Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob E Keller | 2913 | 70.06% | 14 | 48.28% |
Cudzilo, Szymon T | 560 | 13.47% | 1 | 3.45% |
Anirudh Venkataramanan | 545 | 13.11% | 4 | 13.79% |
Tony Nguyen | 105 | 2.53% | 3 | 10.34% |
Md Fahad Iqbal Polash | 21 | 0.51% | 1 | 3.45% |
Jianglei Nie | 5 | 0.12% | 1 | 3.45% |
Bruce W Allan | 4 | 0.10% | 3 | 10.34% |
Jakub Kiciński | 3 | 0.07% | 1 | 3.45% |
Dan Nowlin | 2 | 0.05% | 1 | 3.45% |
Total | 4158 | 29 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include <linux/vmalloc.h> #include "ice_common.h" /** * ice_aq_read_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be read (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @read_shadow_ram: tell if this is a shadow RAM read * @cd: pointer to command details structure or NULL * * Read the NVM using the admin queue commands (0x0701) */ static int ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, void *data, bool last_command, bool read_shadow_ram, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; cmd = &desc.params.nvm; if (offset > ICE_AQC_NVM_MAX_OFFSET) return -EINVAL; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read); if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT) cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY; /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; cmd->module_typeid = cpu_to_le16(module_typeid); cmd->offset_low = cpu_to_le16(offset & 0xFFFF); cmd->offset_high = (offset >> 16) & 0xFF; cmd->length = cpu_to_le16(length); return ice_aq_send_cmd(hw, &desc, data, length, cd); } /** * ice_read_flat_nvm - Read portion of NVM by flat offset * @hw: pointer to the HW struct * @offset: offset from beginning of NVM * @length: (in) number of bytes to read; (out) number of bytes actually read * @data: buffer to return data in (sized to fit the specified length) * @read_shadow_ram: if true, read from shadow RAM instead of NVM * * Reads a portion of the NVM, as a flat memory space. This function correctly * breaks read requests across Shadow RAM sectors and ensures that no single * read request exceeds the maximum 4KB read for a single AdminQ command. * * Returns a status code on failure. Note that the data pointer may be * partially updated if some reads succeed before a failure. */ int ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data, bool read_shadow_ram) { u32 inlen = *length; u32 bytes_read = 0; bool last_cmd; int status; *length = 0; /* Verify the length of the read if this is for the Shadow RAM */ if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) { ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n"); return -EINVAL; } do { u32 read_size, sector_offset; /* ice_aq_read_nvm cannot read more than 4KB at a time. * Additionally, a read from the Shadow RAM may not cross over * a sector boundary. Conveniently, the sector size is also * 4KB. */ sector_offset = offset % ICE_AQ_MAX_BUF_LEN; read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset, inlen - bytes_read); last_cmd = !(bytes_read + read_size < inlen); status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, offset, read_size, data + bytes_read, last_cmd, read_shadow_ram, NULL); if (status) break; bytes_read += read_size; offset += read_size; } while (!last_cmd); *length = bytes_read; return status; } /** * ice_aq_update_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be written (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @command_flags: command parameters * @cd: pointer to command details structure or NULL * * Update the NVM using the admin queue commands (0x0703) */ int ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, void *data, bool last_command, u8 command_flags, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; cmd = &desc.params.nvm; /* In offset the highest byte must be zeroed. */ if (offset & 0xFF000000) return -EINVAL; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write); cmd->cmd_flags |= command_flags; /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; cmd->module_typeid = cpu_to_le16(module_typeid); cmd->offset_low = cpu_to_le16(offset & 0xFFFF); cmd->offset_high = (offset >> 16) & 0xFF; cmd->length = cpu_to_le16(length); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); return ice_aq_send_cmd(hw, &desc, data, length, cd); } /** * ice_aq_erase_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @cd: pointer to command details structure or NULL * * Erase the NVM sector using the admin queue commands (0x0702) */ int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; cmd = &desc.params.nvm; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase); cmd->module_typeid = cpu_to_le16(module_typeid); cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN); cmd->offset_low = 0; cmd->offset_high = 0; return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * ice_read_sr_word_aq - Reads Shadow RAM via AQ * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm. */ static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data) { u32 bytes = sizeof(u16); __le16 data_local; int status; /* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and * Shadow RAM sector restrictions necessary when reading from