Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Auke-Jan H Kok | 3550 | 53.02% | 4 | 4.12% |
Bruce W Allan | 1850 | 27.63% | 55 | 56.70% |
Dave Graham | 630 | 9.41% | 3 | 3.09% |
Alexander Duyck | 249 | 3.72% | 4 | 4.12% |
Jeff Kirsher | 88 | 1.31% | 9 | 9.28% |
Carolyn Wyborny | 85 | 1.27% | 2 | 2.06% |
Jacob E Keller | 63 | 0.94% | 1 | 1.03% |
Matthew Vick | 36 | 0.54% | 2 | 2.06% |
Tushar Dave | 34 | 0.51% | 3 | 3.09% |
Richard Alpe | 32 | 0.48% | 1 | 1.03% |
Jesse Brandeburg | 25 | 0.37% | 2 | 2.06% |
Steven La | 15 | 0.22% | 1 | 1.03% |
Bill Hayes | 10 | 0.15% | 1 | 1.03% |
Dinghao Liu | 7 | 0.10% | 1 | 1.03% |
Akeem G. Abodunrin | 6 | 0.09% | 1 | 1.03% |
Dave Ertman | 5 | 0.07% | 1 | 1.03% |
Jarod Wilson | 4 | 0.06% | 1 | 1.03% |
Chris Boot | 2 | 0.03% | 1 | 1.03% |
Roel Kluin | 2 | 0.03% | 1 | 1.03% |
Arjan van de Ven | 1 | 0.01% | 1 | 1.03% |
Daniel Mack | 1 | 0.01% | 1 | 1.03% |
Hannes Eder | 1 | 0.01% | 1 | 1.03% |
Total | 6696 | 97 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ /* 82571EB Gigabit Ethernet Controller * 82571EB Gigabit Ethernet Controller (Copper) * 82571EB Gigabit Ethernet Controller (Fiber) * 82571EB Dual Port Gigabit Mezzanine Adapter * 82571EB Quad Port Gigabit Mezzanine Adapter * 82571PT Gigabit PT Quad Port Server ExpressModule * 82572EI Gigabit Ethernet Controller (Copper) * 82572EI Gigabit Ethernet Controller (Fiber) * 82572EI Gigabit Ethernet Controller * 82573V Gigabit Ethernet Controller (Copper) * 82573E Gigabit Ethernet Controller (Copper) * 82573L Gigabit Ethernet Controller * 82574L Gigabit Network Connection * 82583V Gigabit Network Connection */ #include "e1000.h" static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); static s32 e1000_led_on_82574(struct e1000_hw *hw); static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); /** * e1000_init_phy_params_82571 - Init PHY func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; if (hw->phy.media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; return 0; } phy->addr = 1; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_82571; switch (hw->mac.type) { case e1000_82571: case e1000_82572: phy->type = e1000_phy_igp_2; break; case e1000_82573: phy->type = e1000_phy_m88; break; case e1000_82574: case e1000_82583: phy->type = e1000_phy_bm; phy->ops.acquire = e1000_get_hw_semaphore_82574; phy->ops.release = e1000_put_hw_semaphore_82574; phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; break; default: return -E1000_ERR_PHY; } /* This can only be done after all function pointers are setup. */ ret_val = e1000_get_phy_id_82571(hw); if (ret_val) { e_dbg("Error getting PHY ID\n"); return ret_val; } /* Verify phy id */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: if (phy->id != IGP01E1000_I_PHY_ID) ret_val = -E1000_ERR_PHY; break; case e1000_82573: if (phy->id != M88E1111_I_PHY_ID) ret_val = -E1000_ERR_PHY; break; case e1000_82574: case e1000_82583: if (phy->id != BME1000_E_PHY_ID_R2) ret_val = -E1000_ERR_PHY; break; default: ret_val = -E1000_ERR_PHY; break; } if (ret_val) e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); return ret_val; } /** * e1000_init_nvm_params_82571 - Init NVM func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = er32(EECD); u16 size; nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (((eecd >> 15) & 0x3) == 0x3) { nvm->type = e1000_nvm_flash_hw; nvm->word_size = 2048; /* Autonomous Flash update bit must be cleared due * to Flash update issue. */ eecd &= ~E1000_EECD_AUPDEN; ew32(EECD, eecd); break; } fallthrough; default: nvm->type = e1000_nvm_eeprom_spi; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* EEPROM access above 16k is unsupported */ if (size > 14) size = 14; nvm->word_size = BIT(size); break; } /* Function Pointers */ switch (hw->mac.type) { case e1000_82574: case e1000_82583: nvm->ops.acquire = e1000_get_hw_semaphore_82574; nvm->ops.release = e1000_put_hw_semaphore_82574; break; default: break; } return 0; } /** * e1000_init_mac_params_82571 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 swsm = 0; u32 swsm2 = 0; bool force_clear_smbi = false; /* Set media type and media-dependent function pointers */ switch (hw->adapter->pdev->device) { case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82571EB_QUAD_FIBER: hw->phy.media_type = e1000_media_type_fiber; mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_82571; mac->ops.check_for_link = e1000e_check_for_fiber_link; mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; break; case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82572EI_SERDES: hw->phy.media_type = e1000_media_type_internal_serdes; mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_82571; mac->ops.check_for_link = e1000_check_for_serdes_link_82571; mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; break; default: hw->phy.media_type = e1000_media_type_copper; mac->ops.setup_physical_interface = e1000_setup_copper_link_82571; mac->ops.check_for_link = e1000e_check_for_copper_link; mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; break; } /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Adaptive IFS supported */ mac->adaptive_ifs = true; /* MAC-specific function pointers */ switch (hw->mac.type) { case e1000_82573: mac->ops.set_lan_id = e1000_set_lan_id_single_port; mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; mac->ops.led_on = e1000e_led_on_generic; mac->ops.blink_led = e1000e_blink_led_generic; /* FWSM register */ mac->has_fwsm = true; /* ARC supported; valid only if manageability features are * enabled. */ mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK); break; case e1000_82574: case e1000_82583: mac->ops.set_lan_id = e1000_set_lan_id_single_port; mac->ops.check_mng_mode = e1000_check_mng_mode_82574; mac->ops.led_on = e1000_led_on_82574; break; default: mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; mac->ops.led_on = e1000e_led_on_generic; mac->ops.blink_led = e1000e_blink_led_generic; /* FWSM register */ mac->has_fwsm = true; break; } /* Ensure that the inter-port SWSM.SMBI lock bit is clear before * first NVM or PHY access. This should be done for single-port * devices, and for one port only on dual-port devices so that * for those devices we can still use the SMBI lock to synchronize * inter-port accesses to the PHY & NVM. */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: swsm2 = er32(SWSM2); if (!(swsm2 & E1000_SWSM2_LOCK)) { /* Only do this for the first interface on this card */ ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); force_clear_smbi = true; } else { force_clear_smbi = false; } break; default: force_clear_smbi = true; break; } if (force_clear_smbi) { /* Make sure SWSM.SMBI is clear */ swsm = er32(SWSM); if (swsm & E1000_SWSM_SMBI) { /* This bit should not be set on a first interface, and * indicates that the bootagent or EFI code has * improperly left this bit enabled */ e_dbg("Please update your 82571 Bootagent\n"); } ew32(SWSM, swsm & ~E1000_SWSM_SMBI); } /* Initialize device specific counter of SMBI acquisition timeouts. */ hw->dev_spec.e82571.smb_counter = 0; return 0; } static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; static int global_quad_port_a; /* global port a indication */ struct pci_dev *pdev = adapter->pdev; int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; s32 rc; rc = e1000_init_mac_params_82571(hw); if (rc) return rc; rc = e1000_init_nvm_params_82571(hw); if (rc) return rc; rc = e1000_init_phy_params_82571(hw); if (rc) return rc; /* tag quad port adapters first, it's used below */ switch (pdev->device) { case E1000_DEV_ID_82571EB_QUAD_COPPER: case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: case E1000_DEV_ID_82571PT_QUAD_COPPER: adapter->flags |= FLAG_IS_QUAD_PORT; /* mark the first port */ if (global_quad_port_a == 0) adapter->flags |= FLAG_IS_QUAD_PORT_A; /* Reset for multiple quad port adapters */ global_quad_port_a++; if (global_quad_port_a == 4) global_quad_port_a = 0; break; default: break; } switch (adapter->hw.mac.type) { case e1000_82571: /* these dual ports don't have WoL on port B at all */ if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || (pdev->device == E1000_DEV_ID_82571EB_SERDES) || (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && (is_port_b)) adapter->flags &= ~FLAG_HAS_WOL; /* quad ports only support WoL on port A */ if (adapter->flags & FLAG_IS_QUAD_PORT && (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) adapter->flags &= ~FLAG_HAS_WOL; /* Does not support WoL on any port */ if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) adapter->flags &= ~FLAG_HAS_WOL; break; case e1000_82573: if (pdev->device == E1000_DEV_ID_82573L) { adapter->flags |= FLAG_HAS_JUMBO_FRAMES; adapter->max_hw_frame_size = DEFAULT_JUMBO; } break; default: break; } return 0; } /** * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. **/ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_id = 0; switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* The 82571 firmware may still be configuring the PHY. * In this case, we cannot access the PHY until the * configuration is done. So we explicitly set the * PHY ID. */ phy->id = IGP01E1000_I_PHY_ID; break; case e1000_82573: return e1000e_get_phy_id(hw); case e1000_82574: case e1000_82583: ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); if (ret_val) return ret_val; phy->id = (u32)(phy_id << 16); usleep_range(20, 40); ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); if (ret_val) return ret_val; phy->id |= (u32)(phy_id); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); break; default: return -E1000_ERR_PHY; } return 0; } /** * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM **/ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) { u32 swsm; s32 sw_timeout = hw->nvm.word_size + 1; s32 fw_timeout = hw->nvm.word_size + 1; s32 i = 0; /* If we have timedout 3 times on trying to acquire * the inter-port SMBI semaphore, there is old code * operating on the other port, and it is not * releasing SMBI. Modify the number of times that * we try for the semaphore to interwork with this * older code. */ if (hw->dev_spec.e82571.smb_counter > 2) sw_timeout = 1; /* Get the SW semaphore */ while (i < sw_timeout) { swsm = er32(SWSM); if (!(swsm & E1000_SWSM_SMBI)) break; usleep_range(50, 100); i++; } if (i == sw_timeout) { e_dbg("Driver can't access device - SMBI bit is set.