(IMC, ~0); E1000_WRITE_FLUSH(); synchronize_irq(adapter->pdev->irq); } /** * e1000_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static void e1000_irq_enable(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; ew32(IMS, IMS_ENABLE_MASK); E1000_WRITE_FLUSH(); } static void e1000_update_mng_vlan(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u16 vid = hw->mng_cookie.vlan_id; u16 old_vid = adapter->mng_vlan_id; if (!e1000_vlan_used(adapter)) return; if (!test_bit(vid, adapter->active_vlans)) { if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); adapter->mng_vlan_id = vid; } else { adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; } if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid) && !test_bit(old_vid, adapter->active_vlans)) e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); } else { adapter->mng_vlan_id = vid; } } static void e1000_init_manageability(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; if (adapter->en_mng_pt) { u32 manc = er32(MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); ew32(MANC, manc); } } static void e1000_release_manageability(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; if (adapter->en_mng_pt) { u32 manc = er32(MANC); /* re-enable hardware interception of ARP */ manc |= E1000_MANC_ARP_EN; ew32(MANC, manc); } } /** * e1000_configure - configure the hardware for RX and TX * @adapter: private board structure **/ static void e1000_configure(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; e1000_set_rx_mode(netdev); e1000_restore_vlan(adapter); e1000_init_manageability(adapter); e1000_configure_tx(adapter); e1000_setup_rctl(adapter); e1000_configure_rx(adapter); /* call E1000_DESC_UNUSED which always leaves * at least 1 descriptor unused to make sure * next_to_use != next_to_clean */ for (i = 0; i < adapter->num_rx_queues; i++) { struct e1000_rx_ring *ring = &adapter->rx_ring[i]; adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); } } int e1000_up(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; /* hardware has been reset, we need to reload some things */ e1000_configure(adapter); clear_bit(__E1000_DOWN, &adapter->flags); napi_enable(&adapter->napi); e1000_irq_enable(adapter); netif_wake_queue(adapter->netdev); /* fire a link change interrupt to start the watchdog */ ew32(ICS, E1000_ICS_LSC); return 0; } /** * e1000_power_up_phy - restore link in case the phy was powered down * @adapter: address of board private structure * * The phy may be powered down to save power and turn off link when the * driver is unloaded and wake on lan is not enabled (among others) * *** this routine MUST be followed by a call to e1000_reset *** **/ void e1000_power_up_phy(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 mii_reg = 0; /* Just clear the power down bit to wake the phy back up */ if (hw->media_type == e1000_media_type_copper) { /* according to the manual, the phy will retain its * settings across a power-down/up cycle */ e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); mii_reg &= ~MII_CR_POWER_DOWN; e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); } } static void e1000_power_down_phy(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; /* Power down the PHY so no link is implied when interface is down * * The PHY cannot be powered down if any of the following is true * * (a) WoL is enabled * (b) AMT is active * (c) SoL/IDER session is active */ if (!adapter->wol && hw->mac_type >= e1000_82540 && hw->media_type == e1000_media_type_copper) { u16 mii_reg = 0; switch (hw->mac_type) { case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_ce4100: case e1000_82546_rev_3: case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if (er32(MANC) & E1000_MANC_SMBUS_EN) goto out; break; default: goto out; } e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); mii_reg |= MII_CR_POWER_DOWN; e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); msleep(1); } out: return; } static void e1000_down_and_stop(struct e1000_adapter *adapter) { set_bit(__E1000_DOWN, &adapter->flags); cancel_delayed_work_sync(&adapter->watchdog_task); /* * Since the watchdog task can reschedule other tasks, we should cancel * it first, otherwise we can run into the situation when a work is * still running after the adapter has been turned down. */ cancel_delayed_work_sync(&adapter->phy_info_task); cancel_delayed_work_sync(&adapter->fifo_stall_task); /* Only kill reset task if adapter is not resetting */ if (!test_bit(__E1000_RESETTING, &adapter->flags)) cancel_work_sync(&adapter->reset_task); } void e1000_down(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 rctl, tctl; /* disable receives in the hardware */ rctl = er32(RCTL); ew32(RCTL, rctl & ~E1000_RCTL_EN); /* flush and sleep below */ netif_tx_disable(netdev); /* disable transmits in the hardware */ tctl = er32(TCTL); tctl &= ~E1000_TCTL_EN; ew32(TCTL, tctl); /* flush both disables and wait for them to finish */ E1000_WRITE_FLUSH(); msleep(10); /* Set the carrier off after transmits have been disabled in the * hardware, to avoid race conditions with e1000_watchdog() (which * may be running concurrently to us, checking for the carrier * bit to decide whether it should enable transmits again). Such * a race condition would result into transmission being disabled * in the hardware until the next IFF_DOWN+IFF_UP cycle. */ netif_carrier_off(netdev); napi_disable(&adapter->napi); e1000_irq_disable(adapter); /* Setting DOWN must be after irq_disable to prevent * a screaming interrupt. Setting DOWN also prevents * tasks from rescheduling. */ e1000_down_and_stop(adapter); adapter->link_speed = 0; adapter->link_duplex = 0; e1000_reset(adapter); e1000_clean_all_tx_rings(adapter); e1000_clean_all_rx_rings(adapter); } void e1000_reinit_locked(struct e1000_adapter *adapter) { while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) msleep(1); /* only run the task if not already down */ if (!test_bit(__E1000_DOWN, &adapter->flags)) { e1000_down(adapter); e1000_up(adapter); } clear_bit(__E1000_RESETTING, &adapter->flags); } void e1000_reset(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 pba = 0, tx_space, min_tx_space, min_rx_space; bool legacy_pba_adjust = false; u16 hwm; /* Repartition Pba for greater than 9k mtu * To take effect CTRL.RST is required. */ switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: case e1000_82540: case e1000_82541: case e1000_82541_rev_2: legacy_pba_adjust = true; pba = E1000_PBA_48K; break; case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_ce4100: case e1000_82546_rev_3: pba = E1000_PBA_48K; break; case e1000_82547: case e1000_82547_rev_2: legacy_pba_adjust = true; pba = E1000_PBA_30K; break; case e1000_undefined: case e1000_num_macs: break; } if (legacy_pba_adjust) { if (hw->max_frame_size > E1000_RXBUFFER_8192) pba -= 8; /* allocate more FIFO for Tx */ if (hw->mac_type == e1000_82547) { adapter->tx_fifo_head = 0; adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; adapter->tx_fifo_size = (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; atomic_set(&adapter->tx_fifo_stall, 0); } } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { /* adjust PBA for jumbo frames */ ew32(PBA, pba); /* To maintain wire speed transmits, the Tx FIFO should be * large enough to accommodate two full transmit packets, * rounded up to the next 1KB and expressed in KB. Likewise, * the Rx FIFO should be large enough to accommodate at least * one full receive packet and is similarly rounded up and * expressed in KB. */ pba = er32(PBA); /* upper 16 bits has Tx packet buffer allocation size in KB */ tx_space = pba >> 16; /* lower 16 bits has Rx packet buffer allocation size in KB */ pba &= 0xffff; /* the Tx fifo also stores 16 bytes of information about the Tx * but don't include ethernet FCS because hardware appends it */ min_tx_space = (hw->max_frame_size + sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; min_tx_space = ALIGN(min_tx_space, 1024); min_tx_space >>= 10; /* software strips receive CRC, so leave room for it */ min_rx_space = hw->max_frame_size; min_rx_space = ALIGN(min_rx_space, 1024); min_rx_space >>= 10; /* If current Tx allocation is less than the min Tx FIFO size, * and the min Tx FIFO size is less than the current Rx FIFO * allocation, take space away from current Rx allocation */ if (tx_space < min_tx_space && ((min_tx_space - tx_space) < pba)) { pba = pba - (min_tx_space - tx_space); /* PCI/PCIx hardware has PBA alignment constraints */ switch (hw->mac_type) { case e1000_82545 ... e1000_82546_rev_3: pba &= ~(E1000_PBA_8K - 1); break; default: break; } /* if short on Rx space, Rx wins and must trump Tx * adjustment or use Early Receive if available */ if (pba < min_rx_space) pba = min_rx_space; } } ew32(PBA, pba); /* flow control settings: * The high water mark must be low enough to fit one full frame * (or the size used for early receive) above it in the Rx FIFO. * Set it to the lower of: * - 90% of the Rx FIFO size, and * - the full Rx FIFO size minus the early receive size (for parts * with ERT support assuming ERT set to E1000_ERT_2048), or * - the full Rx FIFO size minus one full frame */ hwm = min(((pba << 10) * 9 / 10), ((pba << 10) - hw->max_frame_size)); hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ hw->fc_low_water = hw->fc_high_water - 8; hw->fc_pause_time = E1000_FC_PAUSE_TIME; hw->fc_send_xon = 1; hw->fc = hw->original_fc; /* Allow time for pending master requests to run */ e1000_reset_hw(hw); if (hw->mac_type >= e1000_82544) ew32(WUC, 0); if (e1000_init_hw(hw)) e_dev_err("Hardware Error\n"); e1000_update_mng_vlan(adapter); /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ if (hw->mac_type >= e1000_82544 && hw->autoneg == 1 && hw->autoneg_advertised == ADVERTISE_1000_FULL) { u32 ctrl = er32(CTRL); /* clear phy power management bit if we are in gig only mode, * which if enabled will attempt negotiation to 100Mb, which * can cause a loss of link at power off or driver unload */ ctrl &= ~E1000_CTRL_SWDPIN3; ew32(CTRL, ctrl); } /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ ew32(VET, ETHERNET_IEEE_VLAN_TYPE); e1000_reset_adaptive(hw); e1000_phy_get_info(hw, &adapter->phy_info); e1000_release_manageability(adapter); } /* Dump the eeprom for users having checksum issues */ static void e1000_dump_eeprom(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct ethtool_eeprom eeprom; const struct ethtool_ops *ops = netdev->ethtool_ops; u8 *data; int i; u16 csum_old, csum_new = 0; eeprom.len = ops->get_eeprom_len(netdev); eeprom.offset = 0; data = kmalloc(eeprom.len, GFP_KERNEL); if (!data) return; ops->get_eeprom(netdev, &eeprom, data); csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) csum_new += data[i] + (data[i + 1] << 8); csum_new = EEPROM_SUM - csum_new; pr_err("/*********************/\n"); pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); pr_err("Calculated : 0x%04x\n", csum_new); pr_err("Offset Values\n"); pr_err("======== ======\n"); print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); pr_err("Include this output when contacting your support provider.\n"); pr_err("This is not a software error! Something bad happened to\n"); pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); pr_err("result in further problems, possibly loss of data,\n"); pr_err("corruption or system hangs!\n"); pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); pr_err("which is invalid and requires you to set the proper MAC\n"); pr_err("address manually before continuing to enable this network\n"); pr_err("device. Please inspect the EEPROM dump and report the\n"); pr_err("issue to your hardware vendor or Intel Customer Support.\n"); pr_err("/*********************/\n"); kfree(data); } /** * e1000_is_need_ioport - determine if an adapter needs ioport resources or not * @pdev: PCI device information struct * * Return true if an adapter needs ioport resources **/ static int e1000_is_need_ioport(struct pci_dev *pdev) { switch (pdev->device) { case E1000_DEV_ID_82540EM: case E1000_DEV_ID_82540EM_LOM: case E1000_DEV_ID_82540EP: case E1000_DEV_ID_82540EP_LOM: case E1000_DEV_ID_82540EP_LP: case E1000_DEV_ID_82541EI: case E1000_DEV_ID_82541EI_MOBILE: case E1000_DEV_ID_82541ER: case E1000_DEV_ID_82541ER_LOM: case E1000_DEV_ID_82541GI: case E1000_DEV_ID_82541GI_LF: case E1000_DEV_ID_82541GI_MOBILE: case E1000_DEV_ID_82544EI_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82544GC_COPPER: case E1000_DEV_ID_82544GC_LOM: case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82545EM_FIBER: case E1000_DEV_ID_82546EB_COPPER: case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: return true; default: return false; } } static netdev_features_t e1000_fix_features(struct net_device *netdev, netdev_features_t features) { /* Since there is no support for separate Rx/Tx vlan accel * enable/disable make sure Tx flag is always in same state as Rx. */ if (features & NETIF_F_HW_VLAN_CTAG_RX) features |= NETIF_F_HW_VLAN_CTAG_TX; else features &= ~NETIF_F_HW_VLAN_CTAG_TX; return features; } static int e1000_set_features(struct net_device *netdev, netdev_features_t features) { struct e1000_adapter *adapter = netdev_priv(netdev); netdev_features_t changed = features ^ netdev->features; if (changed & NETIF_F_HW_VLAN_CTAG_RX) e1000_vlan_mode(netdev, features); if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) return 0; netdev->features = features; adapter->rx_csum = !!