the NVM. */ status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes, (__force u8 *)&data_local, true); if (status) return status; *data = le16_to_cpu(data_local); return 0; } /** * ice_acquire_nvm - Generic request for acquiring the NVM ownership * @hw: pointer to the HW structure * @access: NVM access type (read or write) * * This function will request NVM ownership. */ int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access) { if (hw->flash.blank_nvm_mode) return 0; return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT); } /** * ice_release_nvm - Generic request for releasing the NVM ownership * @hw: pointer to the HW structure * * This function will release NVM ownership. */ void ice_release_nvm(struct ice_hw *hw) { if (hw->flash.blank_nvm_mode) return; ice_release_res(hw, ICE_NVM_RES_ID); } /** * ice_get_flash_bank_offset - Get offset into requested flash bank * @hw: pointer to the HW structure * @bank: whether to read from the active or inactive flash bank * @module: the module to read from * * Based on the module, lookup the module offset from the beginning of the * flash. * * Returns the flash offset. Note that a value of zero is invalid and must be * treated as an error. */ static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module) { struct ice_bank_info *banks = &hw->flash.banks; enum ice_flash_bank active_bank; bool second_bank_active; u32 offset, size; switch (module) { case ICE_SR_1ST_NVM_BANK_PTR: offset = banks->nvm_ptr; size = banks->nvm_size; active_bank = banks->nvm_bank; break; case ICE_SR_1ST_OROM_BANK_PTR: offset = banks->orom_ptr; size = banks->orom_size; active_bank = banks->orom_bank; break; case ICE_SR_NETLIST_BANK_PTR: offset = banks->netlist_ptr; size = banks->netlist_size; active_bank = banks->netlist_bank; break; default: ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module); return 0; } switch (active_bank) { case ICE_1ST_FLASH_BANK: second_bank_active = false; break; case ICE_2ND_FLASH_BANK: second_bank_active = true; break; default: ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n", active_bank); return 0; } /* The second flash bank is stored immediately following the first * bank. Based on whether the 1st or 2nd bank is active, and whether * we want the active or inactive bank, calculate the desired offset. */ switch (bank) { case ICE_ACTIVE_FLASH_BANK: return offset + (second_bank_active ? size : 0); case ICE_INACTIVE_FLASH_BANK: return offset + (second_bank_active ? 0 : size); } ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank); return 0; } /** * ice_read_flash_module - Read a word from one of the main NVM modules * @hw: pointer to the HW structure * @bank: which bank of the module to read * @module: the module to read * @offset: the offset into the module in bytes * @data: storage for the word read from the flash * @length: bytes of data to read * * Read data from the specified flash module. The bank parameter indicates * whether or not to read from the active bank or the inactive bank of that * module. * * The word will be read using flat NVM access, and relies on the * hw->flash.banks data being setup by ice_determine_active_flash_banks() * during initialization. */ static int ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module, u32 offset, u8 *data, u32 length) { int status; u32 start; start = ice_get_flash_bank_offset(hw, bank, module); if (!start) { ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n", module); return -EINVAL; } status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; status = ice_read_flat_nvm(hw, start + offset, &length, data, false); ice_release_nvm(hw); return status; } /** * ice_read_nvm_module - Read from the active main NVM module * @hw: pointer to the HW structure * @bank: whether to read from active or inactive NVM module * @offset: offset into the NVM module to read, in words * @data: storage for returned word value * * Read the specified word from the active NVM module. This includes the CSS * header at the start of the NVM module. */ static int ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { __le16 data_local; int status; status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16), (__force u8 *)&data_local, sizeof(u16)); if (!status) *data = le16_to_cpu(data_local); return status; } /** * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank * @hw: pointer to the HW structure * @bank: whether to read from the active or inactive NVM module * @offset: offset into the Shadow RAM copy to read, in words * @data: storage for returned word value * * Read the specified word from the copy of the Shadow RAM found in the * specified NVM module. */ static int ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data); } /** * ice_read_netlist_module - Read data from the netlist module area * @hw: pointer to the HW structure * @bank: whether to read from the active or inactive module * @offset: offset into the netlist to read from * @data: storage for returned word value * * Read a word from the specified netlist bank. */ static int ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data) { __le16 data_local; int status; status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16), (__force