\n"); hw->dev_spec.e82571.smb_counter++; } /* Get the FW semaphore. */ for (i = 0; i < fw_timeout; i++) { swsm = er32(SWSM); ew32(SWSM, swsm | E1000_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (er32(SWSM) & E1000_SWSM_SWESMBI) break; usleep_range(50, 100); } if (i == fw_timeout) { /* Release semaphores */ e1000_put_hw_semaphore_82571(hw); e_dbg("Driver can't access the NVM\n"); return -E1000_ERR_NVM; } return 0; } /** * e1000_put_hw_semaphore_82571 - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM **/ static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) { u32 swsm; swsm = er32(SWSM); swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); ew32(SWSM, swsm); } /** * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore during reset. * **/ static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) { u32 extcnf_ctrl; s32 i = 0; extcnf_ctrl = er32(EXTCNF_CTRL); do { extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; ew32(EXTCNF_CTRL, extcnf_ctrl); extcnf_ctrl = er32(EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) break; usleep_range(2000, 4000); i++; } while (i < MDIO_OWNERSHIP_TIMEOUT); if (i == MDIO_OWNERSHIP_TIMEOUT) { /* Release semaphores */ e1000_put_hw_semaphore_82573(hw); e_dbg("Driver can't access the PHY\n"); return -E1000_ERR_PHY; } return 0; } /** * e1000_put_hw_semaphore_82573 - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used during reset. * **/ static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) { u32 extcnf_ctrl; extcnf_ctrl = er32(EXTCNF_CTRL); extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; ew32(EXTCNF_CTRL, extcnf_ctrl); } static DEFINE_MUTEX(swflag_mutex); /** * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM. * **/ static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) { s32 ret_val; mutex_lock(&swflag_mutex); ret_val = e1000_get_hw_semaphore_82573(hw); if (ret_val) mutex_unlock(&swflag_mutex); return ret_val; } /** * e1000_put_hw_semaphore_82574 - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM * **/ static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) { e1000_put_hw_semaphore_82573(hw); mutex_unlock(&swflag_mutex); } /** * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D0 state according to the active flag. * LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) { u32 data = er32(POEMB); if (active) data |= E1000_PHY_CTRL_D0A_LPLU; else data &= ~E1000_PHY_CTRL_D0A_LPLU; ew32(POEMB, data); return 0; } /** * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * The low power link up (lplu) state is set to the power management level D3 * when active is true, else clear lplu for D3. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) { u32 data = er32(POEMB); if (!active) { data &= ~E1000_PHY_CTRL_NOND0A_LPLU; } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { data |= E1000_PHY_CTRL_NOND0A_LPLU; } ew32(POEMB, data); return 0; } /** * e1000_acquire_nvm_82571 - Request for access to the EEPROM * @hw: pointer to the HW structure * * To gain access to the EEPROM, first we must obtain a hardware semaphore. * Then for non-82573 hardware, set the EEPROM access request bit and wait * for EEPROM access grant bit. If the access grant bit is not set, release * hardware semaphore. **/ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) { s32 ret_val; ret_val = e1000_get_hw_semaphore_82571(hw); if (ret_val) return ret_val; switch (hw->mac.type) { case e1000_82573: break; default: ret_val = e1000e_acquire_nvm(hw); break; } if (ret_val) e1000_put_hw_semaphore_82571(hw); return ret_val; } /** * e1000_release_nvm_82571 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. **/ static void e1000_release_nvm_82571(struct e1000_hw *hw) { e1000e_release_nvm(hw); e1000_put_hw_semaphore_82571(hw); } /** * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * For non-82573 silicon, write data to EEPROM at offset using SPI interface. * * If e1000e_update_nvm_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 ret_val; switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); break; case e1000_82571: case e1000_82572: ret_val = e1000e_write_nvm_spi(hw, offset, words, data); break; default: ret_val = -E1000_ERR_NVM; break; } return ret_val; } /** * e1000_update_nvm_checksum_82571 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) { u32 eecd; s32 ret_val; u16 i; ret_val = e1000e_update_nvm_checksum_generic(hw); if (ret_val) return ret_val; /* If our nvm is an EEPROM, then we're done * otherwise, commit the checksum to the flash NVM. */ if (hw->nvm.type != e1000_nvm_flash_hw) return 0; /* Check for pending operations. */ for (i = 0; i < E1000_FLASH_UPDATES; i++) { usleep_range(1000, 2000); if (!(er32(EECD) & E1000_EECD_FLUPD)) break; } if (i == E1000_FLASH_UPDATES) return -E1000_ERR_NVM; /* Reset the firmware if using STM opcode. */ if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { /* The enabling of and the actual reset must be done * in two write cycles. */ ew32(HICR, E1000_HICR_FW_RESET_ENABLE); e1e_flush(); ew32(HICR, E1000_HICR_FW_RESET); } /* Commit the write to flash */ eecd = er32(EECD) | E1000_EECD_FLUPD; ew32(EECD, eecd); for (i = 0; i < E1000_FLASH_UPDATES; i++) { usleep_range(1000, 2000); if (!