(features & NETIF_F_RXCSUM); if (netif_running(netdev)) e1000_reinit_locked(adapter); else e1000_reset(adapter); return 1; } static const struct net_device_ops e1000_netdev_ops = { .ndo_open = e1000_open, .ndo_stop = e1000_close, .ndo_start_xmit = e1000_xmit_frame, .ndo_set_rx_mode = e1000_set_rx_mode, .ndo_set_mac_address = e1000_set_mac, .ndo_tx_timeout = e1000_tx_timeout, .ndo_change_mtu = e1000_change_mtu, .ndo_eth_ioctl = e1000_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = e1000_netpoll, #endif .ndo_fix_features = e1000_fix_features, .ndo_set_features = e1000_set_features, }; /** * e1000_init_hw_struct - initialize members of hw struct * @adapter: board private struct * @hw: structure used by e1000_hw.c * * Factors out initialization of the e1000_hw struct to its own function * that can be called very early at init (just after struct allocation). * Fields are initialized based on PCI device information and * OS network device settings (MTU size). * Returns negative error codes if MAC type setup fails. */ static int e1000_init_hw_struct(struct e1000_adapter *adapter, struct e1000_hw *hw) { struct pci_dev *pdev = adapter->pdev; /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; hw->revision_id = pdev->revision; pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); hw->max_frame_size = adapter->netdev->mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; /* identify the MAC */ if (e1000_set_mac_type(hw)) { e_err(probe, "Unknown MAC Type\n"); return -EIO; } switch (hw->mac_type) { default: break; case e1000_82541: case e1000_82547: case e1000_82541_rev_2: case e1000_82547_rev_2: hw->phy_init_script = 1; break; } e1000_set_media_type(hw); e1000_get_bus_info(hw); hw->wait_autoneg_complete = false; hw->tbi_compatibility_en = true; hw->adaptive_ifs = true; /* Copper options */ if (hw->media_type == e1000_media_type_copper) { hw->mdix = AUTO_ALL_MODES; hw->disable_polarity_correction = false; hw->master_slave = E1000_MASTER_SLAVE; } return 0; } /** * e1000_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in e1000_pci_tbl * * Returns 0 on success, negative on failure * * e1000_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct e1000_adapter *adapter = NULL; struct e1000_hw *hw; static int cards_found; static int global_quad_port_a; /* global ksp3 port a indication */ int i, err, pci_using_dac; u16 eeprom_data = 0; u16 tmp = 0; u16 eeprom_apme_mask = E1000_EEPROM_APME; int bars, need_ioport; bool disable_dev = false; /* do not allocate ioport bars when not needed */ need_ioport = e1000_is_need_ioport(pdev); if (need_ioport) { bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); err = pci_enable_device(pdev); } else { bars = pci_select_bars(pdev, IORESOURCE_MEM); err = pci_enable_device_mem(pdev); } if (err) return err; err = pci_request_selected_regions(pdev, bars, e1000_driver_name); if (err) goto err_pci_reg; pci_set_master(pdev); err = pci_save_state(pdev); if (err) goto err_alloc_etherdev; err = -ENOMEM; netdev = alloc_etherdev(sizeof(struct e1000_adapter)); if (!netdev) goto err_alloc_etherdev; SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); adapter->bars = bars; adapter->need_ioport = need_ioport; hw = &adapter->hw; hw->back = adapter; err = -EIO; hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); if (!hw->hw_addr) goto err_ioremap; if (adapter->need_ioport) { for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) { if (pci_resource_len(pdev, i) == 0) continue; if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { hw->io_base = pci_resource_start(pdev, i); break; } } } /* make ready for any if (hw->...) below */ err = e1000_init_hw_struct(adapter, hw); if (err) goto err_sw_init; /* there is a workaround being applied below that limits * 64-bit DMA addresses to 64-bit hardware. There are some * 32-bit adapters that Tx hang when given 64-bit DMA addresses */ pci_using_dac = 0; if ((hw->bus_type == e1000_bus_type_pcix) && !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { pci_using_dac = 1; } else { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { pr_err("No usable DMA config, aborting\n"); goto err_dma; } } netdev->netdev_ops = &e1000_netdev_ops; e1000_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); adapter->bd_number = cards_found; /* setup the private structure */ err = e1000_sw_init(adapter); if (err) goto err_sw_init; err = -EIO; if (hw->mac_type == e1000_ce4100) { hw->ce4100_gbe_mdio_base_virt = ioremap(pci_resource_start(pdev, BAR_1), pci_resource_len(pdev, BAR_1)); if (!hw->ce4100_gbe_mdio_base_virt) goto err_mdio_ioremap; } if (hw->mac_type >= e1000_82543) { netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_CTAG_RX; netdev->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_FILTER; } if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_82547)) netdev->hw_features |= NETIF_F_TSO; netdev->priv_flags |= IFF_SUPP_NOFCS; netdev->features |= netdev->hw_features; netdev->hw_features |= (NETIF_F_RXCSUM | NETIF_F_RXALL | NETIF_F_RXFCS); if (pci_using_dac) { netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= NETIF_F_HIGHDMA; } netdev->vlan_features |= (NETIF_F_TSO | NETIF_F_HW_CSUM | NETIF_F_SG); /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) netdev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 46 - 16110 */ netdev->min_mtu = ETH_ZLEN - ETH_HLEN; netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); /* initialize eeprom parameters */ if (e1000_init_eeprom_params(hw)) { e_err(probe, "EEPROM initialization failed\n"); goto err_eeprom; } /* before reading the EEPROM, reset the controller to * put the device in a known good starting state */ e1000_reset_hw(hw); /* make sure the EEPROM is good */ if (e1000_validate_eeprom_checksum(hw) < 0) { e_err(probe, "The EEPROM Checksum Is Not Valid\n"); e1000_dump_eeprom(adapter); /* set MAC address to all zeroes to invalidate and temporary * disable this device for the user. This blocks regular * traffic while still permitting ethtool ioctls from reaching * the hardware as well as allowing the user to run the * interface after manually setting a hw addr using * `ip set address` */ memset(hw->mac_addr, 0, netdev->addr_len); } else { /* copy the MAC address out of the EEPROM */ if (e1000_read_mac_addr(hw)) e_err(probe, "EEPROM Read Error\n"); } /* don't block initialization here due to bad MAC address */ eth_hw_addr_set(netdev, hw->mac_addr); if (!is_valid_ether_addr(netdev->dev_addr)) e_err(probe, "Invalid MAC Address\n"); INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); INIT_DELAYED_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task); INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); INIT_WORK(&adapter->reset_task, e1000_reset_task); e1000_check_options(adapter); /* Initial Wake on LAN setting * If APM wake is enabled in the EEPROM, * enable the ACPI Magic Packet filter */ switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: break; case e1000_82544: e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); eeprom_apme_mask = E1000_EEPROM_82544_APM; break; case e1000_82546: case e1000_82546_rev_3: if (er32(STATUS) & E1000_STATUS_FUNC_1) { e1000_read_eeprom(hw, EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); break; } fallthrough; default: e1000_read_eeprom(hw, EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; } if (eeprom_data & eeprom_apme_mask) adapter->eeprom_wol |= E1000_WUFC_MAG; /* now that we have the eeprom settings, apply the special cases * where the eeprom may be wrong or the board simply won't support * wake on lan on a particular port */ switch (pdev->device) { case E1000_DEV_ID_82546GB_PCIE: adapter->eeprom_wol = 0; break; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (er32(STATUS) & E1000_STATUS_FUNC_1) adapter->eeprom_wol = 0; break; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) adapter->eeprom_wol = 0; else adapter->quad_port_a = true; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; } /* initialize the wol settings based on the eeprom settings */ adapter->wol = adapter->eeprom_wol; device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); /* Auto detect PHY address */ if (hw->mac_type == e1000_ce4100) { for (i = 0; i < 32; i++) { hw->phy_addr = i; e1000_read_phy_reg(hw, PHY_ID2, &tmp); if (tmp != 0 && tmp != 0xFF) break; } if (i >= 32) goto err_eeprom; } /* reset the hardware with the new settings */ e1000_reset(adapter); strcpy(netdev->name, "eth%d"); err = register_netdev(netdev); if (err) goto err_register; e1000_vlan_filter_on_off(adapter, false); /* print bus type/speed/width info */ e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), ((hw->bus_speed == e1000_bus_speed_133) ? 133 : (hw->bus_speed == e1000_bus_speed_120) ? 120 : (hw->bus_speed == e1000_bus_speed_100) ? 100 : (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), netdev->dev_addr); /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); cards_found++; return 0; err_register: err_eeprom: e1000_phy_hw_reset(hw); if (hw->flash_address) iounmap(hw->flash_address); kfree(adapter->tx_ring); kfree(adapter->rx_ring); err_dma: err_sw_init: err_mdio_ioremap: iounmap(hw->ce4100_gbe_mdio_base_virt); iounmap(hw->hw_addr); err_ioremap: disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); free_netdev(netdev); err_alloc_etherdev: pci_release_selected_regions(pdev, bars); err_pci_reg: if (!adapter || disable_dev) pci_disable_device(pdev); return err; } /** * e1000_remove - Device Removal Routine * @pdev: PCI device information struct * * e1000_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. That could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void e1000_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; bool disable_dev; e1000_down_and_stop(adapter); e1000_release_manageability(adapter); unregister_netdev(netdev); e1000_phy_hw_reset(hw); kfree(adapter->tx_ring); kfree(adapter->rx_ring); if (hw->mac_type == e1000_ce4100) iounmap(hw->ce4100_gbe_mdio_base_virt); iounmap(hw->hw_addr); if (hw->flash_address) iounmap(hw->flash_address); pci_release_selected_regions(pdev, adapter->bars); disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); free_netdev(netdev); if (disable_dev) pci_disable_device(pdev); } /** * e1000_sw_init - Initialize general software structures (struct e1000_adapter) * @adapter: board private structure to initialize * * e1000_sw_init initializes the Adapter private data structure. * e1000_init_hw_struct MUST be called before this function **/ static int e1000_sw_init(struct e1000_adapter *adapter) { adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; adapter->num_tx_queues = 1; adapter->num_rx_queues = 1; if (e1000_alloc_queues(adapter)) { e_err(probe, "Unable to allocate memory for queues\n"); return -ENOMEM; } /* Explicitly disable IRQ since the NIC can be in any state. */ e1000_irq_disable(adapter); spin_lock_init(&adapter->stats_lock); set_bit(__E1000_DOWN, &adapter->flags); return 0; } /** * e1000_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * * We allocate one ring per queue at run-time since we don't know the * number of queues at compile-time. **/ static int e1000_alloc_queues(struct e1000_adapter *adapter) { adapter->tx_ring = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); if (!adapter->tx_ring) return -ENOMEM; adapter->rx_ring = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); if (!adapter->rx_ring) { kfree(adapter->tx_ring); return -ENOMEM; } return E1000_SUCCESS; } /** * e1000_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog task is started, * and the stack is notified that the interface is ready. **/ int e1000_open(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int err; /* disallow open during test */ if (test_bit(__E1000_TESTING, &adapter->flags)) return -EBUSY; netif_carrier_off(netdev); /* allocate transmit descriptors */ err = e1000_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = e1000_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; e1000_power_up_phy(adapter); adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; if ((hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { e1000_update_mng_vlan(adapter); } /* before we allocate an interrupt, we must be ready to handle it. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt * as soon as we call pci_request_irq, so we have to setup our * clean_rx handler before we do so. */ e1000_configure(adapter); err = e1000_request_irq(adapter); if (err) goto err_req_irq; /* From here on the code is the same as e1000_up() */ clear_bit(__E1000_DOWN, &adapter->flags); napi_enable(&adapter->napi); e1000_irq_enable(adapter); netif_start_queue(netdev); /* fire a link status change interrupt to start the watchdog */ ew32(ICS, E1000_ICS_LSC); return E1000_SUCCESS; err_req_irq: e1000_power_down_phy(adapter); e1000_free_all_rx_resources(adapter); err_setup_rx: e1000_free_all_tx_resources(adapter); err_setup_tx: e1000_reset(adapter); return err; } /** * e1000_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ int e1000_close(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int count = E1000_CHECK_RESET_COUNT; while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--) usleep_range(10000, 20000); WARN_ON(count < 0); /* signal that we're down so that the reset task will no longer run */ set_bit(__E1000_DOWN, &adapter->flags); clear_bit(__E1000_RESETTING, &adapter->flags); e1000_down(adapter); e1000_power_down_phy(adapter); e1000_free_irq(adapter); e1000_free_all_tx_resources(adapter); e1000_free_all_rx_resources(adapter); /* kill manageability vlan ID if supported, but not if a vlan with * the same ID is registered on the host OS (let 8021q kill it) */ if ((hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), adapter->mng_vlan_id); } return 0; } /** * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary * @adapter: address of board private structure * @start: address of beginning of memory * @len: length of memory **/ static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, unsigned long len) { struct e1000_hw *hw = &adapter->hw; unsigned long begin = (unsigned long)start; unsigned long end = begin + len; /* First rev 82545 and 82546 need to not allow any memory * write location to cross 64k boundary due to errata 23 */ if (hw->mac_type == e1000_82545 || hw->mac_type == e1000_ce4100 || hw->mac_type == e1000_82546) { return ((begin ^ (end - 1)) >> 16) == 0; } return true; } /** * e1000_setup_tx_resources - allocate Tx resources (Descriptors) * @adapter: board private structure * @txdr: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ static int e1000_setup_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *txdr) { struct pci_dev *pdev = adapter->pdev; int size; size = sizeof(struct e1000_tx_buffer) * txdr->count; txdr->buffer_info = vzalloc(size); if (!txdr->buffer_info) return -ENOMEM; /* round up to nearest 4K */ txdr->size = txdr->count * sizeof(struct e1000_tx_desc); txdr->size = ALIGN(txdr->size, 4096); txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, GFP_KERNEL); if (!txdr->desc) { setup_tx_desc_die: vfree(txdr->buffer_info); return -ENOMEM; } /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { void *olddesc = txdr->desc; dma_addr_t olddma = txdr->dma; e_err(tx_err, "txdr align check failed: %u bytes at %p\n", txdr->size, txdr->desc); /* Try again, without freeing the previous */ txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, GFP_KERNEL); /* Failed allocation, critical failure */ if (!txdr->desc) { dma_free_coherent(&pdev->dev, txdr->size, olddesc, olddma); goto setup_tx_desc_die; } if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { /* give up */ dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, txdr->dma); dma_free_coherent(&pdev->dev, txdr->size, olddesc, olddma); e_err(probe, "Unable to allocate aligned memory " "for the transmit descriptor ring\n"); vfree(txdr->buffer_info); return -ENOMEM; } else { /* Free old allocation, new allocation was successful */ dma_free_coherent(&pdev->dev, txdr->size, olddesc, olddma); } } memset(txdr->desc, 0, txdr->size); txdr->next_to_use = 0; txdr->next_to_clean = 0; return 0; } /** * e1000_setup_all_tx_resources - wrapper to allocate Tx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure **/ int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_tx_queues; i++) { err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); if (err) { e_err(probe, "Allocation for Tx Queue %u failed\n", i); for (i-- ; i >= 0; i--) e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); break; } } return err; } /** * e1000_configure_tx - Configure 8254x Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void e1000_configure_tx(struct e1000_adapter *adapter) { u64 tdba; struct e1000_hw *hw = &adapter->hw; u32 tdlen, tctl, tipg; u32 ipgr1, ipgr2; /* Setup the HW Tx Head and Tail descriptor pointers */ switch (adapter->num_tx_queues) { case 1: default: tdba = adapter->tx_ring[0].dma; tdlen = adapter->tx_ring[0].count * sizeof(struct e1000_tx_desc); ew32(TDLEN, tdlen); ew32(TDBAH, (tdba >> 32)); ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); ew32(TDT, 0); ew32(TDH, 0); adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); break; } /* Set the default values for the Tx Inter Packet Gap timer */ if ((hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes)) tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else tipg = DEFAULT_82543_TIPG_IPGT_COPPER; switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: tipg = DEFAULT_82542_TIPG_IPGT; ipgr1 = DEFAULT_82542_TIPG_IPGR1; ipgr2 = DEFAULT_82542_TIPG_IPGR2; break; default: ipgr1 = DEFAULT_82543_TIPG_IPGR1; ipgr2 = DEFAULT_82543_TIPG_IPGR2; break; } tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; ew32(TIPG, tipg); /* Set the Tx Interrupt Delay register */ ew32(TIDV, adapter->tx_int_delay); if (hw->mac_type >= e1000_82540) ew32(TADV, adapter->tx_abs_int_delay); /* Program the Transmit Control Register */ tctl = er32(TCTL); tctl &= ~E1000_TCTL_CT; tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); e1000_config_collision_dist(hw); /* Setup Transmit Descriptor Settings for eop descriptor */ adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; /* only set IDE if we are delaying interrupts using the timers */ if (adapter->tx_int_delay) adapter->txd_cmd |= E1000_TXD_CMD_IDE; if (hw->mac_type < e1000_82543) adapter->txd_cmd |= E1000_TXD_CMD_RPS; else adapter->txd_cmd |= E1000_TXD_CMD_RS; /* Cache if we're 82544 running in PCI-X because we'll * need this to apply a workaround later in the send path. */ if (hw->mac_type == e1000_82544 && hw->bus_type == e1000_bus_type_pcix) adapter->pcix_82544 = true; ew32(TCTL, tctl); } /** * e1000_setup_rx_resources - allocate Rx resources (Descriptors) * @adapter: board private structure * @rxdr: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ static int e1000_setup_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rxdr) { struct pci_dev *pdev = adapter->pdev; int size, desc_len; size = sizeof(struct e1000_rx_buffer) * rxdr->count; rxdr->buffer_info = vzalloc(size); if (!rxdr->buffer_info) return -ENOMEM; desc_len = sizeof(struct e1000_rx_desc); /* Round up to nearest 4K */ rxdr->size = rxdr->count * desc_len; rxdr->size = ALIGN(rxdr->size, 4096); rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, GFP_KERNEL); if (!rxdr->desc) { setup_rx_desc_die: vfree(rxdr->buffer_info); return -ENOMEM; } /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { void *olddesc = rxdr->desc; dma_addr_t olddma = rxdr->dma; e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", rxdr->size, rxdr->desc); /* Try again, without freeing the previous */ rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, GFP_KERNEL); /* Failed allocation, critical failure */ if (!rxdr->desc) { dma_free_coherent(&pdev->dev, rxdr->size, olddesc, olddma); goto setup_rx_desc_die; } if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { /* give up */ dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, rxdr->dma); dma_free_coherent(&pdev->dev, rxdr->size, olddesc, olddma); e_err(probe, "Unable to allocate aligned memory for " "the Rx descriptor ring\n"); goto setup_rx_desc_die; } else { /* Free old allocation, new allocation was successful */ dma_free_coherent(&pdev->dev, rxdr->size, olddesc, olddma); } } memset(rxdr->desc, 0, rxdr->size); rxdr->next_to_clean = 0; rxdr->next_to_use = 0; rxdr->rx_skb_top = NULL; return 0; } /** * e1000_setup_all_rx_resources - wrapper to allocate Rx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure **/ int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); if (err) { e_err(probe, "Allocation for Rx Queue %u failed\n", i); for (i-- ; i >= 0; i--) e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); break; } } return err; } /** * e1000_setup_rctl - configure the receive control registers * @adapter: Board private structure **/ static void e1000_setup_rctl(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl; rctl = er32(RCTL); rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); if (hw->tbi_compatibility_on == 1) rctl |= E1000_RCTL_SBP; else rctl &= ~E1000_RCTL_SBP; if (adapter->netdev->mtu <= ETH_DATA_LEN) rctl &= ~E1000_RCTL_LPE; else rctl |= E1000_RCTL_LPE; /* Setup buffer sizes */ rctl &= ~E1000_RCTL_SZ_4096; rctl |= E1000_RCTL_BSEX; switch (adapter->rx_buffer_len) { case E1000_RXBUFFER_2048: default: rctl |= E1000_RCTL_SZ_2048; rctl &= ~E1000_RCTL_BSEX; break; case E1000_RXBUFFER_4096: rctl |= E1000_RCTL_SZ_4096; break; case E1000_RXBUFFER_8192: rctl |= E1000_RCTL_SZ_8192; break; case E1000_RXBUFFER_16384: rctl |= E1000_RCTL_SZ_16384; break; } /* This is useful for sniffing bad packets. */ if (adapter->netdev->features & NETIF_F_RXALL) { /* UPE and MPE will be handled by normal PROMISC logic * in e1000e_set_rx_mode */ rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ E1000_RCTL_BAM | /* RX All Bcast Pkts */ E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ E1000_RCTL_DPF | /* Allow filtered pause */ E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ /* Do not mess with E1000_CTRL_VME, it affects transmit as well, * and that breaks VLANs. */ } ew32(RCTL, rctl); } /** * e1000_configure_rx - Configure 8254x Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void e1000_configure_rx(struct e1000_adapter *adapter) { u64 rdba; struct e1000_hw *hw = &adapter->hw; u32 rdlen, rctl, rxcsum; if (adapter->netdev->mtu > ETH_DATA_LEN) { rdlen = adapter->rx_ring[0].count * sizeof(struct e1000_rx_desc); adapter->clean_rx = e1000_clean_jumbo_rx_irq; adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; } else { rdlen = adapter->rx_ring[0].count * sizeof(struct e1000_rx_desc); adapter->clean_rx = e1000_clean_rx_irq; adapter->alloc_rx_buf = e1000_alloc_rx_buffers; } /* disable receives while setting up the descriptors */ rctl = er32(RCTL); ew32(RCTL, rctl & ~E1000_RCTL_EN); /* set the Receive Delay Timer Register */ ew32(RDTR, adapter->rx_int_delay); if (hw->mac_type >= e1000_82540) { ew32(RADV, adapter->rx_abs_int_delay); if (adapter->itr_setting != 0) ew32(ITR, 1000000000 / (adapter->itr * 256)); } /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ switch (adapter->num_rx_queues) { case 1: default: rdba = adapter->rx_ring[0].dma; ew32(RDLEN, rdlen); ew32(RDBAH, (rdba >> 32)); ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); ew32(RDT, 0); ew32(RDH, 0); adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); break; } /* Enable 82543 Receive Checksum Offload for TCP and UDP */ if (hw->mac_type >= e1000_82543) { rxcsum = er32(RXCSUM); if (adapter->rx_csum) rxcsum |= E1000_RXCSUM_TUOFL; else /* don't need to clear IPPCSE as it defaults to 0 */ rxcsum &= ~E1000_RXCSUM_TUOFL; ew32(RXCSUM, rxcsum); } /* Enable Receives */ ew32(RCTL, rctl | E1000_RCTL_EN); } /** * e1000_free_tx_resources - Free Tx Resources per Queue * @adapter: board private structure * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ static void e1000_free_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { struct pci_dev *pdev = adapter->pdev; e1000_clean_tx_ring(adapter, tx_ring); vfree(tx_ring->buffer_info); tx_ring->buffer_info = NULL; dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * e1000_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ void e1000_free_all_tx_resources(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); } static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, struct e1000_tx_buffer *buffer_info, int budget) { if (buffer_info->dma) { if (buffer_info->mapped_as_page) dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, buffer_info->length, DMA_TO_DEVICE); else dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, buffer_info->length, DMA_TO_DEVICE); buffer_info->dma = 0; } if (buffer_info->skb) { napi_consume_skb(buffer_info->skb, budget); buffer_info->skb = NULL; } buffer_info->time_stamp = 0; /* buffer_info must be completely set up in the transmit path */ } /** * e1000_clean_tx_ring - Free Tx Buffers * @adapter: board private structure * @tx_ring: ring to be cleaned **/ static void e1000_clean_tx_ring(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { struct e1000_hw *hw = &adapter->hw; struct e1000_tx_buffer *buffer_info; unsigned long size; unsigned int i; /* Free all the Tx ring sk_buffs */ for (i = 0; i < tx_ring->count; i++) { buffer_info = &tx_ring->buffer_info[i]; e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0); } netdev_reset_queue(adapter->netdev); size = sizeof(struct e1000_tx_buffer) * tx_ring->count; memset(tx_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(tx_ring->desc, 0, tx_ring->size); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; tx_ring->last_tx_tso = false; writel(0, hw->hw_addr + tx_ring->tdh); writel(0, hw->hw_addr + tx_ring->tdt); } /** * e1000_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); } /** * e1000_free_rx_resources - Free Rx Resources * @adapter: board private structure * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ static void e1000_free_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { struct pci_dev *pdev = adapter->pdev; e1000_clean_rx_ring(adapter, rx_ring); vfree(rx_ring->buffer_info); rx_ring->buffer_info = NULL; dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * e1000_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ void e1000_free_all_rx_resources(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); } #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) static unsigned int e1000_frag_len(const struct e1000_adapter *a) { return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } static void *e1000_alloc_frag(const struct e1000_adapter *a) { unsigned int len = e1000_frag_len(a); u8 *data = netdev_alloc_frag(len); if (likely(data)) data += E1000_HEADROOM; return data; } /** * e1000_clean_rx_ring - Free Rx Buffers per Queue * @adapter: board private structure * @rx_ring: ring to free buffers from **/ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { struct e1000_hw *hw = &adapter->hw; struct e1000_rx_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; unsigned long size; unsigned int i; /* Free all the Rx netfrags */ for (i = 0; i < rx_ring->count; i++) { buffer_info = &rx_ring->buffer_info[i]; if (adapter->clean_rx == e1000_clean_rx_irq) { if (buffer_info->dma) dma_unmap_single(&pdev->dev, buffer_info->dma, adapter->rx_buffer_len, DMA_FROM_DEVICE); if (buffer_info->rxbuf.data) { skb_free_frag(buffer_info->rxbuf.data); buffer_info->rxbuf.data = NULL; } } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { if (buffer_info->dma) dma_unmap_page(&pdev->dev, buffer_info->dma, adapter->rx_buffer_len, DMA_FROM_DEVICE); if (buffer_info->rxbuf.page) { put_page(buffer_info->rxbuf.page); buffer_info->rxbuf.page = NULL; } } buffer_info->dma = 0; } /* there also may be some cached data from a chained receive */ napi_free_frags(&adapter->napi); rx_ring->rx_skb_top = NULL; size = sizeof(struct e1000_rx_buffer) * rx_ring->count; memset(rx_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(rx_ring->desc, 0, rx_ring->size); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; writel(0, hw->hw_addr + rx_ring->rdh); writel(0, hw->hw_addr + rx_ring->rdt); } /** * e1000_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); } /* The 82542 2.0 (revision 2) needs to have the receive unit in reset * and memory write and invalidate disabled for certain operations */ static void e1000_enter_82542_rst(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 rctl; e1000_pci_clear_mwi(hw); rctl = er32(RCTL); rctl |= E1000_RCTL_RST; ew32(RCTL, rctl); E1000_WRITE_FLUSH(); mdelay(5); if (netif_running(netdev)) e1000_clean_all_rx_rings(adapter); } static void e1000_leave_82542_rst(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 rctl; rctl = er32(RCTL); rctl &= ~E1000_RCTL_RST; ew32(RCTL, rctl); E1000_WRITE_FLUSH(); mdelay(5); if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) e1000_pci_set_mwi(hw); if (netif_running(netdev)) { /* No need to loop, because 82542 supports only 1 queue */ struct e1000_rx_ring *ring = &adapter->rx_ring[0]; e1000_configure_rx(adapter); adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); } } /** * e1000_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int e1000_set_mac(struct net_device *netdev, void *p) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; /* 82542 2.0 needs to be in reset to write receive address registers */ if (hw->mac_type == e1000_82542_rev2_0) e1000_enter_82542_rst(adapter); eth_hw_addr_set(netdev, addr->sa_data); memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); e1000_rar_set(hw, hw->mac_addr, 0); if (hw->mac_type == e1000_82542_rev2_0) e1000_leave_82542_rst(adapter); return 0; } /** * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_rx_mode entry point is called whenever the unicast or multicast * address lists or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper unicast, multicast, * promiscuous mode, and all-multi behavior. **/ static void e1000_set_rx_mode(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct netdev_hw_addr *ha; bool use_uc = false; u32 rctl; u32 hash_value; int i, rar_entries = E1000_RAR_ENTRIES; int mta_reg_count = E1000_NUM_MTA_REGISTERS; u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); if (!mcarray) return; /* Check for Promiscuous and All Multicast modes */ rctl = er32(RCTL); if (netdev->flags & IFF_PROMISC) { rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); rctl &= ~E1000_RCTL_VFE; } else { if (netdev->flags & IFF_ALLMULTI) rctl |= E1000_RCTL_MPE; else rctl &= ~E1000_RCTL_MPE; /* Enable VLAN filter if there is a VLAN */ if (e1000_vlan_used(adapter)) rctl |= E1000_RCTL_VFE; } if (netdev_uc_count(netdev) > rar_entries - 1) { rctl |= E1000_RCTL_UPE; } else if (!