u8 *)&data_local, sizeof(u16)); if (!status) *data = le16_to_cpu(data_local); return status; } /** * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq. */ int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data) { int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (!status) { status = ice_read_sr_word_aq(hw, offset, data); ice_release_nvm(hw); } return status; } /** * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA * @hw: pointer to hardware structure * @module_tlv: pointer to module TLV to return * @module_tlv_len: pointer to module TLV length to return * @module_type: module type requested * * Finds the requested sub module TLV type from the Preserved Field * Area (PFA) and returns the TLV pointer and length. The caller can * use these to read the variable length TLV value. */ int ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len, u16 module_type) { u16 pfa_len, pfa_ptr; u16 next_tlv; int status; status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr); if (status) { ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n"); return status; } status = ice_read_sr_word(hw, pfa_ptr, &pfa_len); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n"); return status; } /* Starting with first TLV after PFA length, iterate through the list * of TLVs to find the requested one. */ next_tlv = pfa_ptr + 1; while (next_tlv < pfa_ptr + pfa_len) { u16 tlv_sub_module_type; u16 tlv_len; /* Read TLV type */ status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n"); break; } /* Read TLV length */ status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n"); break; } if (tlv_sub_module_type == module_type) { if (tlv_len) { *module_tlv = next_tlv; *module_tlv_len = tlv_len; return 0; } return -EINVAL; } /* Check next TLV, i.e. current TLV pointer + length + 2 words * (for current TLV's type and length) */ next_tlv = next_tlv + tlv_len + 2; } /* Module does not exist */ return -ENOENT; } /** * ice_read_pba_string - Reads part number string from NVM * @hw: pointer to hardware structure * @pba_num: stores the part number string from the NVM * @pba_num_size: part number string buffer length * * Reads the part number string from the NVM. */ int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size) { u16 pba_tlv, pba_tlv_len; u16 pba_word, pba_size; int status; u16 i; status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len, ICE_SR_PBA_BLOCK_PTR); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n"); return status; } /* pba_size is the next word */ status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n"); return status; } if (pba_tlv_len < pba_size) { ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n"); return -EINVAL; } /* Subtract one to get PBA word count (PBA Size word is included in * total size) */ pba_size--; if (pba_num_size < (((u32)pba_size * 2) + 1)) { ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n"); return -EINVAL; } for (i = 0; i < pba_size; i++) { status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i); return status; } pba_num[(i * 2)] = (pba_word >> 8) & 0xFF; pba_num[(i * 2) + 1] = pba_word & 0xFF; } pba_num[(pba_size * 2)] = '\0'; return status; } /** * ice_get_nvm_ver_info - Read NVM version information * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash bank * @nvm: pointer to NVM info structure * * Read the NVM EETRACK ID and map version of the main NVM image bank, filling * in the NVM info structure. */ static int ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm) { u16 eetrack_lo, eetrack_hi, ver; int status; status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n"); return status; } nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT; nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT; status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n"); return status; } status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n"); return status; } nvm->eetrack = (eetrack_hi << 16) | eetrack_lo; return 0; } /** * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank * @hw: pointer to the HW structure * @nvm: storage for Option ROM version information * * Reads the NVM EETRACK ID, Map version, and security revision of the * inactive NVM bank. Used to access version data for a pending update that * has not yet been activated. */ int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm) { return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm); } /** * ice_get_orom_civd_data - Get the combo version information from Option ROM * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash module * @civd: storage for the Option ROM CIVD data. * * Searches through the Option ROM flash contents to locate the CIVD data for * the image. */ static int ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_civd_info *civd) { u8 *orom_data; int status; u32 offset; /* The CIVD section is located in the Option ROM aligned to 512 bytes. * The first 4 bytes must contain the ASCII characters "$CIV". * A simple modulo 256 sum of all of the bytes of the structure must * equal 0. * * The exact location is unknown and varies between images but is * usually somewhere in the middle