(er32(EECD) & E1000_EECD_FLUPD)) break; } if (i == E1000_FLASH_UPDATES) return -E1000_ERR_NVM; return 0; } /** * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) { if (hw->nvm.type == e1000_nvm_flash_hw) e1000_fix_nvm_checksum_82571(hw); return e1000e_validate_nvm_checksum_generic(hw); } /** * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * After checking for invalid values, poll the EEPROM to ensure the previous * command has completed before trying to write the next word. After write * poll for completion. * * If e1000e_update_nvm_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eewr = 0; s32 ret_val = 0; /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { e_dbg("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } for (i = 0; i < words; i++) { eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | E1000_NVM_RW_REG_START); ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); if (ret_val) break; ew32(EEWR, eewr); ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); if (ret_val) break; } return ret_val; } /** * e1000_get_cfg_done_82571 - Poll for configuration done * @hw: pointer to the HW structure * * Reads the management control register for the config done bit to be set. **/ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; while (timeout) { if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) break; usleep_range(1000, 2000); timeout--; } if (!timeout) { e_dbg("MNG configuration cycle has not completed.\n"); return -E1000_ERR_RESET; } return 0; } /** * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D0 state according to the active flag. When activating LPLU * this function also disables smart speed and vice versa. LPLU will not be * activated unless the device autonegotiation advertisement meets standards * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function * pointer entry point only called by PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) return ret_val; if (active) { data |= IGP02E1000_PM_D0_LPLU; ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) return ret_val; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else { data &= ~IGP02E1000_PM_D0_LPLU; ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) return ret_val; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } return 0; } /** * e1000_reset_hw_82571 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. **/ static s32 e1000_reset_hw_82571(struct e1000_hw *hw) { u32 ctrl, ctrl_ext, eecd, tctl; s32 ret_val; /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000e_disable_pcie_master(hw); if (ret_val) e_dbg("PCI-E Master disable polling has failed.\n"); e_dbg("Masking off all interrupts\n"); ew32(IMC, 0xffffffff); ew32(RCTL, 0); tctl = er32(TCTL); tctl &= ~E1000_TCTL_EN; ew32(TCTL, tctl); e1e_flush(); usleep_range(10000, 11000); /* Must acquire the MDIO ownership before MAC reset. * Ownership defaults to firmware after a reset. */ switch (hw->mac.type) { case e1000_82573: ret_val = e1000_get_hw_semaphore_82573(hw); break; case e1000_82574: case e1000_82583: ret_val = e1000_get_hw_semaphore_82574(hw); break; default: break; } ctrl = er32(CTRL); e_dbg("Issuing a global reset to MAC\n"); ew32(CTRL, ctrl | E1000_CTRL_RST); /* Must release MDIO ownership and mutex after MAC reset. */ switch (hw->mac.type) { case e1000_82573: /* Release mutex only if the hw semaphore is acquired */ if (!ret_val) e1000_put_hw_semaphore_82573(hw); break; case e1000_82574: case e1000_82583: /* Release mutex only if the hw semaphore is acquired */ if (!ret_val) e1000_put_hw_semaphore_82574(hw); break; default: break; } if (hw->nvm.type == e1000_nvm_flash_hw) { usleep_range(10, 20); ctrl_ext = er32(CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; ew32(CTRL_EXT, ctrl_ext); e1e_flush(); } ret_val = e1000e_get_auto_rd_done(hw); if (ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. * Need to wait for Phy configuration completion before accessing * NVM and Phy. */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* REQ and GNT bits need to be cleared when using AUTO_RD * to access the EEPROM. */ eecd = er32(EECD); eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); ew32(EECD, eecd); break; case e1000_82573: case e1000_82574: case e1000_82583: msleep(25); break; default: break; } /* Clear any pending interrupt events. */ ew32(IMC, 0xffffffff); er32(ICR); if (hw->mac.type == e1000_82571) { /* Install any alternate MAC address into RAR0 */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) return ret_val; e1000e_set_laa_state_82571(hw, true); } /* Reinitialize the 82571 serdes link state machine */ if (hw->phy.media_type == e1000_media_type_internal_serdes) hw->mac.serdes_link_state = e1000_serdes_link_down; return 0; } /** * e1000_init_hw_82571 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ static s32 e1000_init_hw_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 reg_data; s32 ret_val; u16 i, rar_count = mac->rar_entry_count; e1000_initialize_hw_bits_82571(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) e_dbg("Error initializing identification LED\n"); /* Disabling VLAN filtering */ e_dbg("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); /* Setup the receive address. * If, however, a locally administered address was assigned to the * 82571, we must reserve a RAR for it to work around an issue where * resetting one port will reload the MAC on the other port. */ if (e1000e_get_laa_state_82571(hw)) rar_count--; e1000e_init_rx_addrs(hw, rar_count); /* Zero out the Multicast HASH table */ e_dbg("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); /* Set