Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Piotr Kwapulinski | 4224 | 69.11% | 1 | 2.44% |
Jacob E Keller | 1805 | 29.53% | 24 | 58.54% |
Miroslav Lichvar | 21 | 0.34% | 2 | 4.88% |
Jesse Brandeburg | 15 | 0.25% | 3 | 7.32% |
Shannon Nelson | 15 | 0.25% | 2 | 4.88% |
Jakub Kiciński | 13 | 0.21% | 1 | 2.44% |
Nico Pitre | 6 | 0.10% | 1 | 2.44% |
Richard Cochran | 5 | 0.08% | 1 | 2.44% |
Jeff Kirsher | 4 | 0.07% | 3 | 7.32% |
Mitch A Williams | 2 | 0.03% | 1 | 2.44% |
Patryk Małek | 1 | 0.02% | 1 | 2.44% |
Mark Rutland | 1 | 0.02% | 1 | 2.44% |
Total | 6112 | 41 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "i40e.h" #include <linux/ptp_classify.h> #include <linux/posix-clock.h> /* The XL710 timesync is very much like Intel's 82599 design when it comes to * the fundamental clock design. However, the clock operations are much simpler * in the XL710 because the device supports a full 64 bits of nanoseconds. * Because the field is so wide, we can forgo the cycle counter and just * operate with the nanosecond field directly without fear of overflow. * * Much like the 82599, the update period is dependent upon the link speed: * At 40Gb, 25Gb, or no link, the period is 1.6ns. * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns) * At 1Gb link, the period is multiplied by 20. (32ns) * 1588 functionality is not supported at 100Mbps. */ #define I40E_PTP_40GB_INCVAL 0x0199999999ULL #define I40E_PTP_10GB_INCVAL_MULT 2 #define I40E_PTP_5GB_INCVAL_MULT 2 #define I40E_PTP_1GB_INCVAL_MULT 20 #define I40E_ISGN 0x80000000 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) #define I40E_SUBDEV_ID_25G_PTP_PIN 0xB enum i40e_ptp_pin { SDP3_2 = 0, SDP3_3, GPIO_4 }; enum i40e_can_set_pins_t { CANT_DO_PINS = -1, CAN_SET_PINS, CAN_DO_PINS }; static struct ptp_pin_desc sdp_desc[] = { /* name idx func chan */ {"SDP3_2", SDP3_2, PTP_PF_NONE, 0}, {"SDP3_3", SDP3_3, PTP_PF_NONE, 1}, {"GPIO_4", GPIO_4, PTP_PF_NONE, 1}, }; enum i40e_ptp_gpio_pin_state { end = -2, invalid, off, in_A, in_B, out_A, out_B, }; static const char * const i40e_ptp_gpio_pin_state2str[] = { "off", "in_A", "in_B", "out_A", "out_B" }; enum i40e_ptp_led_pin_state { led_end = -2, low = 0, high, }; struct i40e_ptp_pins_settings { enum i40e_ptp_gpio_pin_state sdp3_2; enum i40e_ptp_gpio_pin_state sdp3_3; enum i40e_ptp_gpio_pin_state gpio_4; enum i40e_ptp_led_pin_state led2_0; enum i40e_ptp_led_pin_state led2_1; enum i40e_ptp_led_pin_state led3_0; enum i40e_ptp_led_pin_state led3_1; }; static const struct i40e_ptp_pins_settings i40e_ptp_pin_led_allowed_states[] = { {off, off, off, high, high, high, high}, {off, in_A, off, high, high, high, low}, {off, out_A, off, high, low, high, high}, {off, in_B, off, high, high, high, low}, {off, out_B, off, high, low, high, high}, {in_A, off, off, high, high, high, low}, {in_A, in_B, off, high, high, high, low}, {in_A, out_B, off, high, low, high, high}, {out_A, off, off, high, low, high, high}, {out_A, in_B, off, high, low, high, high}, {in_B, off, off, high, high, high, low}, {in_B, in_A, off, high, high, high, low}, {in_B, out_A, off, high, low, high, high}, {out_B, off, off, high, low, high, high}, {out_B, in_A, off, high, low, high, high}, {off, off, in_A, high, high, low, high}, {off, out_A, in_A, high, low, low, high}, {off, in_B, in_A, high, high, low, low}, {off, out_B, in_A, high, low, low, high}, {out_A, off, in_A, high, low, low, high}, {out_A, in_B, in_A, high, low, low, high}, {in_B, off, in_A, high, high, low, low}, {in_B, out_A, in_A, high, low, low, high}, {out_B, off, in_A, high, low, low, high}, {off, off, out_A, low, high, high, high}, {off, in_A, out_A, low, high, high, low}, {off, in_B, out_A, low, high, high, low}, {off, out_B, out_A, low, low, high, high}, {in_A, off, out_A, low, high, high, low}, {in_A, in_B, out_A, low, high, high, low}, {in_A, out_B, out_A, low, low, high, high}, {in_B, off, out_A, low, high, high, low}, {in_B, in_A, out_A, low, high, high, low}, {out_B, off, out_A, low, low, high, high}, {out_B, in_A, out_A, low, low, high, high}, {off, off, in_B, high, high, low, high}, {off, in_A, in_B, high, high, low, low}, {off, out_A, in_B, high, low, low, high}, {off, out_B, in_B, high, low, low, high}, {in_A, off, in_B, high, high, low, low}, {in_A, out_B, in_B, high, low, low, high}, {out_A, off, in_B, high, low, low, high}, {out_B, off, in_B, high, low, low, high}, {out_B, in_A, in_B, high, low, low, high}, {off, off, out_B, low, high, high, high}, {off, in_A, out_B, low, high, high, low}, {off, out_A, out_B, low, low, high, high}, {off, in_B, out_B, low, high, high, low}, {in_A, off, out_B, low, high, high, low}, {in_A, in_B, out_B, low, high, high, low}, {out_A, off, out_B, low, low, high, high}, {out_A, in_B, out_B, low, low, high, high}, {in_B, off, out_B, low, high, high, low}, {in_B, in_A, out_B, low, high, high, low}, {in_B, out_A, out_B, low, low, high, high}, {end, end, end, led_end, led_end, led_end, led_end} }; static int i40e_ptp_set_pins(struct i40e_pf *pf, struct i40e_ptp_pins_settings *pins); /** * i40e_ptp_extts0_work - workqueue task function * @work: workqueue task structure * * Service for PTP external clock event **/ static void i40e_ptp_extts0_work(struct work_struct *work) { struct i40e_pf *pf = container_of(work, struct i40e_pf, ptp_extts0_work); struct i40e_hw *hw = &pf->hw; struct ptp_clock_event event; u32 hi, lo; /* Event time is captured by one of the two matched registers * PRTTSYN_EVNT_L: 32 LSB of sampled time event * PRTTSYN_EVNT_H: 32 MSB of sampled time event * Event is defined in PRTTSYN_EVNT_0 register */ lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0)); hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0)); event.timestamp = (((u64)hi) << 32) | lo; event.type = PTP_CLOCK_EXTTS; event.index = hw->pf_id; /* fire event */ ptp_clock_event(pf->ptp_clock, &event); } /** * i40e_is_ptp_pin_dev - check if device supports PTP pins * @hw: pointer to the hardware structure * * Return true if device supports PTP pins, false otherwise. **/ static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw) { return hw->device_id == I40E_DEV_ID_25G_SFP28 && hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN; } /** * i40e_can_set_pins - check possibility of manipulating the pins * @pf: board private structure * * Check if all conditions are satisfied to manipulate PTP pins. * Return CAN_SET_PINS if pins can be set on a specific PF or * return CAN_DO_PINS if pins can be manipulated within a NIC or * return CANT_DO_PINS otherwise. **/ static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf) { if (!i40e_is_ptp_pin_dev(&pf->hw)) { dev_warn(&pf->pdev->dev, "PTP external clock not supported.\n"); return CANT_DO_PINS; } if (!pf->ptp_pins) { dev_warn(&pf->pdev->dev, "PTP PIN manipulation not allowed.\n"); return CANT_DO_PINS; } if (pf->hw.pf_id) { dev_warn(&pf->pdev->dev, "PTP PINs should be accessed via PF0.\n"); return CAN_DO_PINS; } return CAN_SET_PINS; } /** * i40_ptp_reset_timing_events - Reset PTP timing events * @pf: Board private structure * * This function resets timing events for pf. **/ static void i40_ptp_reset_timing_events(struct i40e_pf *pf) { u32 i; spin_lock_bh(&pf->ptp_rx_lock); for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) { /* reading and automatically clearing timing events registers */ rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i)); rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i)); pf->latch_events[i] = 0; } /* reading and automatically clearing timing events registers */ rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L); rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H); pf->tx_hwtstamp_timeouts = 0; pf->tx_hwtstamp_skipped = 0; pf->rx_hwtstamp_cleared = 0; pf->latch_event_flags = 0; spin_unlock_bh(&pf->ptp_rx_lock); } /** * i40e_ptp_verify - check pins * @ptp: ptp clock * @pin: pin index * @func: assigned function * @chan: channel * * Check pins consistency. * Return 0 on success or error on failure. **/ static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: case PTP_PF_PEROUT: break; case PTP_PF_PHYSYNC: return -EOPNOTSUPP; } return 0; } /** * i40e_ptp_read - Read the PHC time from the device * @pf: Board private structure * @ts: timespec structure to hold the current time value * @sts: structure to hold the system time before and after reading the PHC * * This function reads the PRTTSYN_TIME registers and stores them in a * timespec. However, since the registers are 64 bits of nanoseconds, we must * convert the result to a timespec before we can return. **/ static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct i40e_hw *hw = &pf->hw; u32 hi, lo; u64 ns; /* The timer latches on the lowest register read. */ ptp_read_system_prets(sts); lo = rd32(hw, I40E_PRTTSYN_TIME_L); ptp_read_system_postts(sts); hi = rd32(hw, I40E_PRTTSYN_TIME_H); ns = (((u64)hi) << 32) | lo; *ts = ns_to_timespec64(ns); } /** * i40e_ptp_write - Write the PHC time to the device * @pf: Board private structure * @ts: timespec structure that holds the new time value * * This function writes the PRTTSYN_TIME registers with the user value. Since * we receive a timespec from the stack, we must convert that timespec into * nanoseconds before programming the registers. **/ static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) { struct i40e_hw *hw = &pf->hw; u64 ns = timespec64_to_ns(ts); /* The timer will not update until the high register is written, so * write the low register first. */ wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); } /** * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time * @hwtstamps: Timestamp structure to update * @timestamp: Timestamp from the hardware * * We need to convert the NIC clock value into a hwtstamp which can be used by * the upper level timestamping functions. Since the timestamp is simply a 64- * bit nanosecond value, we can call ns_to_ktime directly to handle this. **/ static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, u64 timestamp) { memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(timestamp); } /** * i40e_ptp_adjfine - Adjust the PHC frequency * @ptp: The PTP clock structure * @scaled_ppm: Scaled parts per million adjustment from base * * Adjust the frequency of the PHC by the indicated delta from the base * frequency. * * Scaled parts per million is ppm with a 16 bit binary fractional field. **/ static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); struct i40e_hw *hw = &pf->hw; u64 adj, freq, diff; int