of the bank. We need to scan the * Option ROM bank to locate it. * * It's significantly faster to read the entire Option ROM up front * using the maximum page size, than to read each possible location * with a separate firmware command. */ orom_data = vzalloc(hw->flash.banks.orom_size); if (!orom_data) return -ENOMEM; status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0, orom_data, hw->flash.banks.orom_size); if (status) { vfree(orom_data); ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n"); return status; } /* Scan the memory buffer to locate the CIVD data section */ for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) { struct ice_orom_civd_info *tmp; u8 sum = 0, i; tmp = (struct ice_orom_civd_info *)&orom_data[offset]; /* Skip forward until we find a matching signature */ if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0) continue; ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n", offset); /* Verify that the simple checksum is zero */ for (i = 0; i < sizeof(*tmp); i++) /* cppcheck-suppress objectIndex */ sum += ((u8 *)tmp)[i]; if (sum) { ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n", sum); goto err_invalid_checksum; } *civd = *tmp; vfree(orom_data); return 0; } ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n"); err_invalid_checksum: vfree(orom_data); return -EIO; } /** * ice_get_orom_ver_info - Read Option ROM version information * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash module * @orom: pointer to Option ROM info structure * * Read Option ROM version and security revision from the Option ROM flash * section. */ static int ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom) { struct ice_orom_civd_info civd; u32 combo_ver; int status; status = ice_get_orom_civd_data(hw, bank, &civd); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n"); return status; } combo_ver = le32_to_cpu(civd.combo_ver); orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT); orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK); orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT); return 0; } /** * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank * @hw: pointer to the HW structure * @orom: storage for Option ROM version information * * Reads the Option ROM version and security revision data for the inactive * section of flash. Used to access version data for a pending update that has * not yet been activated. */ int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom) { return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom); } /** * ice_get_netlist_info * @hw: pointer to the HW struct * @bank: whether to read from the active or inactive flash bank * @netlist: pointer to netlist version info structure * * Get the netlist version information from the requested bank. Reads the Link * Topology section to find the Netlist ID block and extract the relevant * information into the netlist version structure. */ static int ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_netlist_info *netlist) { u16 module_id, length, node_count, i; u16 *id_blk; int status; status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id); if (status) return status; if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) { ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n", ICE_NETLIST_LINK_TOPO_MOD_ID, module_id); return -EIO; } status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length); if (status) return status; /* sanity check that we have at least enough words to store the netlist ID block */ if (length < ICE_NETLIST_ID_BLK_SIZE) { ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n", ICE_NETLIST_ID_BLK_SIZE, length); return -EIO; } status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count); if (status) return status; node_count &= ICE_LINK_TOPO_NODE_COUNT_M; id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL); if (!id_blk) return -ENOMEM; /* Read out the entire Netlist ID Block at once. */ status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16), (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16)); if (status) goto exit_error; for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++) id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]); netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW]; netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW]; netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW]; netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 | id_blk[ICE_NETLIST_ID_BLK_REV_LOW]; netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER]; /* Read the left most 4 bytes of SHA */ netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 | id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)]; exit_error: kfree(id_blk); return status; } /** * ice_get_inactive_netlist_ver * @hw: pointer to the HW struct * @netlist: pointer to netlist version info structure * * Read the netlist version data from the inactive netlist bank. Used to * extract version data of a pending flash update in order to display the * version data. */ int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist) { return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist); } /** * ice_discover_flash_size - Discover the available flash size. * @hw: pointer to the HW struct * * The device flash could be up to 16MB in size. However, it is possible that * the actual size is smaller. Use bisection to determine the accessible size * of flash memory. */ static int ice_discover_flash_size(struct ice_hw *hw) { u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1; int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; while ((max_size - min_size) > 1) { u32 offset = (max_size + min_size) / 2; u32 len = 1; u8 data; status = ice_read_flat_nvm(hw, offset, &len, &data, false); if (status == -EIO && hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) { ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n", __func__, offset); status = 0; max_size = offset; } else if (!status) { ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n", __func__, offset); min_size = offset; } else { /* an unexpected error occurred */ goto err_read_flat_nvm; } } ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size); hw->flash.flash_size = max_size; err_read_flat_nvm: ice_release_nvm(hw); return status; } /** * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word * @hw: pointer to the HW structure * @offset: the word offset of the Shadow RAM word to read * @pointer: pointer value read from Shadow RAM * * Read the given Shadow RAM word, and convert it to a pointer value specified * in bytes. This function assumes the specified offset is a valid pointer * word. * * Each pointer word specifies whether it is stored in word size or 4KB * sector size by using the highest bit. The reported pointer value will be in * bytes, intended for flat NVM reads. */ static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer) { int status; u16 value; status = ice_read_sr_word(hw, offset, &value); if (status) return status; /* Determine if the pointer is in 4KB or word units */ if (value & ICE_SR_NVM_PTR_4KB_UNITS) *pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024; else *pointer = value * 2; return 0; } /** * ice_read_sr_area_size - Read an area size from a Shadow RAM word * @hw: pointer to the HW structure * @offset: the word offset of the Shadow RAM to read * @size: size value read from the Shadow RAM * * Read the given Shadow RAM word, and convert it to an area size value * specified in bytes. This function assumes the specified offset is a valid * area size word. * * Each area size word is specified in 4KB sector units. This function reports * the size in bytes, intended for flat NVM reads. */ static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size) { int status; u16 value; status = ice_read_sr_word(hw, offset, &value); if (status) return status; /* Area sizes are always specified in 4KB units */ *size = value * 4 * 1024; return 0; } /** * ice_determine_active_flash_banks - Discover active bank for each module * @hw: pointer to the HW struct * * Read the Shadow RAM control word and determine which banks are active for * the NVM, OROM, and Netlist modules. Also read and calculate the associated * pointer and size. These values are then cached into the ice_flash_info * structure for later use in order to calculate the correct offset to read * from the active module. */ static int ice_determine_active_flash_banks(struct ice_hw *hw) { struct ice_bank_info *banks = &hw->flash.banks; u16 ctrl_word; int status; status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n"); return status; } /* Check that the control word indicates validity */ if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) { ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n"); return -EIO; } if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK)) banks->nvm_bank = ICE_1ST_FLASH_BANK; else banks->nvm_bank = ICE_2ND_FLASH_BANK; if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK)) banks->orom_bank = ICE_1ST_FLASH_BANK; else banks->orom_bank = ICE_2ND_FLASH_BANK; if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK)) banks->netlist_bank = ICE_1ST_FLASH_BANK; else banks->netlist_bank = ICE_2ND_FLASH_BANK; status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n"); return status; } status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n"); return status; } status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n"); return status; } status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n"); return status; } status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n"); return status; } status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n"); return status; } return 0; } /** * ice_init_nvm - initializes NVM setting * @hw: pointer to the HW struct * * This function reads and populates NVM settings such as Shadow RAM size, * max_timeout, and blank_nvm_mode */ int ice_init_nvm(struct ice_hw *hw) { struct ice_flash_info *flash = &hw->flash; u32 fla, gens_stat; u8 sr_size; int status; /* The SR size is stored regardless of the NVM programming mode * as the blank mode may be used in the factory line. */ gens_stat = rd32(hw, GLNVM_GENS); sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S; /* Switching to words (sr_size contains power of 2) */ flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB; /* Check