the transmit descriptor write-back policy */ reg_data = er32(TXDCTL(0)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); ew32(TXDCTL(0), reg_data); /* ...for both queues. */ switch (mac->type) { case e1000_82573: e1000e_enable_tx_pkt_filtering(hw); fallthrough; case e1000_82574: case e1000_82583: reg_data = er32(GCR); reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; ew32(GCR, reg_data); break; default: reg_data = er32(TXDCTL(1)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); ew32(TXDCTL(1), reg_data); break; } /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82571(hw); return ret_val; } /** * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits * @hw: pointer to the HW structure * * Initializes required hardware-dependent bits needed for normal operation. **/ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) { u32 reg; /* Transmit Descriptor Control 0 */ reg = er32(TXDCTL(0)); reg |= BIT(22); ew32(TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = er32(TXDCTL(1)); reg |= BIT(22); ew32(TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = er32(TARC(0)); reg &= ~(0xF << 27); /* 30:27 */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26); break; case e1000_82574: case e1000_82583: reg |= BIT(26); break; default: break; } ew32(TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = er32(TARC(1)); switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg &= ~(BIT(29) | BIT(30)); reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26); if (er32(TCTL) & E1000_TCTL_MULR) reg &= ~BIT(28); else reg |= BIT(28); ew32(TARC(1), reg); break; default: break; } /* Device Control */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: reg = er32(CTRL); reg &= ~BIT(29); ew32(CTRL, reg); break; default: break; } /* Extended Device Control */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: reg = er32(CTRL_EXT); reg &= ~BIT(23); reg |= BIT(22); ew32(CTRL_EXT, reg); break; default: break; } if (hw->mac.type == e1000_82571) { reg = er32(PBA_ECC); reg |= E1000_PBA_ECC_CORR_EN; ew32(PBA_ECC, reg); } /* Workaround for hardware errata. * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 */ if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { reg = er32(CTRL_EXT); reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; ew32(CTRL_EXT, reg); } /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ if (hw->mac.type <= e1000_82573) { reg = er32(RFCTL); reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); ew32(RFCTL, reg); } /* PCI-Ex Control Registers */ switch (hw->mac.type) { case e1000_82574: case e1000_82583: reg = er32(GCR); reg |= BIT(22); ew32(GCR, reg); /* Workaround for hardware errata. * apply workaround for hardware errata documented in errata * docs Fixes issue where some error prone or unreliable PCIe * completions are occurring, particularly with ASPM enabled. * Without fix, issue can cause Tx timeouts. */ reg = er32(GCR2); reg |= 1; ew32(GCR2, reg); break; default: break; } } /** * e1000_clear_vfta_82571 - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ static void e1000_clear_vfta_82571(struct e1000_hw *hw) { u32 offset; u32 vfta_value = 0; u32 vfta_offset = 0; u32 vfta_bit_in_reg = 0; switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (hw->mng_cookie.vlan_id != 0) { /* The VFTA is a 4096b bit-field, each identifying * a single VLAN ID. The following operations * determine which 32b entry (i.e. offset) into the * array we want to set the VLAN ID (i.e. bit) of * the manageability unit. */ vfta_offset = (hw->mng_cookie.vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; vfta_bit_in_reg = BIT(hw->mng_cookie.vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); } break; default: break; } for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { /* If the offset we want to clear is the same offset of the * manageability VLAN ID, then clear all bits except that of * the manageability unit. */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); e1e_flush(); } } /** * e1000_check_mng_mode_82574 - Check manageability is enabled * @hw: pointer to the HW structure * * Reads the NVM Initialization Control Word 2 and returns true * (>0) if any manageability is enabled, else false (0). **/ static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) { u16 data; e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; } /** * e1000_led_on_82574 - Turn LED on * @hw: pointer to the HW structure * * Turn LED on. **/ static s32 e1000_led_on_82574(struct e1000_hw *hw) { u32 ctrl; u32 i; ctrl = hw->mac.ledctl_mode2; if (!