(netdev->flags & IFF_PROMISC)) { rctl &= ~E1000_RCTL_UPE; use_uc = true; } ew32(RCTL, rctl); /* 82542 2.0 needs to be in reset to write receive address registers */ if (hw->mac_type == e1000_82542_rev2_0) e1000_enter_82542_rst(adapter); /* load the first 14 addresses into the exact filters 1-14. Unicast * addresses take precedence to avoid disabling unicast filtering * when possible. * * RAR 0 is used for the station MAC address * if there are not 14 addresses, go ahead and clear the filters */ i = 1; if (use_uc) netdev_for_each_uc_addr(ha, netdev) { if (i == rar_entries) break; e1000_rar_set(hw, ha->addr, i++); } netdev_for_each_mc_addr(ha, netdev) { if (i == rar_entries) { /* load any remaining addresses into the hash table */ u32 hash_reg, hash_bit, mta; hash_value = e1000_hash_mc_addr(hw, ha->addr); hash_reg = (hash_value >> 5) & 0x7F; hash_bit = hash_value & 0x1F; mta = (1 << hash_bit); mcarray[hash_reg] |= mta; } else { e1000_rar_set(hw, ha->addr, i++); } } for (; i < rar_entries; i++) { E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); E1000_WRITE_FLUSH(); E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); E1000_WRITE_FLUSH(); } /* write the hash table completely, write from bottom to avoid * both stupid write combining chipsets, and flushing each write */ for (i = mta_reg_count - 1; i >= 0 ; i--) { /* If we are on an 82544 has an errata where writing odd * offsets overwrites the previous even offset, but writing * backwards over the range solves the issue by always * writing the odd offset first */ E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); } E1000_WRITE_FLUSH(); if (hw->mac_type == e1000_82542_rev2_0) e1000_leave_82542_rst(adapter); kfree(mcarray); } /** * e1000_update_phy_info_task - get phy info * @work: work struct contained inside adapter struct * * Need to wait a few seconds after link up to get diagnostic information from * the phy */ static void e1000_update_phy_info_task(struct work_struct *work) { struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, phy_info_task.work); e1000_phy_get_info(&adapter->hw, &adapter->phy_info); } /** * e1000_82547_tx_fifo_stall_task - task to complete work * @work: work struct contained inside adapter struct **/ static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) { struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, fifo_stall_task.work); struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 tctl; if (atomic_read(&adapter->tx_fifo_stall)) { if ((er32(TDT) == er32(TDH)) && (er32(TDFT) == er32(TDFH)) && (er32(TDFTS) == er32(TDFHS))) { tctl = er32(TCTL); ew32(TCTL, tctl & ~E1000_TCTL_EN); ew32(TDFT, adapter->tx_head_addr); ew32(TDFH, adapter->tx_head_addr); ew32(TDFTS, adapter->tx_head_addr); ew32(TDFHS, adapter->tx_head_addr); ew32(TCTL, tctl); E1000_WRITE_FLUSH(); adapter->tx_fifo_head = 0; atomic_set(&adapter->tx_fifo_stall, 0); netif_wake_queue(netdev); } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { schedule_delayed_work(&adapter->fifo_stall_task, 1); } } } bool e1000_has_link(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; bool link_active = false; /* get_link_status is set on LSC (link status) interrupt or rx * sequence error interrupt (except on intel ce4100). * get_link_status will stay false until the * e1000_check_for_link establishes link for copper adapters * ONLY */ switch (hw->media_type) { case e1000_media_type_copper: if (hw->mac_type == e1000_ce4100) hw->get_link_status = 1; if (hw->get_link_status) { e1000_check_for_link(hw); link_active = !hw->get_link_status; } else { link_active = true; } break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_active = !!(er32(STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_active = hw->serdes_has_link; break; default: break; } return link_active; } /** * e1000_watchdog - work function * @work: work struct contained inside adapter struct **/ static void e1000_watchdog(struct work_struct *work) { struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, watchdog_task.work); struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct e1000_tx_ring *txdr = adapter->tx_ring; u32 link, tctl; link = e1000_has_link(adapter); if ((netif_carrier_ok(netdev)) && link) goto link_up; if (link) { if (!netif_carrier_ok(netdev)) { u32 ctrl; /* update snapshot of PHY registers on LSC */ e1000_get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); ctrl = er32(CTRL); pr_info("%s NIC Link is Up %d Mbps %s, " "Flow Control: %s\n", netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full Duplex" : "Half Duplex", ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & E1000_CTRL_RFCE) ? "RX" : ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None"))); /* adjust timeout factor according to speed/duplex */ adapter->tx_timeout_factor = 1; switch (adapter->link_speed) { case SPEED_10: adapter->tx_timeout_factor = 16; break; case SPEED_100: /* maybe add some timeout factor ? */ break; } /* enable transmits in the hardware */ tctl = er32(TCTL); tctl |= E1000_TCTL_EN; ew32(TCTL, tctl); netif_carrier_on(netdev); if (!test_bit(__E1000_DOWN, &adapter->flags)) schedule_delayed_work(&adapter->phy_info_task, 2 * HZ); adapter->smartspeed = 0; } } else { if (netif_carrier_ok(netdev)) { adapter->link_speed = 0; adapter->link_duplex = 0; pr_info("%s NIC Link is Down\n", netdev->name); netif_carrier_off(netdev); if (!test_bit(__E1000_DOWN, &adapter->flags)) schedule_delayed_work(&adapter->phy_info_task, 2 * HZ); } e1000_smartspeed(adapter); } link_up: e1000_update_stats(adapter); hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; adapter->tpt_old = adapter->stats.tpt; hw->collision_delta = adapter->stats.colc - adapter->colc_old; adapter->colc_old = adapter->stats.colc; adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; adapter->gorcl_old = adapter->stats.gorcl; adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; adapter->gotcl_old = adapter->stats.gotcl; e1000_update_adaptive(hw); if (!netif_carrier_ok(netdev)) { if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { /* We've lost link, so the controller stops DMA, * but we've got queued Tx work that's never going * to get done, so reset controller to flush Tx. * (Do the reset outside of interrupt context). */ adapter->tx_timeout_count++; schedule_work(&adapter->reset_task); /* exit immediately since reset is imminent */ return; } } /* Simple mode for Interrupt Throttle Rate (ITR) */ if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { /* Symmetric Tx/Rx gets a reduced ITR=2000; * Total asymmetrical Tx or Rx gets ITR=8000; * everyone else is between 2000-8000. */ u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; u32 dif = (adapter->gotcl > adapter->gorcl ? adapter->gotcl - adapter->gorcl : adapter->gorcl - adapter->gotcl) / 10000; u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; ew32(ITR, 1000000000 / (itr * 256)); } /* Cause software interrupt to ensure rx ring is cleaned */ ew32(ICS, E1000_ICS_RXDMT0); /* Force detection of hung controller every watchdog period */ adapter->detect_tx_hung = true; /* Reschedule the task */ if (!test_bit(__E1000_DOWN, &adapter->flags)) schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); } enum latency_range { lowest_latency = 0, low_latency = 1, bulk_latency = 2, latency_invalid = 255 }; /** * e1000_update_itr - update the dynamic ITR value based on statistics * @adapter: pointer to adapter * @itr_setting: current adapter->itr * @packets: the number of packets during this measurement interval * @bytes: the number of bytes during this measurement interval * * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. * this functionality is controlled by the InterruptThrottleRate module * parameter (see e1000_param.c) **/ static unsigned int e1000_update_itr(struct e1000_adapter *adapter, u16 itr_setting, int packets, int bytes) { unsigned int retval = itr_setting; struct e1000_hw *hw = &adapter->hw; if (unlikely(hw->mac_type < e1000_82540)) goto update_itr_done; if (packets == 0) goto update_itr_done; switch (itr_setting) { case lowest_latency: /* jumbo frames get bulk treatment*/ if (bytes/packets > 8000) retval = bulk_latency; else if ((packets < 5) && (bytes > 512)) retval = low_latency; break; case low_latency: /* 50 usec aka 20000 ints/s */ if (bytes > 10000) { /* jumbo frames need bulk latency setting */ if (bytes/packets > 8000) retval = bulk_latency; else if ((packets < 10) || ((bytes/packets) > 1200)) retval = bulk_latency; else if ((packets > 35)) retval = lowest_latency; } else if (bytes/packets > 2000) retval = bulk_latency; else if (packets <= 2 && bytes < 512) retval = lowest_latency; break; case bulk_latency: /* 250 usec aka 4000 ints/s */ if (bytes > 25000) { if (packets > 35) retval = low_latency; } else if (bytes < 6000) { retval = low_latency; } break; } update_itr_done: return retval; } static void e1000_set_itr(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 current_itr; u32 new_itr = adapter->itr; if (unlikely(hw->mac_type < e1000_82540)) return; /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ if (unlikely(adapter->link_speed != SPEED_1000)) { new_itr = 4000; goto set_itr_now; } adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, adapter->total_tx_packets, adapter->total_tx_bytes); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) adapter->tx_itr = low_latency; adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, adapter->total_rx_packets, adapter->total_rx_bytes); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) adapter->rx_itr = low_latency; current_itr = max(adapter->rx_itr, adapter->tx_itr); switch (current_itr) { /* counts and packets in update_itr are dependent on these numbers */ case lowest_latency: new_itr = 70000; break; case low_latency: new_itr = 20000; /* aka hwitr = ~200 */ break; case bulk_latency: new_itr = 4000; break; default: break; } set_itr_now: if (new_itr != adapter->itr) { /* this attempts to bias the interrupt rate towards Bulk * by adding intermediate steps when interrupt rate is * increasing */ new_itr = new_itr > adapter->itr ? min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; adapter->itr = new_itr; ew32(ITR, 1000000000 / (new_itr * 256)); } } #define E1000_TX_FLAGS_CSUM 0x00000001 #define E1000_TX_FLAGS_VLAN 0x00000002 #define E1000_TX_FLAGS_TSO 0x00000004 #define E1000_TX_FLAGS_IPV4 0x00000008 #define E1000_TX_FLAGS_NO_FCS 0x00000010 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 #define E1000_TX_FLAGS_VLAN_SHIFT 16 static int e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, struct sk_buff *skb, __be16 protocol) { struct e1000_context_desc *context_desc; struct e1000_tx_buffer *buffer_info; unsigned int i; u32 cmd_length = 0; u16 ipcse = 0, tucse, mss; u8 ipcss, ipcso, tucss, tucso, hdr_len; if (skb_is_gso(skb)) { int err; err = skb_cow_head(skb, 0); if (err < 0) return err; hdr_len = skb_tcp_all_headers(skb); mss = skb_shinfo(skb)->gso_size; if (protocol == htons(ETH_P_IP)) { struct iphdr *iph = ip_hdr(skb); iph->tot_len = 0; iph->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); cmd_length = E1000_TXD_CMD_IP; ipcse = skb_transport_offset(skb) - 1; } else if (skb_is_gso_v6(skb)) { tcp_v6_gso_csum_prep(skb); ipcse = 0; } ipcss = skb_network_offset(skb); ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; tucss = skb_transport_offset(skb); tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; tucse = 0; cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); i = tx_ring->next_to_use; context_desc = E1000_CONTEXT_DESC(*tx_ring, i); buffer_info = &tx_ring->buffer_info[i]; context_desc->lower_setup.ip_fields.ipcss = ipcss; context_desc->lower_setup.ip_fields.ipcso = ipcso; context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); context_desc->upper_setup.tcp_fields.tucss = tucss; context_desc->upper_setup.tcp_fields.tucso = tucso; context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; context_desc->cmd_and_length = cpu_to_le32(cmd_length); buffer_info->time_stamp = jiffies; buffer_info->next_to_watch = i; if (++i == tx_ring->count) i = 0; tx_ring->next_to_use = i; return true; } return false; } static bool e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, struct sk_buff *skb, __be16 protocol) { struct e1000_context_desc *context_desc; struct e1000_tx_buffer *buffer_info; unsigned int i; u8 css; u32 cmd_len = E1000_TXD_CMD_DEXT; if (skb->ip_summed != CHECKSUM_PARTIAL) return false; switch (protocol) { case cpu_to_be16(ETH_P_IP): if (ip_hdr(skb)->protocol == IPPROTO_TCP) cmd_len |= E1000_TXD_CMD_TCP; break; case cpu_to_be16(ETH_P_IPV6): /* XXX not handling all IPV6 headers */ if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) cmd_len |= E1000_TXD_CMD_TCP; break; default: if (unlikely(net_ratelimit())) e_warn(drv, "checksum_partial proto=%x!