if we are in the normal or blank NVM programming mode */ fla = rd32(hw, GLNVM_FLA); if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */ flash->blank_nvm_mode = false; } else { /* Blank programming mode */ flash->blank_nvm_mode = true; ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n"); return -EIO; } status = ice_discover_flash_size(hw); if (status) { ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n"); return status; } status = ice_determine_active_flash_banks(hw); if (status) { ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n"); return status; } status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n"); return status; } status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom); if (status) ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n"); /* read the netlist version information */ status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist); if (status) ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n"); return 0; } /** * ice_nvm_validate_checksum * @hw: pointer to the HW struct * * Verify NVM PFA checksum validity (0x0706) */ int ice_nvm_validate_checksum(struct ice_hw *hw) { struct ice_aqc_nvm_checksum *cmd; struct ice_aq_desc desc; int status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; cmd = &desc.params.nvm_checksum; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); ice_release_nvm(hw); if (!status) if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT) status = -EIO; return status; } /** * ice_nvm_write_activate * @hw: pointer to the HW struct * @cmd_flags: flags for write activate command * @response_flags: response indicators from firmware * * Update the control word with the required banks' validity bits * and dumps the Shadow RAM to flash (0x0707) * * cmd_flags controls which banks to activate, and the preservation level to * use when activating the NVM bank. * * On successful return of the firmware command, the response_flags variable * is updated with the flags reported by firmware indicating certain status, * such as whether EMP reset is enabled. */ int ice_nvm_write_activate(struct ice_hw *hw, u8 cmd_flags, u8 *response_flags) { struct ice_aqc_nvm *cmd; struct ice_aq_desc desc; int err; cmd = &desc.params.nvm; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate); cmd->cmd_flags = cmd_flags; err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); if (!err && response_flags) *response_flags = cmd->cmd_flags; return err; } /** * ice_aq_nvm_update_empr * @hw: pointer to the HW struct * * Update empr (0x0709). This command allows SW to * request an EMPR to activate new FW. */ int ice_aq_nvm_update_empr(struct ice_hw *hw) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr); return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); } /* ice_nvm_set_pkg_data * @hw: pointer to the HW struct * @del_pkg_data_flag: If is set then the current pkg_data store by FW * is deleted. * If bit is set to 1, then buffer should be size 0. * @data: pointer to buffer * @length: length of the buffer * @cd: pointer to command details structure or NULL * * Set package data (0x070A). This command is equivalent to the reception * of a PLDM FW Update GetPackageData cmd. This command should be sent * as part of the NVM update as the first cmd in the flow. */ int ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data, u16 length, struct ice_sq_cd *cd) { struct ice_aqc_nvm_pkg_data *cmd; struct ice_aq_desc desc; if (length != 0 && !data) return -EINVAL; cmd = &desc.params.pkg_data; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); if (del_pkg_data_flag) cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE; return ice_aq_send_cmd(hw, &desc, data, length, cd); } /* ice_nvm_pass_component_tbl * @hw: pointer to the HW struct * @data: pointer to buffer * @length: length of the buffer * @transfer_flag: parameter for determining stage of the update * @comp_response: a pointer to the response from the 0x070B AQC. * @comp_response_code: a pointer to the response code from the 0x070B AQC. * @cd: pointer to command details structure or NULL * * Pass component table (0x070B). This command is equivalent to the reception * of a PLDM FW Update PassComponentTable cmd. This command should be sent once * per component. It can be only sent after Set Package Data cmd and before * actual update. FW will assume these commands are going to be sent until * the TransferFlag is set to End or StartAndEnd. */ int ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length, u8 transfer_flag, u8 *comp_response, u8 *comp_response_code, struct ice_sq_cd *cd) { struct ice_aqc_nvm_pass_comp_tbl *cmd; struct ice_aq_desc desc; int status; if (!data || !comp_response || !comp_response_code) return -EINVAL; cmd = &desc.params.pass_comp_tbl; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pass_component_tbl); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); cmd->transfer_flag = transfer_flag; status = ice_aq_send_cmd(hw, &desc, data, length, cd); if (!status) { *comp_response = cmd->component_response; *comp_response_code = cmd->component_response_code; } return status; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1