(E1000_STATUS_LU & er32(STATUS))) { /* If no link, then turn LED on by setting the invert bit * for each LED that's "on" (0x0E) in ledctl_mode2. */ for (i = 0; i < 4; i++) if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == E1000_LEDCTL_MODE_LED_ON) ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); } ew32(LEDCTL, ctrl); return 0; } /** * e1000_check_phy_82574 - check 82574 phy hung state * @hw: pointer to the HW structure * * Returns whether phy is hung or not **/ bool e1000_check_phy_82574(struct e1000_hw *hw) { u16 status_1kbt = 0; u16 receive_errors = 0; s32 ret_val; /* Read PHY Receive Error counter first, if its is max - all F's then * read the Base1000T status register If both are max then PHY is hung. */ ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); if (ret_val) return false; if (receive_errors == E1000_RECEIVE_ERROR_MAX) { ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); if (ret_val) return false; if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == E1000_IDLE_ERROR_COUNT_MASK) return true; } return false; } /** * e1000_setup_link_82571 - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ static s32 e1000_setup_link_82571(struct e1000_hw *hw) { /* 82573 does not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (hw->fc.requested_mode == e1000_fc_default) hw->fc.requested_mode = e1000_fc_full; break; default: break; } return e1000e_setup_link_generic(hw); } /** * e1000_setup_copper_link_82571 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. **/ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; ctrl = er32(CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ew32(CTRL, ctrl); switch (hw->phy.type) { case e1000_phy_m88: case e1000_phy_bm: ret_val = e1000e_copper_link_setup_m88(hw); break; case e1000_phy_igp_2: ret_val = e1000e_copper_link_setup_igp(hw); break; default: return -E1000_ERR_PHY; } if (ret_val) return ret_val; return e1000e_setup_copper_link(hw); } /** * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes * @hw: pointer to the HW structure * * Configures collision distance and flow control for fiber and serdes links. * Upon successful setup, poll for link. **/ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) { switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* If SerDes loopback mode is entered, there is no form * of reset to take the adapter out of that mode. So we * have to explicitly take the adapter out of loopback * mode. This prevents drivers from twiddling their thumbs * if another tool failed to take it out of loopback mode. */ ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); break; default: break; } return e1000e_setup_fiber_serdes_link(hw); } /** * e1000_check_for_serdes_link_82571 - Check for link (Serdes) * @hw: pointer to the HW structure * * Reports the link state as up or down. * * If autonegotiation is supported by the link partner, the link state is * determined by the result of autonegotiation. This is the most likely case. * If autonegotiation is not supported by the link partner, and the link * has a valid signal, force the link up. * * The link state is represented internally here by 4 states: * * 1) down * 2) autoneg_progress * 3) autoneg_complete (the link successfully autonegotiated) * 4) forced_up (the link has been forced up, it did not autonegotiate) * **/ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw; u32 ctrl; u32 status; u32 txcw; u32 i; s32 ret_val = 0; ctrl = er32(CTRL); status = er32(STATUS); er32(RXCW); /* SYNCH bit and IV bit are sticky */ usleep_range(10, 20); rxcw = er32(RXCW); if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { /* Receiver is synchronized with no invalid bits. */ switch (mac->serdes_link_state) { case e1000_serdes_link_autoneg_complete: if (!(status & E1000_STATUS_LU)) { /* We have lost link, retry autoneg before * reporting link failure */ mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = false; e_dbg("AN_UP -> AN_PROG\n"); } else { mac->serdes_has_link = true; } break; case e1000_serdes_link_forced_up: /* If we are receiving /C/ ordered sets, re-enable * auto-negotiation in the TXCW register and disable * forced link in the Device Control register in an * attempt to auto-negotiate with our link partner. */ if (rxcw & E1000_RXCW_C) { /* Enable autoneg, and unforce link up */ ew32(TXCW, mac->txcw); ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = false; e_dbg("FORCED_UP -> AN_PROG\n"); } else { mac->serdes_has_link = true; } break; case e1000_serdes_link_autoneg_progress: if (rxcw & E1000_RXCW_C) { /* We received /C/ ordered sets, meaning the * link partner has autonegotiated, and we can * trust the Link Up (LU) status bit. */ if (status & E1000_STATUS_LU) { mac->serdes_link_state = e1000_serdes_link_autoneg_complete; e_dbg("AN_PROG -> AN_UP\n"); mac->serdes_has_link = true; } else { /* Autoneg completed, but failed. */ mac->serdes_link_state = e1000_serdes_link_down; e_dbg("AN_PROG -> DOWN\n"); } } else { /* The link partner did not autoneg. * Force link up and full duplex, and change * state to forced. */ ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); ew32(CTRL, ctrl); /* Configure Flow Control after link up. */ ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val) { e_dbg("Error config flow control\n"); break; } mac->serdes_link_state = e1000_serdes_link_forced_up; mac->serdes_has_link = true; e_dbg("AN_PROG -> FORCED_UP\n"); } break; case e1000_serdes_link_down: default: /* The link was down but the receiver has now gained * valid sync, so lets see if we can bring the link * up. */ ew32(TXCW, mac->txcw); ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = false; e_dbg("DOWN -> AN_PROG\n"); break; } } else { if (!