\n", skb->protocol); break; } css = skb_checksum_start_offset(skb); i = tx_ring->next_to_use; buffer_info = &tx_ring->buffer_info[i]; context_desc = E1000_CONTEXT_DESC(*tx_ring, i); context_desc->lower_setup.ip_config = 0; context_desc->upper_setup.tcp_fields.tucss = css; context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; context_desc->upper_setup.tcp_fields.tucse = 0; context_desc->tcp_seg_setup.data = 0; context_desc->cmd_and_length = cpu_to_le32(cmd_len); buffer_info->time_stamp = jiffies; buffer_info->next_to_watch = i; if (unlikely(++i == tx_ring->count)) i = 0; tx_ring->next_to_use = i; return true; } #define E1000_MAX_TXD_PWR 12 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) static int e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, struct sk_buff *skb, unsigned int first, unsigned int max_per_txd, unsigned int nr_frags, unsigned int mss) { struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; struct e1000_tx_buffer *buffer_info; unsigned int len = skb_headlen(skb); unsigned int offset = 0, size, count = 0, i; unsigned int f, bytecount, segs; i = tx_ring->next_to_use; while (len) { buffer_info = &tx_ring->buffer_info[i]; size = min(len, max_per_txd); /* Workaround for Controller erratum -- * descriptor for non-tso packet in a linear SKB that follows a * tso gets written back prematurely before the data is fully * DMA'd to the controller */ if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) { tx_ring->last_tx_tso = false; size -= 4; } /* Workaround for premature desc write-backs * in TSO mode. Append 4-byte sentinel desc */ if (unlikely(mss && !nr_frags && size == len && size > 8)) size -= 4; /* work-around for errata 10 and it applies * to all controllers in PCI-X mode * The fix is to make sure that the first descriptor of a * packet is smaller than 2048 - 16 - 16 (or 2016) bytes */ if (unlikely((hw->bus_type == e1000_bus_type_pcix) && (size > 2015) && count == 0)) size = 2015; /* Workaround for potential 82544 hang in PCI-X. Avoid * terminating buffers within evenly-aligned dwords. */ if (unlikely(adapter->pcix_82544 && !((unsigned long)(skb->data + offset + size - 1) & 4) && size > 4)) size -= 4; buffer_info->length = size; /* set time_stamp *before* dma to help avoid a possible race */ buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = false; buffer_info->dma = dma_map_single(&pdev->dev, skb->data + offset, size, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, buffer_info->dma)) goto dma_error; buffer_info->next_to_watch = i; len -= size; offset += size; count++; if (len) { i++; if (unlikely(i == tx_ring->count)) i = 0; } } for (f = 0; f < nr_frags; f++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; len = skb_frag_size(frag); offset = 0; while (len) { unsigned long bufend; i++; if (unlikely(i == tx_ring->count)) i = 0; buffer_info = &tx_ring->buffer_info[i]; size = min(len, max_per_txd); /* Workaround for premature desc write-backs * in TSO mode. Append 4-byte sentinel desc */ if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) size -= 4; /* Workaround for potential 82544 hang in PCI-X. * Avoid terminating buffers within evenly-aligned * dwords. */ bufend = (unsigned long) page_to_phys(skb_frag_page(frag)); bufend += offset + size - 1; if (unlikely(adapter->pcix_82544 && !(bufend & 4) && size > 4)) size -= 4; buffer_info->length = size; buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = true; buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, offset, size, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, buffer_info->dma)) goto dma_error; buffer_info->next_to_watch = i; len -= size; offset += size; count++; } } segs = skb_shinfo(skb)->gso_segs ?: 1; /* multiply data chunks by size of headers */ bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; tx_ring->buffer_info[i].skb = skb; tx_ring->buffer_info[i].segs = segs; tx_ring->buffer_info[i].bytecount = bytecount; tx_ring->buffer_info[first].next_to_watch = i; return count; dma_error: dev_err(&pdev->dev, "TX DMA map failed\n"); buffer_info->dma = 0; if (count) count--; while (count--) { if (i == 0) i += tx_ring->count; i--; buffer_info = &tx_ring->buffer_info[i]; e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0); } return 0; } static void e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, int tx_flags, int count) { struct e1000_tx_desc *tx_desc = NULL; struct e1000_tx_buffer *buffer_info; u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; unsigned int i; if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | E1000_TXD_CMD_TSE; txd_upper |= E1000_TXD_POPTS_TXSM << 8; if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) txd_upper |= E1000_TXD_POPTS_IXSM << 8; } if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; txd_upper |= E1000_TXD_POPTS_TXSM << 8; } if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { txd_lower |= E1000_TXD_CMD_VLE; txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); } if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) txd_lower &= ~(E1000_TXD_CMD_IFCS); i = tx_ring->next_to_use; while (count--) { buffer_info = &tx_ring->buffer_info[i]; tx_desc = E1000_TX_DESC(*tx_ring, i); tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); tx_desc->lower.data = cpu_to_le32(txd_lower | buffer_info->length); tx_desc->upper.data = cpu_to_le32(txd_upper); if (unlikely(++i == tx_ring->count)) i = 0; } tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ dma_wmb(); tx_ring->next_to_use = i; } /* 82547 workaround to avoid controller hang in half-duplex environment. * The workaround is to avoid queuing a large packet that would span * the internal Tx FIFO ring boundary by notifying the stack to resend * the packet at a later time. This gives the Tx FIFO an opportunity to * flush all packets. When that occurs, we reset the Tx FIFO pointers * to the beginning of the Tx FIFO. */ #define E1000_FIFO_HDR 0x10 #define E1000_82547_PAD_LEN 0x3E0 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) { u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); if (adapter->link_duplex != HALF_DUPLEX) goto no_fifo_stall_required; if (atomic_read(&adapter->tx_fifo_stall)) return 1; if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { atomic_set(&adapter->tx_fifo_stall, 1); return 1; } no_fifo_stall_required: adapter->tx_fifo_head += skb_fifo_len; if (adapter->tx_fifo_head >= adapter->tx_fifo_size) adapter->tx_fifo_head -= adapter->tx_fifo_size; return 0; } static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_tx_ring *tx_ring = adapter->tx_ring; netif_stop_queue(netdev); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); * but since that doesn't exist yet, just open code it. */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (likely(E1000_DESC_UNUSED(tx_ring) < size)) return -EBUSY; /* A reprieve! */ netif_start_queue(netdev); ++adapter->restart_queue; return 0; } static int e1000_maybe_stop_tx(struct net_device *netdev, struct e1000_tx_ring *tx_ring, int size) { if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) return 0; return __e1000_maybe_stop_tx(netdev, size); } #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct e1000_tx_ring *tx_ring; unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; unsigned int tx_flags = 0; unsigned int len = skb_headlen(skb); unsigned int nr_frags; unsigned int mss; int count = 0; int tso; unsigned int f; __be16 protocol = vlan_get_protocol(skb); /* This goes back to the question of how to logically map a Tx queue * to a flow. Right now, performance is impacted slightly negatively * if using multiple Tx queues. If the stack breaks away from a * single qdisc implementation, we can look at this again. */ tx_ring = adapter->tx_ring; /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, * packets may get corrupted during padding by HW. * To WA this issue, pad all small packets manually. */ if (eth_skb_pad(skb)) return NETDEV_TX_OK; mss = skb_shinfo(skb)->gso_size; /* The controller does a simple calculation to * make sure there is enough room in the FIFO before * initiating the DMA for each buffer. The calc is: * 4 = ceil(buffer len/mss). To make sure we don't * overrun the FIFO, adjust the max buffer len if mss * drops. */ if (mss) { u8 hdr_len; max_per_txd = min(mss << 2, max_per_txd); max_txd_pwr = fls(max_per_txd) - 1; hdr_len = skb_tcp_all_headers(skb); if (skb->data_len && hdr_len == len) { switch (hw->mac_type) { case e1000_82544: { unsigned int pull_size; /* Make sure we have room to chop off 4 bytes, * and that the end alignment will work out to * this hardware's requirements * NOTE: this is a TSO only workaround * if end byte alignment not correct move us * into the next dword */ if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) break; pull_size = min((unsigned int)4, skb->data_len); if (!__pskb_pull_tail(skb, pull_size)) { e_err(drv, "__pskb_pull_tail " "failed.\n"); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } len = skb_headlen(skb); break; } default: /* do nothing */ break; } } } /* reserve a descriptor for the offload context */ if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) count++; count++; /* Controller Erratum workaround */ if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) count++; count += TXD_USE_COUNT(len, max_txd_pwr); if (adapter->pcix_82544) count++; /* work-around for errata 10 and it applies to all controllers * in PCI-X mode, so add one more descriptor to the count */ if (unlikely((hw->bus_type == e1000_bus_type_pcix) && (len > 2015))) count++; nr_frags = skb_shinfo(skb)->nr_frags; for (f = 0; f < nr_frags; f++) count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), max_txd_pwr); if (adapter->pcix_82544) count += nr_frags; /* need: count + 2 desc gap to keep tail from touching * head, otherwise try next time */ if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) return NETDEV_TX_BUSY; if (unlikely((hw->mac_type == e1000_82547) && (e1000_82547_fifo_workaround(adapter, skb)))) { netif_stop_queue(netdev); if (!test_bit(__E1000_DOWN, &adapter->flags)) schedule_delayed_work(&adapter->fifo_stall_task, 1); return NETDEV_TX_BUSY; } if (skb_vlan_tag_present(skb)) { tx_flags |= E1000_TX_FLAGS_VLAN; tx_flags |= (skb_vlan_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); } first = tx_ring->next_to_use; tso = e1000_tso(adapter, tx_ring, skb, protocol); if (tso < 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (likely(tso)) { if (likely(hw->mac_type != e1000_82544)) tx_ring->last_tx_tso = true; tx_flags |= E1000_TX_FLAGS_TSO; } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) tx_flags |= E1000_TX_FLAGS_CSUM; if (protocol == htons(ETH_P_IP)) tx_flags |= E1000_TX_FLAGS_IPV4; if (unlikely(skb->no_fcs)) tx_flags |= E1000_TX_FLAGS_NO_FCS; count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, nr_frags, mss); if (count) { /* The descriptors needed is higher than other Intel drivers * due to a number of workarounds. The breakdown is below: * Data descriptors: MAX_SKB_FRAGS + 1 * Context Descriptor: 1 * Keep head from touching tail: 2 * Workarounds: 3 */ int desc_needed = MAX_SKB_FRAGS + 7; netdev_sent_queue(netdev, skb->len); skb_tx_timestamp(skb); e1000_tx_queue(adapter, tx_ring, tx_flags, count); /* 82544 potentially requires twice as many data descriptors * in order to guarantee buffers don't end on evenly-aligned * dwords */ if (adapter->pcix_82544) desc_needed += MAX_SKB_FRAGS + 1; /* Make sure there is space in the ring for the next send. */ e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); if (!netdev_xmit_more() || netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); } } else { dev_kfree_skb_any(skb); tx_ring->buffer_info[first].time_stamp = 0; tx_ring->next_to_use = first; } return NETDEV_TX_OK; } #define NUM_REGS 38 /* 1 based count */ static void e1000_regdump(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 regs[NUM_REGS]; u32 *regs_buff = regs; int i = 0; static const char * const reg_name[] = { "CTRL", "STATUS", "RCTL", "RDLEN", "RDH", "RDT", "RDTR", "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", "TIDV", "TXDCTL", "TADV", "TARC0", "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", "TXDCTL1", "TARC1", "CTRL_EXT", "ERT", "RDBAL", "RDBAH", "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" }; regs_buff[0] = er32(CTRL); regs_buff[1] = er32(STATUS); regs_buff[2] = er32(RCTL); regs_buff[3] = er32(RDLEN); regs_buff[4] = er32(RDH); regs_buff[5] = er32(RDT); regs_buff[6] = er32(RDTR); regs_buff[7] = er32(TCTL); regs_buff[8] = er32(TDBAL); regs_buff[9] = er32(TDBAH); regs_buff[10] = er32(TDLEN); regs_buff[11] = er32(TDH); regs_buff[12] = er32(TDT); regs_buff[13] = er32(TIDV); regs_buff[14] = er32(TXDCTL); regs_buff[15] = er32(TADV); regs_buff[16] = er32(TARC0); regs_buff[17] = er32(TDBAL1); regs_buff[18] = er32(TDBAH1); regs_buff[19] = er32(TDLEN1); regs_buff[20] = er32(TDH1); regs_buff[21] = er32(TDT1); regs_buff[22] = er32(TXDCTL1); regs_buff[23] = er32(TARC1); regs_buff[24] = er32(CTRL_EXT); regs_buff[25] = er32(ERT); regs_buff[26] = er32(RDBAL0); regs_buff[27] = er32(RDBAH0); regs_buff[28] = er32(TDFH); regs_buff[29] = er32(TDFT); regs_buff[30] = er32(TDFHS); regs_buff[31] = er32(TDFTS); regs_buff[32] = er32(TDFPC); regs_buff[33] = er32(RDFH); regs_buff[34] = er32(RDFT); regs_buff[35] = er32(RDFHS); regs_buff[36] = er32(RDFTS); regs_buff[37] = er32(RDFPC); pr_info("Register dump\n"); for (i = 0; i < NUM_REGS; i++) pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); } /* * e1000_dump: Print registers, tx ring and rx ring */ static void e1000_dump(struct e1000_adapter *adapter) { /* this code doesn't handle multiple rings */ struct e1000_tx_ring *tx_ring = adapter->tx_ring; struct e1000_rx_ring *rx_ring = adapter->rx_ring; int i; if (!netif_msg_hw(adapter)) return; /* Print Registers */ e1000_regdump(adapter); /* transmit dump */ pr_info("TX Desc ring0 dump\n"); /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) * * Legacy Transmit Descriptor * +--------------------------------------------------------------+ * 0 | Buffer Address [63:0] (Reserved on Write Back) | * +--------------------------------------------------------------+ * 8 | Special | CSS | Status | CMD | CSO | Length | * +--------------------------------------------------------------+ * 63 48 47 36 35 32 31 24 23 16 15 0 * * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload * 63 48 47 40 39 32 31 16 15 8 7 0 * +----------------------------------------------------------------+ * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | * +----------------------------------------------------------------+ * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | * +----------------------------------------------------------------+ * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 * * Extended Data Descriptor (DTYP=0x1) * +----------------------------------------------------------------+ * 0 | Buffer Address [63:0] | * +----------------------------------------------------------------+ * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | * +----------------------------------------------------------------+ * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 */ pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); if (!netif_msg_tx_done(adapter)) goto rx_ring_summary; for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; struct my_u { __le64 a; __le64 b; }; struct my_u *u = (struct my_u *)tx_desc; const char *type; if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) type = "NTC/U"; else if (i == tx_ring->next_to_use) type = "NTU"; else if (i == tx_ring->next_to_clean) type = "NTC"; else type = ""; pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, le64_to_cpu(u->a), le64_to_cpu(u->b), (u64)buffer_info->dma, buffer_info->length, buffer_info->next_to_watch, (u64)buffer_info->time_stamp, buffer_info->skb, type); } rx_ring_summary: /* receive dump */ pr_info("\nRX Desc ring dump\n"); /* Legacy Receive Descriptor Format * * +-----------------------------------------------------+ * | Buffer Address [63:0] | * +-----------------------------------------------------+ * | VLAN Tag | Errors | Status 0 | Packet csum | Length | * +-----------------------------------------------------+ * 63 48 47 40 39 32 31 16 15 0 */ pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); if (!netif_msg_rx_status(adapter)) goto exit; for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; struct my_u { __le64 a; __le64 b; }; struct my_u *u = (struct my_u *)rx_desc; const char *type; if (i == rx_ring->next_to_use) type = "NTU"; else if (i == rx_ring->next_to_clean) type = "NTC"; else type = ""; pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", i, le64_to_cpu(u->a), le64_to_cpu(u->b), (u64)buffer_info->dma, buffer_info->rxbuf.data, type); } /* for */ /* dump the descriptor caches */ /* rx */ pr_info("Rx descriptor cache in 64bit format\n"); for (i = 0x6000; i <= 0x63FF ; i += 0x10) { pr_info("R%04X: %08X|%08X %08X|%08X\n", i, readl(adapter->hw.hw_addr + i+4), readl(adapter->hw.hw_addr + i), readl(adapter->hw.hw_addr + i+12), readl(adapter->hw.hw_addr + i+8)); } /* tx */ pr_info("Tx descriptor cache in 64bit format\n"); for (i = 0x7000; i <= 0x73FF ; i += 0x10) { pr_info("T%04X: %08X|%08X %08X|%08X\n", i, readl(adapter->hw.hw_addr + i+4), readl(adapter->hw.hw_addr + i), readl(adapter->hw.hw_addr + i+12), readl(adapter->hw.hw_addr + i+8)); } exit: return; } /** * e1000_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * @txqueue: number of the Tx queue that hung (unused) **/ static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) { struct e1000_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ adapter->tx_timeout_count++; schedule_work(&adapter->reset_task); } static void e1000_reset_task(struct work_struct *work) { struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, reset_task); e_err(drv, "Reset adapter\n"); e1000_reinit_locked(adapter); } /** * e1000_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; /* Adapter-specific max frame size limits. */ switch (hw->mac_type) { case e1000_undefined ... e1000_82542_rev2_1: if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { e_err(probe, "Jumbo Frames not supported.\n"); return -EINVAL; } break; default: /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ break; } while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) msleep(1); /* e1000_down has a dependency on max_frame_size */ hw->max_frame_size = max_frame; if (netif_running(netdev)) { /* prevent buffers from being reallocated */ adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; e1000_down(adapter); } /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN * means we reserve 2 more, this pushes us to allocate from the next * larger slab size. * i.e. RXBUFFER_2048 --> size-4096 slab * however with the new *_jumbo_rx* routines, jumbo receives will use * fragmented skbs */ if (max_frame <= E1000_RXBUFFER_2048) adapter->rx_buffer_len = E1000_RXBUFFER_2048; else #if (PAGE_SIZE >= E1000_RXBUFFER_16384) adapter->rx_buffer_len = E1000_RXBUFFER_16384; #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) adapter->rx_buffer_len = PAGE_SIZE; #endif /* adjust allocation if LPE protects us, and we aren't using SBP */ if (!hw->tbi_compatibility_on && ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (netif_running(netdev)) e1000_up(adapter); else e1000_reset(adapter); clear_bit(__E1000_RESETTING, &adapter->flags); return 0; } /** * e1000_update_stats - Update the board statistics counters * @adapter: board private structure **/ void e1000_update_stats(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; unsigned long flags; u16 phy_tmp; #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF /* Prevent stats update while adapter is being reset, or if the pci * connection is down. */ if (adapter->link_speed == 0) return; if (pci_channel_offline(pdev)) return; spin_lock_irqsave(&adapter->stats_lock, flags); /* these counters are modified from e1000_tbi_adjust_stats, * called from the interrupt context, so they must only * be written while holding adapter->stats_lock */ adapter->stats.crcerrs += er32(CRCERRS); adapter->stats.gprc += er32(GPRC); adapter->stats.gorcl += er32(GORCL); adapter->stats.gorch += er32(GORCH); adapter->stats.bprc += er32(BPRC); adapter->stats.mprc += er32(MPRC); adapter->stats.roc += er32(ROC); adapter->stats.prc64 += er32(PRC64); adapter->stats.prc127 += er32(PRC127); adapter->stats.prc255 += er32(PRC255); adapter->stats.prc511 += er32(PRC511); adapter->stats.prc1023 += er32(PRC1023); adapter->stats.prc1522 += er32(PRC1522); adapter->stats.symerrs += er32(SYMERRS); adapter->stats.mpc += er32(MPC); adapter->stats.scc += er32(SCC); adapter->stats.ecol += er32(ECOL); adapter->stats.mcc += er32(MCC); adapter->stats.latecol += er32(LATECOL); adapter->stats.dc += er32(DC); adapter->stats.sec += er32(SEC); adapter->stats.rlec += er32(RLEC); adapter->stats.xonrxc += er32(XONRXC); adapter->stats.xontxc += er32(XONTXC); adapter->stats.xoffrxc += er32(XOFFRXC); adapter->stats.xofftxc += er32(XOFFTXC); adapter->stats.fcruc += er32(FCRUC); adapter->stats.gptc += er32(GPTC); adapter->stats.gotcl += er32(GOTCL); adapter->stats.gotch += er32(GOTCH); adapter->stats.rnbc += er32(RNBC); adapter->stats.ruc += er32(RUC); adapter->stats.rfc += er32(RFC); adapter->stats.rjc += er32(RJC); adapter->stats.torl += er32(TORL); adapter->stats.torh += er32(TORH); adapter->stats.totl += er32(TOTL); adapter->stats.toth += er32(TOTH); adapter->stats.tpr += er32(TPR); adapter->stats.ptc64 += er32(PTC64); adapter->stats.ptc127 += er32(PTC127); adapter->stats.ptc255 += er32(PTC255); adapter->stats.ptc511 += er32(PTC511); adapter->stats.ptc1023 += er32(PTC1023); adapter->stats.ptc1522 += er32(PTC1522); adapter->stats.mptc += er32(MPTC); adapter->stats.bptc += er32(BPTC); /* used for adaptive IFS */ hw->tx_packet_delta = er32(TPT); adapter->stats.tpt += hw->tx_packet_delta; hw->collision_delta = er32(COLC); adapter->stats.colc += hw->collision_delta; if (hw->mac_type >= e1000_82543) { adapter->stats.algnerrc += er32(ALGNERRC); adapter->stats.rxerrc += er32(RXERRC); adapter->stats.tncrs += er32(TNCRS); adapter->stats.cexterr += er32(CEXTERR); adapter->stats.tsctc += er32(TSCTC); adapter->stats.tsctfc += er32(TSCTFC); } /* Fill out the OS statistics structure */ netdev->stats.multicast = adapter->stats.mprc; netdev->stats.collisions = adapter->stats.colc; /* Rx Errors */ /* RLEC on some newer hardware can be incorrect so build * our own version based on RUC and ROC */ netdev->stats.rx_errors = adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; netdev->stats.rx_length_errors = adapter->stats.rlerrc; netdev->stats.rx_crc_errors = adapter->stats.crcerrs; netdev->stats.rx_frame_errors = adapter->stats.algnerrc; netdev->stats.rx_missed_errors = adapter->stats.mpc; /* Tx Errors */ adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; netdev->stats.tx_errors = adapter->stats.txerrc; netdev->stats.tx_aborted_errors = adapter->stats.ecol; netdev->stats.tx_window_errors = adapter->stats.latecol; netdev->stats.tx_carrier_errors = adapter->stats.tncrs; if (hw->bad_tx_carr_stats_fd && adapter->link_duplex == FULL_DUPLEX) { netdev->stats.tx_carrier_errors = 0; adapter->stats.tncrs = 0; } /* Tx Dropped needs to be maintained elsewhere */ /* Phy Stats */ if (hw->media_type == e1000_media_type_copper) { if ((adapter->link_speed == SPEED_1000) && (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; adapter->phy_stats.idle_errors += phy_tmp; } if ((hw->mac_type <= e1000_82546) && (hw->phy_type == e1000_phy_m88) && !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) adapter->phy_stats.receive_errors += phy_tmp; } /* Management Stats */ if (hw->has_smbus) { adapter->stats.mgptc += er32(MGTPTC); adapter->stats.mgprc += er32(MGTPRC); adapter->stats.mgpdc += er32(MGTPDC); } spin_unlock_irqrestore(&adapter->stats_lock, flags); } /** * e1000_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure **/ static irqreturn_t e1000_intr(int irq, void *data) { struct net_device *netdev = data; struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 icr = er32(ICR); if (unlikely((!icr))) return IRQ_NONE; /* Not our interrupt */ /* we might have caused the interrupt, but the above * read cleared it, and just in case the driver is * down there is nothing to do so return handled */ if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) return IRQ_HANDLED; if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { hw->get_link_status = 1; /* guard against interrupt when we're going down */ if (!test_bit(__E1000_DOWN, &adapter->flags)) schedule_delayed_work(&adapter->watchdog_task, 1); } /* disable interrupts, without the synchronize_irq bit */ ew32(IMC, ~0); E1000_WRITE_FLUSH(); if (likely(napi_schedule_prep(&adapter->napi))) { adapter->total_tx_bytes = 0; adapter->total_tx_packets = 0; adapter->total_rx_bytes = 0; adapter->total_rx_packets = 0; __napi_schedule(&adapter->napi); } else { /* this really should not happen! if it does it is basically a * bug, but not a hard error, so enable ints and continue */ if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_enable(adapter); } return IRQ_HANDLED; } /** * e1000_clean - NAPI Rx polling callback * @napi: napi struct containing references to driver info * @budget: budget given to driver for receive packets **/ static int e1000_clean(struct napi_struct *napi, int budget) { struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); int tx_clean_complete = 0, work_done = 0; tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); if (!tx_clean_complete || work_done == budget) return budget; /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) { if (likely(adapter->itr_setting & 3)) e1000_set_itr(adapter); if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_enable(adapter); } return work_done; } /** * e1000_clean_tx_irq - Reclaim resources after transmit completes * @adapter: board private structure * @tx_ring: ring to clean **/ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct e1000_tx_desc *tx_desc, *eop_desc; struct e1000_tx_buffer *buffer_info; unsigned int i, eop; unsigned int count = 0; unsigned int total_tx_bytes = 0, total_tx_packets = 0; unsigned int bytes_compl = 0, pkts_compl = 0; i = tx_ring->next_to_clean; eop = tx_ring->buffer_info[i].next_to_watch; eop_desc = E1000_TX_DESC(*tx_ring, eop); while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && (count < tx_ring->count)) { bool cleaned = false; dma_rmb(); /* read buffer_info after eop_desc */ for ( ; !cleaned; count++) { tx_desc = E1000_TX_DESC(*tx_ring, i); buffer_info = &tx_ring->buffer_info[i]; cleaned = (i == eop); if (cleaned) { total_tx_packets += buffer_info->segs; total_tx_bytes += buffer_info->bytecount; if (buffer_info->skb) { bytes_compl += buffer_info->skb->len; pkts_compl++; } } e1000_unmap_and_free_tx_resource(adapter, buffer_info, 64); tx_desc->upper.data = 0; if (unlikely(++i == tx_ring->count)) i = 0; } eop = tx_ring->buffer_info[i].next_to_watch; eop_desc = E1000_TX_DESC(*tx_ring, eop); } /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, * which will reuse the cleaned buffers. */ smp_store_release(&tx_ring->next_to_clean, i); netdev_completed_queue(netdev, pkts_compl, bytes_compl); #define TX_WAKE_THRESHOLD 32 if (unlikely(count && netif_carrier_ok(netdev) && E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (netif_queue_stopped(netdev) && !(test_bit(__E1000_DOWN, &adapter->flags))) { netif_wake_queue(netdev); ++adapter->restart_queue; } } if (adapter->detect_tx_hung) { /* Detect a transmit hang in hardware, this serializes the * check with the clearing of time_stamp and movement of i */ adapter->detect_tx_hung = false; if (tx_ring->buffer_info[eop].time_stamp && time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + (adapter->tx_timeout_factor * HZ)) && !(er32(STATUS) & E1000_STATUS_TXOFF)) { /* detected Tx unit hang */ e_err(drv, "Detected Tx Unit Hang\n" " Tx Queue <%lu>\n" " TDH <%x>\n" " TDT <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n" "buffer_info[next_to_clean]\n" " time_stamp <%lx>\n" " next_to_watch <%x>\n" " jiffies <%lx>\n" " next_to_watch.status <%x>\n", (unsigned long)(tx_ring - adapter->tx_ring), readl(hw->hw_addr + tx_ring->tdh), readl(hw->hw_addr + tx_ring->tdt), tx_ring->next_to_use, tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, eop, jiffies, eop_desc->upper.fields.status); e1000_dump(adapter); netif_stop_queue(netdev); } } adapter->total_tx_bytes += total_tx_bytes; adapter->total_tx_packets += total_tx_packets; netdev->stats.tx_bytes += total_tx_bytes; netdev->stats.tx_packets += total_tx_packets; return count < tx_ring->count; } /** * e1000_rx_checksum - Receive Checksum Offload for 82543 * @adapter: board private structure * @status_err: receive descriptor status and error fields * @csum: receive descriptor csum field * @skb: socket buffer with received data **/ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, u32 csum, struct sk_buff *skb) { struct e1000_hw *hw = &adapter->hw; u16 status = (u16)status_err; u8 errors = (u8)(status_err >> 24); skb_checksum_none_assert(skb); /* 82543 or newer only */ if (unlikely(hw->mac_type < e1000_82543)) return; /* Ignore Checksum bit is set */ if (unlikely(status & E1000_RXD_STAT_IXSM)) return; /* TCP/UDP checksum error bit is set */ if (unlikely(errors & E1000_RXD_ERR_TCPE)) { /* let the stack verify checksum errors */ adapter->hw_csum_err++; return; } /* TCP/UDP Checksum has not been calculated */ if (!