neg_adj = 0; if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } smp_mb(); /* Force any pending update before accessing. */ freq = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult); diff = mul_u64_u64_div_u64(freq, (u64)scaled_ppm, 1000000ULL << 16); if (neg_adj) adj = I40E_PTP_40GB_INCVAL - diff; else adj = I40E_PTP_40GB_INCVAL + diff; wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); return 0; } /** * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins * @pf: the PF private data structure * * Configure 1PPS signal used for PTP pins **/ static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; struct timespec64 now; u64 ns; wr32(hw, I40E_PRTTSYN_AUX_0(1), 0); wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE); i40e_ptp_read(pf, &now, NULL); now.tv_sec += I40E_PTP_2_SEC_DELAY; now.tv_nsec = 0; ns = timespec64_to_ns(&now); /* I40E_PRTTSYN_TGT_L(1) */ wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF); /* I40E_PRTTSYN_TGT_H(1) */ wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32); wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND); wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT); wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD); } /** * i40e_ptp_adjtime - Adjust the PHC time * @ptp: The PTP clock structure * @delta: Offset in nanoseconds to adjust the PHC time by * * Adjust the current clock time by a delta specified in nanoseconds. **/ static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); struct i40e_hw *hw = &pf->hw; mutex_lock(&pf->tmreg_lock); if (delta > -999999900LL && delta < 999999900LL) { int neg_adj = 0; u32 timadj; u64 tohw; if (delta < 0) { neg_adj = 1; tohw = -delta; } else { tohw = delta; } timadj = tohw & 0x3FFFFFFF; if (neg_adj) timadj |= I40E_ISGN; wr32(hw, I40E_PRTTSYN_ADJ, timadj); } else { struct timespec64 then, now; then = ns_to_timespec64(delta); i40e_ptp_read(pf, &now, NULL); now = timespec64_add(now, then); i40e_ptp_write(pf, (const struct timespec64 *)&now); i40e_ptp_set_1pps_signal_hw(pf); } mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_gettimex - Get the time of the PHC * @ptp: The PTP clock structure * @ts: timespec structure to hold the current time value * @sts: structure to hold the system time before and after reading the PHC * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. **/ static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); mutex_lock(&pf->tmreg_lock); i40e_ptp_read(pf, ts, sts); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_ptp_settime - Set the time of the PHC * @ptp: The PTP clock structure * @ts: timespec64 structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. **/ static int i40e_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); mutex_lock(&pf->tmreg_lock); i40e_ptp_write(pf, ts); mutex_unlock(&pf->tmreg_lock); return 0; } /** * i40e_pps_configure - configure PPS events * @ptp: ptp clock * @rq: clock request * @on: status * * Configure PPS events for external clock source. * Return 0 on success or error on failure. **/ static int i40e_pps_configure(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); if (!!on) i40e_ptp_set_1pps_signal_hw(pf); return 0; } /** * i40e_pin_state - determine PIN state * @index: PIN index * @func: function assigned to PIN * * Determine PIN state based on PIN index and function assigned. * Return PIN state. **/ static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func) { enum i40e_ptp_gpio_pin_state state = off; if (index == 0 && func == PTP_PF_EXTTS) state = in_A; if (index == 1 && func == PTP_PF_EXTTS) state = in_B; if (index == 0 && func == PTP_PF_PEROUT) state = out_A; if (index == 1 && func == PTP_PF_PEROUT) state = out_B; return state; } /** * i40e_ptp_enable_pin - enable PINs. * @pf: private board structure * @chan: channel * @func: PIN function * @on: state * * Enable PTP pins for external clock source. * Return 0 on success or error code on failure. **/ static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan, enum ptp_pin_function func, int on) { enum i40e_ptp_gpio_pin_state *pin = NULL; struct i40e_ptp_pins_settings pins; int pin_index; /* Use PF0 to set pins. Return success for user space tools */ if (pf->hw.pf_id) return 0; /* Preserve previous state of pins that we don't touch */ pins.sdp3_2 = pf->ptp_pins->sdp3_2; pins.sdp3_3 = pf->ptp_pins->sdp3_3; pins.gpio_4 = pf->ptp_pins->gpio_4; /* To turn on the pin - find the corresponding one based on * the given index. To to turn the function off - find * which pin had it assigned. Don't use ptp_find_pin here * because it tries to lock the pincfg_mux which is locked by * ptp_pin_store() that calls here. */ if (on) { pin_index = ptp_find_pin(pf->ptp_clock, func, chan); if (pin_index < 0) return -EBUSY; switch (pin_index) { case SDP3_2: pin = &pins.sdp3_2; break; case SDP3_3: pin = &pins.sdp3_3; break; case GPIO_4: pin = &pins.gpio_4; break; default: return -EINVAL; } *pin = i40e_pin_state(chan, func); } else { pins.sdp3_2 = off; pins.sdp3_3 = off; pins.gpio_4 = off; } return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0; } /** * i40e_ptp_feature_enable - Enable external clock pins * @ptp: The PTP clock structure * @rq: The PTP clock request structure * @on: To turn feature on/off * * Setting on/off PTP PPS feature for pin. **/ static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); enum ptp_pin_function func; unsigned int chan; /* TODO: Implement flags handling for EXTTS and PEROUT */ switch (rq->type) { case PTP_CLK_REQ_EXTTS: func = PTP_PF_EXTTS; chan = rq->extts.index; break; case PTP_CLK_REQ_PEROUT: func = PTP_PF_PEROUT; chan = rq->perout.index; break; case PTP_CLK_REQ_PPS: return i40e_pps_configure(ptp, rq, on); default: return -EOPNOTSUPP; } return i40e_ptp_enable_pin(pf, chan, func, on); } /** * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events * @pf: the PF data structure * * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers * for noticed latch events. This allows the driver to keep track of the first * time a latch event was noticed which will be used to help clear out Rx * timestamps for packets that got dropped or lost. * * This function will return the current value of I40E_PRTTSYN_STAT_1 and is * expected to be called only while under the ptp_rx_lock. **/ static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 prttsyn_stat, new_latch_events; int i; prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); new_latch_events = prttsyn_stat & ~pf->latch_event_flags; /* Update the jiffies time for any newly latched timestamp. This * ensures that we store the time that we first discovered a timestamp * was latched by the hardware. The service task will later determine * if we should free the latch and drop that timestamp should too much * time pass. This flow ensures that we only update jiffies for new * events latched since the last time we checked, and not all events * currently latched, so that the service task accounting remains * accurate. */ for (i = 0; i < 4; i++) { if (new_latch_events & BIT(i)) pf->latch_events[i] = jiffies; } /* Finally, we store the current status of the Rx timestamp latches */ pf->latch_event_flags = prttsyn_stat; return prttsyn_stat; } /** * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung * @pf: The PF private data structure * * This watchdog task is scheduled to detect error case where hardware has * dropped an Rx packet that was timestamped when the ring is full. The * particular error is rare but leaves the device in a state unable to timestamp * any future packets. **/ void i40e_ptp_rx_hang(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; unsigned int i, cleared = 0; /* Since we cannot turn off the Rx timestamp logic if the device is * configured for Tx timestamping, we check if Rx timestamping is * configured. We don't want to spuriously warn about Rx timestamp * hangs if we don't care about the timestamps. */ if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) return; spin_lock_bh(&pf->ptp_rx_lock); /* Update current latch times for Rx events */ i40e_ptp_get_rx_events(pf); /* Check all the currently latched Rx events and see whether they have * been latched for over a second. It is assumed that any timestamp * should have been cleared within this time, or else it was captured * for a dropped frame that the driver never received. Thus, we will * clear any timestamp that has been latched for over 1 second. */ for (i = 0; i < 4; i++) { if ((pf->latch_event_flags & BIT(i)) && time_is_before_jiffies(pf->latch_events[i] + HZ)) { rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); pf->latch_event_flags &= ~BIT(i); cleared++; } } spin_unlock_bh(&pf->ptp_rx_lock); /* Log a warning if more than 2 timestamps got dropped in the same * check. We don't want to warn about all drops because it can occur * in normal scenarios such as PTP frames on multicast addresses we * aren't listening to. However, administrator should know if this is * the reason packets aren't receiving timestamps. */ if (cleared > 2) dev_dbg(&pf->pdev->dev, "Dropped %d missed RXTIME timestamp events\n", cleared); /* Finally, update the rx_hwtstamp_cleared counter */ pf->rx_hwtstamp_cleared += cleared; } /** * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung * @pf: The PF private data structure * * This watchdog task is run periodically to make sure that we clear the Tx * timestamp logic if we don't obtain a timestamp in a reasonable amount of * time. It is unexpected in the normal case but if it occurs it results in * permanently preventing timestamps of future packets. **/ void i40e_ptp_tx_hang(struct i40e_pf *pf) { struct sk_buff *skb; if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) return; /* Nothing to do if we're not already waiting for a timestamp */ if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) return; /* We already have a handler routine which is run when we are notified * of a Tx timestamp in the hardware. If we don't get an interrupt * within a second it is reasonable to assume that we never will. */ if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { skb = pf->ptp_tx_skb; pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); /* Free the skb after we clear the bitlock */ dev_kfree_skb_any(skb); pf->tx_hwtstamp_timeouts++; } } /** * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp * @pf: Board private structure * * Read the value of the Tx timestamp from the registers, convert it into a * value consumable by the stack, and