(rxcw & E1000_RXCW_SYNCH)) { mac->serdes_has_link = false; mac->serdes_link_state = e1000_serdes_link_down; e_dbg("ANYSTATE -> DOWN\n"); } else { /* Check several times, if SYNCH bit and CONFIG * bit both are consistently 1 then simply ignore * the IV bit and restart Autoneg */ for (i = 0; i < AN_RETRY_COUNT; i++) { usleep_range(10, 20); rxcw = er32(RXCW); if ((rxcw & E1000_RXCW_SYNCH) && (rxcw & E1000_RXCW_C)) continue; if (rxcw & E1000_RXCW_IV) { mac->serdes_has_link = false; mac->serdes_link_state = e1000_serdes_link_down; e_dbg("ANYSTATE -> DOWN\n"); break; } } if (i == AN_RETRY_COUNT) { txcw = er32(TXCW); txcw |= E1000_TXCW_ANE; ew32(TXCW, txcw); mac->serdes_link_state = e1000_serdes_link_autoneg_progress; mac->serdes_has_link = false; e_dbg("ANYSTATE -> AN_PROG\n"); } } } return ret_val; } /** * e1000_valid_led_default_82571 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) { s32 ret_val; ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { e_dbg("NVM Read Error\n"); return ret_val; } switch (hw->mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: if (*data == ID_LED_RESERVED_F746) *data = ID_LED_DEFAULT_82573; break; default: if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT; break; } return 0; } /** * e1000e_get_laa_state_82571 - Get locally administered address state * @hw: pointer to the HW structure * * Retrieve and return the current locally administered address state. **/ bool e1000e_get_laa_state_82571(struct e1000_hw *hw) { if (hw->mac.type != e1000_82571) return false; return hw->dev_spec.e82571.laa_is_present; } /** * e1000e_set_laa_state_82571 - Set locally administered address state * @hw: pointer to the HW structure * @state: enable/disable locally administered address * * Enable/Disable the current locally administered address state. **/ void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) { if (hw->mac.type != e1000_82571) return; hw->dev_spec.e82571.laa_is_present = state; /* If workaround is activated... */ if (state) /* Hold a copy of the LAA in RAR[14] This is done so that * between the time RAR[0] gets clobbered and the time it * gets fixed, the actual LAA is in one of the RARs and no * incoming packets directed to this port are dropped. * Eventually the LAA will be in RAR[0] and RAR[14]. */ hw->mac.ops.rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); } /** * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum * @hw: pointer to the HW structure * * Verifies that the EEPROM has completed the update. After updating the * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If * the checksum fix is not implemented, we need to set the bit and update * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, * we need to return bad checksum. **/ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val; u16 data; if (nvm->type != e1000_nvm_flash_hw) return 0; /* Check bit 4 of word 10h. If it is 0, firmware is done updating * 10h-12h. Checksum may need to be fixed. */ ret_val = e1000_read_nvm(hw, 0x10, 1, &data); if (ret_val) return ret_val; if (!(data & 0x10)) { /* Read 0x23 and check bit 15. This bit is a 1 * when the checksum has already been fixed. If * the checksum is still wrong and this bit is a * 1, we need to return bad checksum. Otherwise, * we need to set this bit to a 1 and update the * checksum. */ ret_val = e1000_read_nvm(hw, 0x23, 1, &data); if (ret_val) return ret_val; if (!(data & 0x8000)) { data |= 0x8000; ret_val = e1000_write_nvm(hw, 0x23, 1, &data); if (ret_val) return ret_val; ret_val = e1000e_update_nvm_checksum(hw); if (ret_val) return ret_val; } } return 0; } /** * e1000_read_mac_addr_82571 - Read device MAC address * @hw: pointer to the HW structure **/ static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) { if (hw->mac.type == e1000_82571) { s32 ret_val; /* If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) return ret_val; } return e1000_read_mac_addr_generic(hw); } /** * e1000_power_down_phy_copper_82571 - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; struct e1000_mac_info *mac = &hw->mac; if (!phy->ops.check_reset_block) return; /* If the management interface is not enabled, then power down */ if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); } /** * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) { e1000e_clear_hw_cntrs_base(hw); er32(PRC64); er32(PRC127); er32(PRC255); er32(PRC511); er32(PRC1023); er32(PRC1522); er32(PTC64); er32(PTC127); er32(PTC255); er32(PTC511); er32(PTC1023); er32(PTC1522); er32(ALGNERRC); er32(RXERRC); er32(TNCRS); er32(CEXTERR); er32(TSCTC); er32(TSCTFC); er32(MGTPRC); er32(MGTPDC); er32(MGTPTC); er32(IAC); er32(ICRXOC); er32(ICRXPTC); er32(ICRXATC); er32(ICTXPTC); er32(ICTXATC); er32(ICTXQEC); er32(ICTXQMTC); er32(ICRXDMTC); } static const struct e1000_mac_operations e82571_mac_ops = { /* .check_mng_mode: mac type dependent */ /* .check_for_link: media type dependent */ .id_led_init = e1000e_id_led_init_generic, .cleanup_led = e1000e_cleanup_led_generic, .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, .get_bus_info = e1000e_get_bus_info_pcie, .set_lan_id = e1000_set_lan_id_multi_port_pcie, /* .get_link_up_info: media type dependent */ /* .led_on: mac type dependent */ .led_off = e1000e_led_off_generic, .update_mc_addr_list = e1000e_update_mc_addr_list_generic, .write_vfta = e1000_write_vfta_generic, .clear_vfta = e1000_clear_vfta_82571, .reset_hw = e1000_reset_hw_82571, .init_hw = e1000_init_hw_82571, .setup_link = e1000_setup_link_82571, /* .setup_physical_interface: media type dependent */ .setup_led = e1000e_setup_led_generic, .config_collision_dist = e1000e_config_collision_dist_generic, .read_mac_addr = e1000_read_mac_addr_82571, .rar_set = e1000e_rar_set_generic, .rar_get_count = e1000e_rar_get_count_generic, }; static const struct e1000_phy_operations e82_phy_ops_igp = { .acquire = e1000_get_hw_semaphore_82571, .check_polarity = e1000_check_polarity_igp, .check_reset_block = e1000e_check_reset_block_generic, .commit = NULL, .