(status & E1000_RXD_STAT_TCPCS)) return; /* It must be a TCP or UDP packet with a valid checksum */ if (likely(status & E1000_RXD_STAT_TCPCS)) { /* TCP checksum is good */ skb->ip_summed = CHECKSUM_UNNECESSARY; } adapter->hw_csum_good++; } /** * e1000_consume_page - helper function for jumbo Rx path * @bi: software descriptor shadow data * @skb: skb being modified * @length: length of data being added **/ static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, u16 length) { bi->rxbuf.page = NULL; skb->len += length; skb->data_len += length; skb->truesize += PAGE_SIZE; } /** * e1000_receive_skb - helper function to handle rx indications * @adapter: board private structure * @status: descriptor status field as written by hardware * @vlan: descriptor vlan field as written by hardware (no le/be conversion) * @skb: pointer to sk_buff to be indicated to stack */ static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, __le16 vlan, struct sk_buff *skb) { skb->protocol = eth_type_trans(skb, adapter->netdev); if (status & E1000_RXD_STAT_VP) { u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); } napi_gro_receive(&adapter->napi, skb); } /** * e1000_tbi_adjust_stats * @hw: Struct containing variables accessed by shared code * @stats: point to stats struct * @frame_len: The length of the frame in question * @mac_addr: The Ethernet destination address of the frame in question * * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT */ static void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, u32 frame_len, const u8 *mac_addr) { u64 carry_bit; /* First adjust the frame length. */ frame_len--; /* We need to adjust the statistics counters, since the hardware * counters overcount this packet as a CRC error and undercount * the packet as a good packet */ /* This packet should not be counted as a CRC error. */ stats->crcerrs--; /* This packet does count as a Good Packet Received. */ stats->gprc++; /* Adjust the Good Octets received counters */ carry_bit = 0x80000000 & stats->gorcl; stats->gorcl += frame_len; /* If the high bit of Gorcl (the low 32 bits of the Good Octets * Received Count) was one before the addition, * AND it is zero after, then we lost the carry out, * need to add one to Gorch (Good Octets Received Count High). * This could be simplified if all environments supported * 64-bit integers. */ if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) stats->gorch++; /* Is this a broadcast or multicast? Check broadcast first, * since the test for a multicast frame will test positive on * a broadcast frame. */ if (is_broadcast_ether_addr(mac_addr)) stats->bprc++; else if (is_multicast_ether_addr(mac_addr)) stats->mprc++; if (frame_len == hw->max_frame_size) { /* In this case, the hardware has overcounted the number of * oversize frames. */ if (stats->roc > 0) stats->roc--; } /* Adjust the bin counters when the extra byte put the frame in the * wrong bin. Remember that the frame_len was adjusted above. */ if (frame_len == 64) { stats->prc64++; stats->prc127--; } else if (frame_len == 127) { stats->prc127++; stats->prc255--; } else if (frame_len == 255) { stats->prc255++; stats->prc511--; } else if (frame_len == 511) { stats->prc511++; stats->prc1023--; } else if (frame_len == 1023) { stats->prc1023++; stats->prc1522--; } else if (frame_len == 1522) { stats->prc1522++; } } static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, u8 status, u8 errors, u32 length, const u8 *data) { struct e1000_hw *hw = &adapter->hw; u8 last_byte = *(data + length - 1); if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { unsigned long irq_flags; spin_lock_irqsave(&adapter->stats_lock, irq_flags); e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); return true; } return false; } static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, unsigned int bufsz) { struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); if (unlikely(!skb)) adapter->alloc_rx_buff_failed++; return skb; } /** * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy * @adapter: board private structure * @rx_ring: ring to clean * @work_done: amount of napi work completed this call * @work_to_do: max amount of work allowed for this call to do * * the return value indicates whether actual cleaning was done, there * is no guarantee that everything was cleaned */ static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct e1000_rx_desc *rx_desc, *next_rxd; struct e1000_rx_buffer *buffer_info, *next_buffer; u32 length; unsigned int i; int cleaned_count = 0; bool cleaned = false; unsigned int total_rx_bytes = 0, total_rx_packets = 0; i = rx_ring->next_to_clean; rx_desc = E1000_RX_DESC(*rx_ring, i); buffer_info = &rx_ring->buffer_info[i]; while (rx_desc->status & E1000_RXD_STAT_DD) { struct sk_buff *skb; u8 status; if (*work_done >= work_to_do) break; (*work_done)++; dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ status = rx_desc->status; if (++i == rx_ring->count) i = 0; next_rxd = E1000_RX_DESC(*rx_ring, i); prefetch(next_rxd); next_buffer = &rx_ring->buffer_info[i]; cleaned = true; cleaned_count++; dma_unmap_page(&pdev->dev, buffer_info->dma, adapter->rx_buffer_len, DMA_FROM_DEVICE); buffer_info->dma = 0; length = le16_to_cpu(rx_desc->length); /* errors is only valid for DD + EOP descriptors */ if (unlikely((status & E1000_RXD_STAT_EOP) && (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { u8 *mapped = page_address(buffer_info->rxbuf.page); if (e1000_tbi_should_accept(adapter, status, rx_desc->errors, length, mapped)) { length--; } else if (netdev->features & NETIF_F_RXALL) { goto process_skb; } else { /* an error means any chain goes out the window * too */ dev_kfree_skb(rx_ring->rx_skb_top); rx_ring->rx_skb_top = NULL; goto next_desc; } } #define rxtop rx_ring->rx_skb_top process_skb: if (!(status & E1000_RXD_STAT_EOP)) { /* this descriptor is only the beginning (or middle) */ if (!rxtop) { /* this is the beginning of a chain */ rxtop = napi_get_frags(&adapter->napi); if (!rxtop) break; skb_fill_page_desc(rxtop, 0, buffer_info->rxbuf.page, 0, length); } else { /* this is the middle of a chain */ skb_fill_page_desc(rxtop, skb_shinfo(rxtop)->nr_frags, buffer_info->rxbuf.page, 0, length); } e1000_consume_page(buffer_info, rxtop, length); goto next_desc; } else { if (rxtop) { /* end of the chain */ skb_fill_page_desc(rxtop, skb_shinfo(rxtop)->nr_frags, buffer_info->rxbuf.page, 0, length); skb = rxtop; rxtop = NULL; e1000_consume_page(buffer_info, skb, length); } else { struct page *p; /* no chain, got EOP, this buf is the packet * copybreak to save the put_page/alloc_page */ p = buffer_info->rxbuf.page; if (length <= copybreak) { u8 *vaddr; if (likely(!(netdev->features & NETIF_F_RXFCS))) length -= 4; skb = e1000_alloc_rx_skb(adapter, length); if (!skb) break; vaddr = kmap_atomic(p); memcpy(skb_tail_pointer(skb), vaddr, length); kunmap_atomic(vaddr); /* re-use the page, so don't erase * buffer_info->rxbuf.page */ skb_put(skb, length); e1000_rx_checksum(adapter, status | rx_desc->errors << 24, le16_to_cpu(rx_desc->csum), skb); total_rx_bytes += skb->len; total_rx_packets++; e1000_receive_skb(adapter, status, rx_desc->special, skb); goto next_desc; } else { skb = napi_get_frags(&adapter->napi); if (!skb) { adapter->alloc_rx_buff_failed++; break; } skb_fill_page_desc(skb, 0, p, 0, length); e1000_consume_page(buffer_info, skb, length); } } } /* Receive Checksum Offload XXX recompute due to CRC strip? */ e1000_rx_checksum(adapter, (u32)(status) | ((u32)(rx_desc->errors) << 24), le16_to_cpu(rx_desc->csum), skb); total_rx_bytes += (skb->len - 4); /* don't count FCS */ if (likely(!(netdev->features & NETIF_F_RXFCS))) pskb_trim(skb, skb->len - 4); total_rx_packets++; if (status & E1000_RXD_STAT_VP) { __le16 vlan = rx_desc->special; u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); } napi_gro_frags(&adapter->napi); next_desc: rx_desc->status = 0; /* return some buffers to hardware, one at a time is too slow */ if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); cleaned_count = 0; } /* use prefetched values */ rx_desc = next_rxd; buffer_info = next_buffer; } rx_ring->next_to_clean = i; cleaned_count = E1000_DESC_UNUSED(rx_ring); if (cleaned_count) adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); adapter->total_rx_packets += total_rx_packets; adapter->total_rx_bytes += total_rx_bytes; netdev->stats.rx_bytes += total_rx_bytes; netdev->stats.rx_packets += total_rx_packets; return cleaned; } /* this should improve performance for small packets with large amounts * of reassembly being done in the stack */ static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, struct e1000_rx_buffer *buffer_info, u32 length, const void *data) { struct sk_buff *skb; if (length > copybreak) return NULL; skb = e1000_alloc_rx_skb(adapter, length); if (!skb) return NULL; dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, length, DMA_FROM_DEVICE); skb_put_data(skb, data, length); return skb; } /** * e1000_clean_rx_irq - Send received data up the network stack; legacy * @adapter: board private structure * @rx_ring: ring to clean * @work_done: amount of napi work completed this call * @work_to_do: max amount of work allowed for this call to do */ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int *work_done, int work_to_do) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct e1000_rx_desc *rx_desc, *next_rxd; struct e1000_rx_buffer *buffer_info, *next_buffer; u32 length; unsigned int i; int cleaned_count = 0; bool cleaned = false; unsigned int total_rx_bytes = 0, total_rx_packets = 0; i = rx_ring->next_to_clean; rx_desc = E1000_RX_DESC(*rx_ring, i); buffer_info = &rx_ring->buffer_info[i]; while (rx_desc->status & E1000_RXD_STAT_DD) { struct sk_buff *skb; u8 *data; u8 status; if (*work_done >= work_to_do) break; (*work_done)++; dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ status = rx_desc->status; length = le16_to_cpu(rx_desc->length); data = buffer_info->rxbuf.data; prefetch(data); skb = e1000_copybreak(adapter, buffer_info, length, data); if (!skb) { unsigned int frag_len = e1000_frag_len(adapter); skb = napi_build_skb(data - E1000_HEADROOM, frag_len); if (!skb) { adapter->alloc_rx_buff_failed++; break; } skb_reserve(skb, E1000_HEADROOM); dma_unmap_single(&pdev->dev, buffer_info->dma, adapter->rx_buffer_len, DMA_FROM_DEVICE); buffer_info->dma = 0; buffer_info->rxbuf.data = NULL; } if (++i == rx_ring->count) i = 0; next_rxd = E1000_RX_DESC(*rx_ring, i); prefetch(next_rxd); next_buffer = &rx_ring->buffer_info[i]; cleaned = true; cleaned_count++; /* !EOP means multiple descriptors were used to store a single * packet, if thats the case we need to toss it. In fact, we * to toss every packet with the EOP bit clear and the next * frame that _does_ have the EOP bit set, as it is by * definition only a frame fragment */ if (unlikely(!(status & E1000_RXD_STAT_EOP))) adapter->discarding = true; if (adapter->discarding) { /* All receives must fit into a single buffer */ netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); dev_kfree_skb(skb); if (status & E1000_RXD_STAT_EOP) adapter->discarding = false; goto next_desc; } if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { if (e1000_tbi_should_accept(adapter, status, rx_desc->errors, length, data)) { length--; } else if (netdev->features & NETIF_F_RXALL) { goto process_skb; } else { dev_kfree_skb(skb); goto next_desc; } } process_skb: total_rx_bytes += (length - 4); /* don't count FCS */ total_rx_packets++; if (likely(!(netdev->features & NETIF_F_RXFCS))) /* adjust length to remove Ethernet CRC, this must be * done after the TBI_ACCEPT workaround above */ length -= 4; if (buffer_info->rxbuf.data == NULL) skb_put(skb, length); else /* copybreak skb */ skb_trim(skb, length); /* Receive Checksum Offload */ e1000_rx_checksum(adapter, (u32)(status) | ((u32)(rx_desc->errors) << 24), le16_to_cpu(rx_desc->csum), skb); e1000_receive_skb(adapter, status, rx_desc->special, skb); next_desc: rx_desc->status = 0; /* return some buffers to hardware, one at a time is too slow */ if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); cleaned_count = 0; } /* use prefetched values */ rx_desc = next_rxd; buffer_info = next_buffer; } rx_ring->next_to_clean = i; cleaned_count = E1000_DESC_UNUSED(rx_ring); if (cleaned_count) adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); adapter->total_rx_packets += total_rx_packets; adapter->total_rx_bytes += total_rx_bytes; netdev->stats.rx_bytes += total_rx_bytes; netdev->stats.rx_packets += total_rx_packets; return cleaned; } /** * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers * @adapter: address of board private structure * @rx_ring: pointer to receive ring structure * @cleaned_count: number of buffers to allocate this pass **/ static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count) { struct pci_dev *pdev = adapter->pdev; struct e1000_rx_desc *rx_desc; struct e1000_rx_buffer *buffer_info; unsigned int i; i = rx_ring->next_to_use; buffer_info = &rx_ring->buffer_info[i]; while (cleaned_count--) { /* allocate a new page if necessary */ if (!buffer_info->rxbuf.page) { buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); if (unlikely(!buffer_info->rxbuf.page)) { adapter->alloc_rx_buff_failed++; break; } } if (!buffer_info->dma) { buffer_info->dma = dma_map_page(&pdev->dev, buffer_info->rxbuf.page, 0, adapter->rx_buffer_len, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { put_page(buffer_info->rxbuf.page); buffer_info->rxbuf.page = NULL; buffer_info->dma = 0; adapter->alloc_rx_buff_failed++; break; } } rx_desc = E1000_RX_DESC(*rx_ring, i); rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); if (unlikely(++i == rx_ring->count)) i = 0; buffer_info = &rx_ring->buffer_info[i]; } if (likely(rx_ring->next_to_use != i)) { rx_ring->next_to_use = i; if (unlikely(i-- == 0)) i = (rx_ring->count - 1); /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ dma_wmb(); writel(i, adapter->hw.hw_addr + rx_ring->rdt); } } /** * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended * @adapter: address of board private structure * @rx_ring: pointer to ring struct * @cleaned_count: number of new Rx buffers to try to allocate **/ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count) { struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; struct