store that result into the shhwtstamps * struct before returning it up the stack. **/ void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) { struct skb_shared_hwtstamps shhwtstamps; struct sk_buff *skb = pf->ptp_tx_skb; struct i40e_hw *hw = &pf->hw; u32 hi, lo; u64 ns; if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) return; /* don't attempt to timestamp if we don't have an skb */ if (!pf->ptp_tx_skb) return; lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); ns = (((u64)hi) << 32) | lo; i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); /* Clear the bit lock as soon as possible after reading the register, * and prior to notifying the stack via skb_tstamp_tx(). Otherwise * applications might wake up and attempt to request another transmit * timestamp prior to the bit lock being cleared. */ pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); /* Notify the stack and free the skb after we've unlocked */ skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp * @pf: Board private structure * @skb: Particular skb to send timestamp with * @index: Index into the receive timestamp registers for the timestamp * * The XL710 receives a notification in the receive descriptor with an offset * into the set of RXTIME registers where the timestamp is for that skb. This * function goes and fetches the receive timestamp from that offset, if a valid * one exists. The RXTIME registers are in ns, so we must convert the result * first. **/ void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) { u32 prttsyn_stat, hi, lo; struct i40e_hw *hw; u64 ns; /* Since we cannot turn off the Rx timestamp logic if the device is * doing Tx timestamping, check if Rx timestamping is configured. */ if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) return; hw = &pf->hw; spin_lock_bh(&pf->ptp_rx_lock); /* Get current Rx events and update latch times */ prttsyn_stat = i40e_ptp_get_rx_events(pf); /* TODO: Should we warn about missing Rx timestamp event? */ if (!(prttsyn_stat & BIT(index))) { spin_unlock_bh(&pf->ptp_rx_lock); return; } /* Clear the latched event since we're about to read its register */ pf->latch_event_flags &= ~BIT(index); lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); spin_unlock_bh(&pf->ptp_rx_lock); ns = (((u64)hi) << 32) | lo; i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); } /** * i40e_ptp_set_increment - Utility function to update clock increment rate * @pf: Board private structure * * During a link change, the DMA frequency that drives the 1588 logic will * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, * we must update the increment value per clock tick. **/ void i40e_ptp_set_increment(struct i40e_pf *pf) { struct i40e_link_status *hw_link_info; struct i40e_hw *hw = &pf->hw; u64 incval; u32 mult; hw_link_info = &hw->phy.link_info; i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); switch (hw_link_info->link_speed) { case I40E_LINK_SPEED_10GB: mult = I40E_PTP_10GB_INCVAL_MULT; break; case I40E_LINK_SPEED_5GB: mult = I40E_PTP_5GB_INCVAL_MULT; break; case I40E_LINK_SPEED_1GB: mult = I40E_PTP_1GB_INCVAL_MULT; break; case I40E_LINK_SPEED_100MB: { static int warn_once; if (!warn_once) { dev_warn(&pf->pdev->dev, "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); warn_once++; } mult = 0; break; } case I40E_LINK_SPEED_40GB: default: mult = 1; break; } /* The increment value is calculated by taking the base 40GbE incvalue * and multiplying it by a factor based on the link speed. */ incval = I40E_PTP_40GB_INCVAL * mult; /* Write the new increment value into the increment register. The * hardware will not update the clock until both registers have been * written. */ wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); /* Update the base adjustement value. */ WRITE_ONCE(pf->ptp_adj_mult, mult); smp_mb(); /* Force the above update. */ } /** * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping * @pf: Board private structure * @ifr: ioctl data * * Obtain the current hardware timestamping settigs as requested. To do this, * keep a shadow copy of the timestamp settings rather than attempting to * deconstruct it from the registers. **/ int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config = &pf->tstamp_config; if (!(pf->flags & I40E_FLAG_PTP)) return -EOPNOTSUPP; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * i40e_ptp_free_pins - free memory used by PTP pins * @pf: Board private structure * * Release memory allocated for PTP pins. **/ static void i40e_ptp_free_pins(struct i40e_pf *pf) { if (i40e_is_ptp_pin_dev(&pf->hw)) { kfree(pf->ptp_pins); kfree(pf->ptp_caps.pin_config); pf->ptp_pins = NULL; } } /** * i40e_ptp_set_pin_hw - Set HW GPIO pin * @hw: pointer to the hardware structure * @pin: pin index * @state: pin state * * Set status of GPIO pin for external clock handling. **/ static void i40e_ptp_set_pin_hw(struct i40e_hw *hw, unsigned int pin, enum i40e_ptp_gpio_pin_state state) { switch (state) { case off: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0); break; case in_A: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0); break; case in_B: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0); break; case out_A: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1); break; case