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, .get_cfg_done = e1000_get_cfg_done_82571, .get_cable_length = e1000e_get_cable_length_igp_2, .get_info = e1000e_get_phy_info_igp, .read_reg = e1000e_read_phy_reg_igp, .release = e1000_put_hw_semaphore_82571, .reset = e1000e_phy_hw_reset_generic, .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, .set_d3_lplu_state = e1000e_set_d3_lplu_state, .write_reg = e1000e_write_phy_reg_igp, .cfg_on_link_up = NULL, }; static const struct e1000_phy_operations e82_phy_ops_m88 = { .acquire = e1000_get_hw_semaphore_82571, .check_polarity = e1000_check_polarity_m88, .check_reset_block = e1000e_check_reset_block_generic, .commit = e1000e_phy_sw_reset, .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, .get_cfg_done = e1000e_get_cfg_done_generic, .get_cable_length = e1000e_get_cable_length_m88, .get_info = e1000e_get_phy_info_m88, .read_reg = e1000e_read_phy_reg_m88, .release = e1000_put_hw_semaphore_82571, .reset = e1000e_phy_hw_reset_generic, .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, .set_d3_lplu_state = e1000e_set_d3_lplu_state, .write_reg = e1000e_write_phy_reg_m88, .cfg_on_link_up = NULL, }; static const struct e1000_phy_operations e82_phy_ops_bm = { .acquire = e1000_get_hw_semaphore_82571, .check_polarity = e1000_check_polarity_m88, .check_reset_block = e1000e_check_reset_block_generic, .commit = e1000e_phy_sw_reset, .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, .get_cfg_done = e1000e_get_cfg_done_generic, .get_cable_length = e1000e_get_cable_length_m88, .get_info = e1000e_get_phy_info_m88, .read_reg = e1000e_read_phy_reg_bm2, .release = e1000_put_hw_semaphore_82571, .reset = e1000e_phy_hw_reset_generic, .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, .set_d3_lplu_state = e1000e_set_d3_lplu_state, .write_reg = e1000e_write_phy_reg_bm2, .cfg_on_link_up = NULL, }; static const struct e1000_nvm_operations e82571_nvm_ops = { .acquire = e1000_acquire_nvm_82571, .read = e1000e_read_nvm_eerd, .release = e1000_release_nvm_82571, .reload = e1000e_reload_nvm_generic, .update = e1000_update_nvm_checksum_82571, .valid_led_default = e1000_valid_led_default_82571, .validate = e1000_validate_nvm_checksum_82571, .write = e1000_write_nvm_82571, }; const struct e1000_info e1000_82571_info = { .mac = e1000_82571, .flags = FLAG_HAS_HW_VLAN_FILTER | FLAG_HAS_JUMBO_FRAMES | FLAG_HAS_WOL | FLAG_APME_IN_CTRL3 | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_SMART_POWER_DOWN | FLAG_RESET_OVERWRITES_LAA /* errata */ | FLAG_TARC_SPEED_MODE_BIT /* errata */ | FLAG_APME_CHECK_PORT_B, .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ | FLAG2_DMA_BURST, .pba = 38, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_82571, .mac_ops = &e82571_mac_ops, .phy_ops = &e82_phy_ops_igp, .nvm_ops = &e82571_nvm_ops, }; const struct e1000_info e1000_82572_info = { .mac = e1000_82572, .flags = FLAG_HAS_HW_VLAN_FILTER | FLAG_HAS_JUMBO_FRAMES | FLAG_HAS_WOL | FLAG_APME_IN_CTRL3 | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_TARC_SPEED_MODE_BIT, /* errata */ .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ | FLAG2_DMA_BURST, .pba = 38, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_82571, .mac_ops = &e82571_mac_ops, .phy_ops = &e82_phy_ops_igp, .nvm_ops = &e82571_nvm_ops, }; const struct e1000_info e1000_82573_info = { .mac = e1000_82573, .flags = FLAG_HAS_HW_VLAN_FILTER | FLAG_HAS_WOL | FLAG_APME_IN_CTRL3 | FLAG_HAS_SMART_POWER_DOWN | FLAG_HAS_AMT | FLAG_HAS_SWSM_ON_LOAD, .flags2 = FLAG2_DISABLE_ASPM_L1 | FLAG2_DISABLE_ASPM_L0S, .pba = 20, .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, .get_variants = e1000_get_variants_82571, .mac_ops = &e82571_mac_ops, .phy_ops = &e82_phy_ops_m88, .nvm_ops = &e82571_nvm_ops, }; const struct e1000_info e1000_82574_info = { .mac = e1000_82574, .flags = FLAG_HAS_HW_VLAN_FILTER | FLAG_HAS_MSIX | FLAG_HAS_JUMBO_FRAMES | FLAG_HAS_WOL | FLAG_HAS_HW_TIMESTAMP | FLAG_APME_IN_CTRL3 | FLAG_HAS_SMART_POWER_DOWN | FLAG_HAS_AMT | FLAG_HAS_CTRLEXT_ON_LOAD, .flags2 = FLAG2_CHECK_PHY_HANG | FLAG2_DISABLE_ASPM_L0S | FLAG2_DISABLE_ASPM_L1 | FLAG2_NO_DISABLE_RX | FLAG2_DMA_BURST | FLAG2_CHECK_SYSTIM_OVERFLOW, .pba = 32, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_82571, .mac_ops = &e82571_mac_ops, .phy_ops = &e82_phy_ops_bm, .nvm_ops = &e82571_nvm_ops, }; const struct e1000_info e1000_82583_info = { .mac = e1000_82583, .flags = FLAG_HAS_HW_VLAN_FILTER | FLAG_HAS_WOL | FLAG_HAS_HW_TIMESTAMP | FLAG_APME_IN_CTRL3 | FLAG_HAS_SMART_POWER_DOWN | FLAG_HAS_AMT | FLAG_HAS_JUMBO_FRAMES | FLAG_HAS_CTRLEXT_ON_LOAD, .flags2 = FLAG2_DISABLE_ASPM_L0S | FLAG2_DISABLE_ASPM_L1 | FLAG2_NO_DISABLE_RX | FLAG2_CHECK_SYSTIM_OVERFLOW, .pba = 32, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_82571, .mac_ops = &e82571_mac_ops, .phy_ops = &e82_phy_ops_bm, .nvm_ops = &e82571_nvm_ops, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1