e1000_rx_desc *rx_desc; struct e1000_rx_buffer *buffer_info; unsigned int i; unsigned int bufsz = adapter->rx_buffer_len; i = rx_ring->next_to_use; buffer_info = &rx_ring->buffer_info[i]; while (cleaned_count--) { void *data; if (buffer_info->rxbuf.data) goto skip; data = e1000_alloc_frag(adapter); if (!data) { /* Better luck next round */ adapter->alloc_rx_buff_failed++; break; } /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, data, bufsz)) { void *olddata = data; e_err(rx_err, "skb align check failed: %u bytes at " "%p\n", bufsz, data); /* Try again, without freeing the previous */ data = e1000_alloc_frag(adapter); /* Failed allocation, critical failure */ if (!data) { skb_free_frag(olddata); adapter->alloc_rx_buff_failed++; break; } if (!e1000_check_64k_bound(adapter, data, bufsz)) { /* give up */ skb_free_frag(data); skb_free_frag(olddata); adapter->alloc_rx_buff_failed++; break; } /* Use new allocation */ skb_free_frag(olddata); } buffer_info->dma = dma_map_single(&pdev->dev, data, adapter->rx_buffer_len, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { skb_free_frag(data); buffer_info->dma = 0; adapter->alloc_rx_buff_failed++; break; } /* XXX if it was allocated cleanly it will never map to a * boundary crossing */ /* Fix for errata 23, can't cross 64kB boundary */ if (!e1000_check_64k_bound(adapter, (void *)(unsigned long)buffer_info->dma, adapter->rx_buffer_len)) { e_err(rx_err, "dma align check failed: %u bytes at " "%p\n", adapter->rx_buffer_len, (void *)(unsigned long)buffer_info->dma); dma_unmap_single(&pdev->dev, buffer_info->dma, adapter->rx_buffer_len, DMA_FROM_DEVICE); skb_free_frag(data); buffer_info->rxbuf.data = NULL; buffer_info->dma = 0; adapter->alloc_rx_buff_failed++; break; } buffer_info->rxbuf.data = data; skip: rx_desc = E1000_RX_DESC(*rx_ring, i); rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); if (unlikely(++i == rx_ring->count)) i = 0; buffer_info = &rx_ring->buffer_info[i]; } if (likely(rx_ring->next_to_use != i)) { rx_ring->next_to_use = i; if (unlikely(i-- == 0)) i = (rx_ring->count - 1); /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ dma_wmb(); writel(i, hw->hw_addr + rx_ring->rdt); } } /** * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. * @adapter: address of board private structure **/ static void e1000_smartspeed(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 phy_status; u16 phy_ctrl; if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) return; if (adapter->smartspeed == 0) { /* If Master/Slave config fault is asserted twice, * we assume back-to-back */ e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); if (phy_ctrl & CR_1000T_MS_ENABLE) { phy_ctrl &= ~CR_1000T_MS_ENABLE; e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); adapter->smartspeed++; if (!e1000_phy_setup_autoneg(hw) && !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); } } return; } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { /* If still no link, perhaps using 2/3 pair cable */ e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); phy_ctrl |= CR_1000T_MS_ENABLE; e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); if (!e1000_phy_setup_autoneg(hw) && !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); } } /* Restart process after E1000_SMARTSPEED_MAX iterations */ if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) adapter->smartspeed = 0; } /** * e1000_ioctl - handle ioctl calls * @netdev: pointer to our netdev * @ifr: pointer to interface request structure * @cmd: ioctl data **/ static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return e1000_mii_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } /** * e1000_mii_ioctl - * @netdev: pointer to our netdev * @ifr: pointer to interface request structure * @cmd: ioctl data **/ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct mii_ioctl_data *data = if_mii(ifr); int retval; u16 mii_reg; unsigned long flags; if (hw->media_type != e1000_media_type_copper) return -EOPNOTSUPP; switch (cmd) { case SIOCGMIIPHY: data->phy_id = hw->phy_addr; break; case SIOCGMIIREG: spin_lock_irqsave(&adapter->stats_lock, flags); if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, &data->val_out)) { spin_unlock_irqrestore(&adapter->stats_lock, flags); return -EIO; } spin_unlock_irqrestore(&adapter->stats_lock, flags); break; case SIOCSMIIREG: if (data->reg_num & ~(0x1F)) return -EFAULT; mii_reg = data->val_in; spin_lock_irqsave(&adapter->stats_lock, flags); if (e1000_write_phy_reg(hw, data->reg_num, mii_reg)) { spin_unlock_irqrestore(&adapter->stats_lock, flags); return -EIO; } spin_unlock_irqrestore(&adapter->stats_lock, flags); if (hw->media_type == e1000_media_type_copper) { switch (data->reg_num) { case PHY_CTRL: if (mii_reg & MII_CR_POWER_DOWN) break; if (mii_reg & MII_CR_AUTO_NEG_EN) { hw->autoneg = 1; hw->autoneg_advertised = 0x2F; } else { u32 speed; if (mii_reg & 0x40) speed = SPEED_1000; else if (mii_reg & 0x2000) speed = SPEED_100; else speed = SPEED_10; retval = e1000_set_spd_dplx( adapter, speed, ((mii_reg & 0x100) ? DUPLEX_FULL : DUPLEX_HALF)); if (retval) return retval; } if (netif_running(adapter->netdev)) e1000_reinit_locked(adapter); else e1000_reset(adapter); break; case M88E1000_PHY_SPEC_CTRL: case M88E1000_EXT_PHY_SPEC_CTRL: if (e1000_phy_reset(hw)) return -EIO; break; } } else { switch (data->reg_num) { case PHY_CTRL: if (mii_reg & MII_CR_POWER_DOWN) break; if (netif_running(adapter->netdev)) e1000_reinit_locked(adapter); else e1000_reset(adapter); break; } } break; default: return -EOPNOTSUPP; } return E1000_SUCCESS; } void e1000_pci_set_mwi(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->back; int ret_val = pci_set_mwi(adapter->pdev); if (ret_val) e_err(probe, "Error in setting MWI\n"); } void e1000_pci_clear_mwi(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->back; pci_clear_mwi(adapter->pdev); } int e1000_pcix_get_mmrbc(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->back; return pcix_get_mmrbc(adapter->pdev); } void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) { struct e1000_adapter *adapter = hw->back; pcix_set_mmrbc(adapter->pdev, mmrbc); } void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) { outl(value, port); } static bool e1000_vlan_used(struct e1000_adapter *adapter) { u16 vid; for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) return true; return false; } static void __e1000_vlan_mode(struct e1000_adapter *adapter, netdev_features_t features) { struct e1000_hw *hw = &adapter->hw; u32 ctrl; ctrl = er32(CTRL); if (features & NETIF_F_HW_VLAN_CTAG_RX) { /* enable VLAN tag insert/strip */ ctrl |= E1000_CTRL_VME; } else { /* disable VLAN tag insert/strip */ ctrl &= ~E1000_CTRL_VME; } ew32(CTRL, ctrl); } static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, bool filter_on) { struct e1000_hw *hw = &adapter->hw; u32 rctl; if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_disable(adapter); __e1000_vlan_mode(adapter, adapter->netdev->features); if (filter_on) { /* enable VLAN receive filtering */ rctl = er32(RCTL); rctl &= ~E1000_RCTL_CFIEN; if (!(adapter->netdev->flags & IFF_PROMISC)) rctl |= E1000_RCTL_VFE; ew32(RCTL, rctl); e1000_update_mng_vlan(adapter); } else { /* disable VLAN receive filtering */ rctl = er32(RCTL); rctl &= ~E1000_RCTL_VFE; ew32(RCTL, rctl); } if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_enable(adapter); } static void e1000_vlan_mode(struct net_device *netdev, netdev_features_t features) { struct e1000_adapter *adapter = netdev_priv(netdev); if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_disable(adapter); __e1000_vlan_mode(adapter, features); if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_enable(adapter); } static int e1000_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 vfta, index; if ((hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && (vid == adapter->mng_vlan_id)) return 0; if (!e1000_vlan_used(adapter)) e1000_vlan_filter_on_off(adapter, true); /* add VID to filter table */ index = (vid >> 5) & 0x7F; vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); vfta |= (1 << (vid & 0x1F)); e1000_write_vfta(hw, index, vfta); set_bit(vid, adapter->active_vlans); return 0; } static int e1000_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 vfta, index; if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_disable(adapter); if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_enable(adapter); /* remove VID from filter table */ index = (vid >> 5) & 0x7F; vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); vfta &= ~(1 << (vid & 0x1F)); e1000_write_vfta(hw, index, vfta); clear_bit(vid, adapter->active_vlans); if (!e1000_vlan_used(adapter)) e1000_vlan_filter_on_off(adapter, false); return 0; } static void e1000_restore_vlan(struct e1000_adapter *adapter) { u16 vid; if (!e1000_vlan_used(adapter)) return; e1000_vlan_filter_on_off(adapter, true); for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); } int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) { struct e1000_hw *hw = &adapter->hw; hw->autoneg = 0; /* Make sure dplx is at most 1 bit and lsb of speed is not set * for the switch() below to work */ if ((spd & 1) || (dplx & ~1)) goto err_inval; /* Fiber NICs only allow 1000 gbps Full duplex */ if ((hw->media_type == e1000_media_type_fiber) && spd != SPEED_1000 && dplx != DUPLEX_FULL) goto err_inval; switch (spd + dplx) { case SPEED_10 + DUPLEX_HALF: hw->forced_speed_duplex = e1000_10_half; break; case SPEED_10 + DUPLEX_FULL: hw->forced_speed_duplex = e1000_10_full; break; case SPEED_100 + DUPLEX_HALF: hw->forced_speed_duplex = e1000_100_half; break; case SPEED_100 + DUPLEX_FULL: hw->forced_speed_duplex = e1000_100_full; break; case SPEED_1000 + DUPLEX_FULL: hw->autoneg = 1; hw->autoneg_advertised = ADVERTISE_1000_FULL; break; case SPEED_1000 + DUPLEX_HALF: /* not supported */ default: goto err_inval; } /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ hw->mdix = AUTO_ALL_MODES; return 0; err_inval: e_err(probe, "Unsupported Speed/Duplex configuration\n"); return -EINVAL; } static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 ctrl, ctrl_ext, rctl, status; u32 wufc = adapter->wol; netif_device_detach(netdev); if (netif_running(netdev)) { int count = E1000_CHECK_RESET_COUNT; while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) usleep_range(10000, 20000); WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); e1000_down(adapter); } status = er32(STATUS); if (status & E1000_STATUS_LU) wufc &= ~E1000_WUFC_LNKC; if (wufc) { e1000_setup_rctl(adapter); e1000_set_rx_mode(netdev); rctl = er32(RCTL); /* turn on all-multi mode if wake on multicast is enabled */ if (wufc & E1000_WUFC_MC) rctl |= E1000_RCTL_MPE; /* enable receives in the hardware */ ew32(RCTL, rctl | E1000_RCTL_EN); if (hw->mac_type >= e1000_82540) { ctrl = er32(CTRL); /* advertise wake from D3Cold */ #define E1000_CTRL_ADVD3WUC 0x00100000 /* phy power management enable */ #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 ctrl |= E1000_CTRL_ADVD3WUC | E1000_CTRL_EN_PHY_PWR_MGMT; ew32(CTRL, ctrl); } if (hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes) { /* keep the laser running in D3 */ ctrl_ext = er32(CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; ew32(CTRL_EXT, ctrl_ext); } ew32(WUC, E1000_WUC_PME_EN); ew32(WUFC, wufc); } else { ew32(WUC, 0); ew32(WUFC, 0); } e1000_release_manageability(adapter); *enable_wake = !!wufc; /* make sure adapter isn't asleep if manageability is enabled */ if (adapter->en_mng_pt) *enable_wake = true; if (netif_running(netdev)) e1000_free_irq(adapter); if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) pci_disable_device(pdev); return 0; } static int __maybe_unused e1000_suspend(struct device *dev) { int retval; struct pci_dev *pdev = to_pci_dev(dev); bool wake; retval = __e1000_shutdown(pdev, &wake); device_set_wakeup_enable(dev, wake); return retval; } static int __maybe_unused e1000_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 err; if (adapter->need_ioport) err = pci_enable_device(pdev); else err = pci_enable_device_mem(pdev); if (err) { pr_err("Cannot enable PCI device from suspend\n"); return err; } /* flush memory to make sure state is correct */ smp_mb__before_atomic(); clear_bit(__E1000_DISABLED, &adapter->flags); pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); if (netif_running(netdev)) { err = e1000_request_irq(adapter); if (err) return err; } e1000_power_up_phy(adapter); e1000_reset(adapter); ew32(WUS, ~0); e1000_init_manageability(adapter); if (netif_running(netdev)) e1000_up(adapter); netif_device_attach(netdev); return 0; } static void e1000_shutdown(struct pci_dev *pdev) { bool wake; __e1000_shutdown(pdev, &wake); if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, wake); pci_set_power_state(pdev, PCI_D3hot); } } #ifdef CONFIG_NET_POLL_CONTROLLER /* Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void e1000_netpoll(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); if (disable_hardirq(adapter->pdev->irq)) e1000_intr(adapter->pdev->irq, netdev); enable_irq(adapter->pdev->irq); } #endif /** * e1000_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) e1000_down(adapter); if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) pci_disable_device(pdev); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * e1000_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the e1000_resume routine. */ static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int err; if (adapter->need_ioport) err = pci_enable_device(pdev); else err = pci_enable_device_mem(pdev); if (err) { pr_err("Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } /* flush memory to make sure state is correct */ smp_mb__before_atomic(); clear_bit(__E1000_DISABLED, &adapter->flags); pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); e1000_reset(adapter); ew32(WUS, ~0); return PCI_ERS_RESULT_RECOVERED; } /** * e1000_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the e1000_resume routine. */ static void e1000_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct e1000_adapter *adapter = netdev_priv(netdev); e1000_init_manageability(adapter); if (netif_running(netdev)) { if (e1000_up(adapter)) { pr_info("can't bring device back up after reset\n"); return; } } netif_device_attach(netdev); } /* e1000_main.c */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1