out_B: wr32(hw, I40E_GLGEN_GPIO_CTL(pin), I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1); break; default: break; } } /** * i40e_ptp_set_led_hw - Set HW GPIO led * @hw: pointer to the hardware structure * @led: led index * @state: led state * * Set status of GPIO led for external clock handling. **/ static void i40e_ptp_set_led_hw(struct i40e_hw *hw, unsigned int led, enum i40e_ptp_led_pin_state state) { switch (state) { case low: wr32(hw, I40E_GLGEN_GPIO_SET, I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led); break; case high: wr32(hw, I40E_GLGEN_GPIO_SET, I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led); break; default: break; } } /** * i40e_ptp_init_leds_hw - init LEDs * @hw: pointer to a hardware structure * * Set initial state of LEDs **/ static void i40e_ptp_init_leds_hw(struct i40e_hw *hw) { wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0), I40E_GLGEN_GPIO_CTL_LED_INIT); wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1), I40E_GLGEN_GPIO_CTL_LED_INIT); wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0), I40E_GLGEN_GPIO_CTL_LED_INIT); wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1), I40E_GLGEN_GPIO_CTL_LED_INIT); } /** * i40e_ptp_set_pins_hw - Set HW GPIO pins * @pf: Board private structure * * This function sets GPIO pins for PTP **/ static void i40e_ptp_set_pins_hw(struct i40e_pf *pf) { const struct i40e_ptp_pins_settings *pins = pf->ptp_pins; struct i40e_hw *hw = &pf->hw; /* pin must be disabled before it may be used */ i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2); i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3); i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4); i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0); i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1); i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0); i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1); dev_info(&pf->pdev->dev, "PTP configuration set to: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", i40e_ptp_gpio_pin_state2str[pins->sdp3_2], i40e_ptp_gpio_pin_state2str[pins->sdp3_3], i40e_ptp_gpio_pin_state2str[pins->gpio_4]); } /** * i40e_ptp_set_pins - set PTP pins in HW * @pf: Board private structure * @pins: PTP pins to be applied * * Validate and set PTP pins in HW for specific PF. * Return 0 on success or negative value on error. **/ static int i40e_ptp_set_pins(struct i40e_pf *pf, struct i40e_ptp_pins_settings *pins) { enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf); int i = 0; if (pin_caps == CANT_DO_PINS) return -EOPNOTSUPP; else if (pin_caps == CAN_DO_PINS) return 0; if (pins->sdp3_2 == invalid) pins->sdp3_2 = pf->ptp_pins->sdp3_2; if (pins->sdp3_3 == invalid) pins->sdp3_3 = pf->ptp_pins->sdp3_3; if (pins->gpio_4 == invalid) pins->gpio_4 = pf->ptp_pins->gpio_4; while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) { if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 && pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 && pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) { pins->led2_0 = i40e_ptp_pin_led_allowed_states[i].led2_0; pins->led2_1 = i40e_ptp_pin_led_allowed_states[i].led2_1; pins->led3_0 = i40e_ptp_pin_led_allowed_states[i].led3_0; pins->led3_1 = i40e_ptp_pin_led_allowed_states[i].led3_1; break; } i++; } if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) { dev_warn(&pf->pdev->dev, "Unsupported PTP pin configuration: SDP3_2: %s, SDP3_3: %s, GPIO_4: %s.\n", i40e_ptp_gpio_pin_state2str[pins->sdp3_2], i40e_ptp_gpio_pin_state2str[pins->sdp3_3], i40e_ptp_gpio_pin_state2str[pins->gpio_4]); return -EPERM; } memcpy(pf->ptp_pins, pins, sizeof(*pins)); i40e_ptp_set_pins_hw(pf); i40_ptp_reset_timing_events(pf); return 0; } /** * i40e_ptp_alloc_pins - allocate PTP pins structure * @pf: Board private structure * * allocate PTP pins structure **/ int i40e_ptp_alloc_pins(struct i40e_pf *pf) { if (!i40e_is_ptp_pin_dev(&pf->hw)) return 0; pf->ptp_pins = kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL); if (!pf->ptp_pins) { dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n"); return -I40E_ERR_NO_MEMORY; } pf->ptp_pins->sdp3_2 = off; pf->ptp_pins->sdp3_3 = off; pf->ptp_pins->gpio_4 = off; pf->ptp_pins->led2_0 = high; pf->ptp_pins->led2_1 = high; pf->ptp_pins->led3_0 = high; pf->ptp_pins->led3_1 = high; /* Use PF0 to set pins in HW. Return success for user space tools */ if (pf->hw.pf_id) return 0; i40e_ptp_init_leds_hw(&pf->hw); i40e_ptp_set_pins_hw(pf); return 0; } /** * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved * * Control hardware registers to enter the specific mode requested by the * user. Also used during reset path to ensure that timestamp settings are * maintained. * * Note: modifies config in place, and may update the requested mode to be * more broad if the specific filter is not directly supported. **/ static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, struct hwtstamp_config *config) { struct i40e_hw *hw = &pf->hw; u32 tsyntype, regval; /* Selects external trigger to cause event */ regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); /* Bit 17:16 is EVNTLVL, 01B rising edge */ regval &= 0; regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT); /* regval: 0001 0000 0000 0000 0000 */ wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); /* Enabel interrupts */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT; wr32(hw, I40E_PRTTSYN_CTL0, regval); INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work); switch (config->tx_type) { case HWTSTAMP_TX_OFF: pf->ptp_tx = false; break; case HWTSTAMP_TX_ON: pf->ptp_tx = true; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: pf->ptp_rx = false; /* We set the type to V1, but do not enable UDP packet * recognition. In this way, we should be as close to * disabling PTP Rx timestamps as possible since V1 packets * are always UDP, since L2 packets are a V2 feature. */ tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) return -ERANGE; pf->ptp_rx = true; tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | I40E_PRTTSYN_CTL1_UDP_ENA_MASK; config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) return -ERANGE; fallthrough; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: pf->ptp_rx = true; tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | I40E_PRTTSYN_CTL1_TSYNTYPE_V2; if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) { tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; } else { config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; } break; case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: default: return -ERANGE; } /* Clear out all 1588-related registers to clear and unlatch them. */ spin_lock_bh(&pf->ptp_rx_lock); rd32(hw, I40E_PRTTSYN_STAT_0); rd32(hw, I40E_PRTTSYN_TXTIME_H); rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); pf->latch_event_flags = 0; spin_unlock_bh(&pf->ptp_rx_lock); /* Enable/disable the Tx timestamp interrupt based on user input. */ regval = rd32(hw, I40E_PRTTSYN_CTL0); if (pf->ptp_tx) regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; else regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); regval = rd32(hw, I40E_PFINT_ICR0_ENA); if (pf->ptp_tx) regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; else regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, regval); /* Although there is no simple on/off switch for Rx, we "disable" Rx * timestamps by setting to V1 only mode and clear the UDP * recognition. This ought to disable all PTP Rx timestamps as V1 * packets are always over UDP. Note that software is configured to * ignore Rx timestamps via the pf->ptp_rx flag. */ regval = rd32(hw, I40E_PRTTSYN_CTL1); /* clear everything but the enable bit */ regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; /* now enable bits for desired Rx timestamps */ regval |= tsyntype; wr32(hw, I40E_PRTTSYN_CTL1, regval); return 0; } /** * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping * @pf: Board private structure * @ifr: ioctl data * * Respond to the user filter requests and make the appropriate hardware * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping * logic, so keep track in software of whether to indicate these timestamps * or not. * * It is permissible to "upgrade" the user request to a broader filter, as long * as the user receives the timestamps they care about and the user is notified * the filter has been broadened. **/ int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (!(pf->flags & I40E_FLAG_PTP)) return -EOPNOTSUPP; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = i40e_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* save these settings for future reference */ pf->tstamp_config = config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * i40e_init_pin_config - initialize pins. * @pf: private board structure * * Initialize pins for external clock source. * Return 0 on success or error code on failure. **/ static int i40e_init_pin_config(struct i40e_pf *pf) { int i; pf->ptp_caps.n_pins = 3; pf->ptp_caps.n_ext_ts = 2; pf->ptp_caps.pps = 1; pf->ptp_caps.n_per_out = 2; pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins, sizeof(*pf->ptp_caps.pin_config), GFP_KERNEL); if (!pf->ptp_caps.pin_config) return -ENOMEM; for (i = 0; i < pf->ptp_caps.n_pins; i++) { snprintf(pf->ptp_caps.pin_config[i].name, sizeof(pf->ptp_caps.pin_config[i].name), "%s", sdp_desc[i].name); pf->ptp_caps.pin_config[i].index = sdp_desc[i].index; pf->ptp_caps.pin_config[i].func = PTP_PF_NONE; pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan; } pf->ptp_caps.verify = i40e_ptp_verify; pf->ptp_caps.enable = i40e_ptp_feature_enable; pf->ptp_caps.pps = 1; return 0; } /** * i40e_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one, so it is safe to call. Will return error if it * can't create one, but success if we already have a device. Should be used * by i40e_ptp_init to create clock initially, and prevent global resets from * creating new clock devices. **/ static long i40e_ptp_create_clock(struct i40e_pf *pf) { /* no need to create a clock device if we already have one */ if (!IS_ERR_OR_NULL(pf->ptp_clock)) return 0; strlcpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name) - 1); pf->ptp_caps.owner = THIS_MODULE; pf->ptp_caps.max_adj = 999999999; pf->ptp_caps.adjfine = i40e_ptp_adjfine; pf->ptp_caps.adjtime = i40e_ptp_adjtime; pf->ptp_caps.gettimex64 = i40e_ptp_gettimex; pf->ptp_caps.settime64 = i40e_ptp_settime; if (i40e_is_ptp_pin_dev(&pf->hw)) { int err = i40e_init_pin_config(pf); if (err) return err; } /* Attempt to register the clock before enabling the hardware. */ pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); if (IS_ERR(pf->ptp_clock)) return PTR_ERR(pf->ptp_clock); /* clear the hwtstamp settings here during clock create, instead of * during regular init, so that we can maintain settings across a * reset or suspend. */ pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; /* Set the previous "reset" time to the current Kernel clock time */ ktime_get_real_ts64(&pf->ptp_prev_hw_time); pf->ptp_reset_start = ktime_get(); return 0; } /** * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time * @pf: Board private structure * * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should * be called at the end of preparing to reset, just before hardware reset * occurs, in order to preserve the PTP time as close as possible across * resets. */ void i40e_ptp_save_hw_time(struct i40e_pf *pf) { /* don't try to access the PTP clock if it's not enabled */ if (!(pf->flags & I40E_FLAG_PTP)) return; i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL); /* Get a monotonic starting time for this reset */ pf->ptp_reset_start = ktime_get(); } /** * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs * @pf: Board private structure * * Restore the PTP hardware clock registers. We previously cached the PTP * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible, * update this value based on the time delta since the time was saved, using * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference. * * This ensures that the hardware clock is restored to nearly what it should * have been if a reset had not occurred. */ void i40e_ptp_restore_hw_time(struct i40e_pf *pf) { ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start); /* Update the previous HW time with the ktime delta */ timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta)); /* Restore the hardware clock registers */ i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time); } /** * i40e_ptp_init - Initialize the 1588 support after device probe or reset * @pf: Board private structure * * This function sets device up for 1588 support. The first time it is run, it * will create a PHC clock device. It does not create a clock device if one * already exists. It also reconfigures the device after a reset. * * The first time a clock is created, i40e_ptp_create_clock will set * pf->ptp_prev_hw_time to the current system time. During resets, it is * expected that this timespec will be set to the last known PTP clock time, * in order to preserve the clock time as close as possible across a reset. **/ void i40e_ptp_init(struct i40e_pf *pf) { struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; struct i40e_hw *hw = &pf->hw; u32 pf_id; long err; /* Only one PF is assigned to control 1588 logic per port. Do not * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID */ pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> I40E_PRTTSYN_CTL0_PF_ID_SHIFT; if (hw->pf_id != pf_id) { pf->flags &= ~I40E_FLAG_PTP; dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", __func__, netdev->name); return; } mutex_init(&pf->tmreg_lock); spin_lock_init(&pf->ptp_rx_lock); /* ensure we have a clock device */ err = i40e_ptp_create_clock(pf); if (err) { pf->ptp_clock = NULL; dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", __func__); } else if (pf->ptp_clock) { u32 regval; if (pf->hw.debug_mask & I40E_DEBUG_LAN) dev_info(&pf->pdev->dev, "PHC enabled\n"); pf->flags |= I40E_FLAG_PTP; /* Ensure the clocks are running. */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); regval = rd32(hw, I40E_PRTTSYN_CTL1); regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; wr32(hw, I40E_PRTTSYN_CTL1, regval); /* Set the increment value per clock tick. */ i40e_ptp_set_increment(pf); /* reset timestamping mode */ i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); /* Restore the clock time based on last known value */ i40e_ptp_restore_hw_time(pf); } i40e_ptp_set_1pps_signal_hw(pf); } /** * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the PHC. **/ void i40e_ptp_stop(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 regval; pf->flags &= ~I40E_FLAG_PTP; pf->ptp_tx = false; pf->ptp_rx = false; if (pf->ptp_tx_skb) { struct sk_buff *skb = pf->ptp_tx_skb; pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); dev_kfree_skb_any(skb); } if (pf->ptp_clock) { ptp_clock_unregister(pf->ptp_clock); pf->ptp_clock = NULL; dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, pf->vsi[pf->lan_vsi]->netdev->name); } if (i40e_is_ptp_pin_dev(&pf->hw)) { i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off); i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off); i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off); } regval = rd32(hw, I40E_PRTTSYN_AUX_0(0)); regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK; wr32(hw, I40E_PRTTSYN_AUX_0(0), regval); /* Disable interrupts */ regval = rd32(hw, I40E_PRTTSYN_CTL0); regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK; wr32(hw, I40E_PRTTSYN_CTL0, regval); i40e_ptp_free_pins(pf); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1