Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Fietkau | 4028 | 99.70% | 2 | 40.00% |
Dan Carpenter | 8 | 0.20% | 1 | 20.00% |
Yang Yingliang | 3 | 0.07% | 1 | 20.00% |
Tom Rix | 1 | 0.02% | 1 | 20.00% |
Total | 4040 | 5 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2021 Felix Fietkau <nbd@nbd.name> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/bitfield.h> #include <linux/dma-mapping.h> #include <linux/skbuff.h> #include <linux/of_platform.h> #include <linux/of_address.h> #include <linux/mfd/syscon.h> #include <linux/debugfs.h> #include <linux/soc/mediatek/mtk_wed.h> #include "mtk_eth_soc.h" #include "mtk_wed_regs.h" #include "mtk_wed.h" #include "mtk_ppe.h" #define MTK_PCIE_BASE(n) (0x1a143000 + (n) * 0x2000) #define MTK_WED_PKT_SIZE 1900 #define MTK_WED_BUF_SIZE 2048 #define MTK_WED_BUF_PER_PAGE (PAGE_SIZE / 2048) #define MTK_WED_TX_RING_SIZE 2048 #define MTK_WED_WDMA_RING_SIZE 1024 static struct mtk_wed_hw *hw_list[2]; static DEFINE_MUTEX(hw_lock); static void wed_m32(struct mtk_wed_device *dev, u32 reg, u32 mask, u32 val) { regmap_update_bits(dev->hw->regs, reg, mask | val, val); } static void wed_set(struct mtk_wed_device *dev, u32 reg, u32 mask) { return wed_m32(dev, reg, 0, mask); } static void wed_clr(struct mtk_wed_device *dev, u32 reg, u32 mask) { return wed_m32(dev, reg, mask, 0); } static void wdma_m32(struct mtk_wed_device *dev, u32 reg, u32 mask, u32 val) { wdma_w32(dev, reg, (wdma_r32(dev, reg) & ~mask) | val); } static void wdma_set(struct mtk_wed_device *dev, u32 reg, u32 mask) { wdma_m32(dev, reg, 0, mask); } static u32 mtk_wed_read_reset(struct mtk_wed_device *dev) { return wed_r32(dev, MTK_WED_RESET); } static void mtk_wed_reset(struct mtk_wed_device *dev, u32 mask) { u32 status; wed_w32(dev, MTK_WED_RESET, mask); if (readx_poll_timeout(mtk_wed_read_reset, dev, status, !(status & mask), 0, 1000)) WARN_ON_ONCE(1); } static struct mtk_wed_hw * mtk_wed_assign(struct mtk_wed_device *dev) { struct mtk_wed_hw *hw; hw = hw_list[pci_domain_nr(dev->wlan.pci_dev->bus)]; if (!hw || hw->wed_dev) return NULL; hw->wed_dev = dev; return hw; } static int mtk_wed_buffer_alloc(struct mtk_wed_device *dev) { struct mtk_wdma_desc *desc; dma_addr_t desc_phys; void **page_list; int token = dev->wlan.token_start; int ring_size; int n_pages; int i, page_idx; ring_size = dev->wlan.nbuf & ~(MTK_WED_BUF_PER_PAGE - 1); n_pages = ring_size / MTK_WED_BUF_PER_PAGE; page_list = kcalloc(n_pages, sizeof(*page_list), GFP_KERNEL); if (!page_list) return -ENOMEM; dev->buf_ring.size = ring_size; dev->buf_ring.pages = page_list; desc = dma_alloc_coherent(dev->hw->dev, ring_size * sizeof(*desc), &desc_phys, GFP_KERNEL); if (!desc) return -ENOMEM; dev->buf_ring.desc = desc; dev->buf_ring.desc_phys = desc_phys; for (i = 0, page_idx = 0; i < ring_size; i += MTK_WED_BUF_PER_PAGE) { dma_addr_t page_phys, buf_phys; struct page *page; void *buf; int s; page = __dev_alloc_pages(GFP_KERNEL, 0); if (!page) return -ENOMEM; page_phys = dma_map_page(dev->hw->dev, page, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev->hw->dev, page_phys)) { __free_page(page); return -ENOMEM; } page_list[page_idx++] = page; dma_sync_single_for_cpu(dev->hw->dev, page_phys, PAGE_SIZE, DMA_BIDIRECTIONAL); buf = page_to_virt(page); buf_phys = page_phys; for (s = 0; s < MTK_WED_BUF_PER_PAGE; s++) { u32 txd_size; u32 ctrl; txd_size = dev->wlan.init_buf(buf, buf_phys, token++); desc->buf0 = cpu_to_le32(buf_phys); desc->buf1 = cpu_to_le32(buf_phys + txd_size); ctrl = FIELD_PREP(MTK_WDMA_DESC_CTRL_LEN0, txd_size) | FIELD_PREP(MTK_WDMA_DESC_CTRL_LEN1, MTK_WED_BUF_SIZE - txd_size) | MTK_WDMA_DESC_CTRL_LAST_SEG1; desc->ctrl = cpu_to_le32(ctrl); desc->info = 0; desc++; buf += MTK_WED_BUF_SIZE; buf_phys += MTK_WED_BUF_SIZE; } dma_sync_single_for_device(dev->hw->dev, page_phys, PAGE_SIZE, DMA_BIDIRECTIONAL); } return 0; } static void mtk_wed_free_buffer(struct mtk_wed_device *dev) { struct mtk_wdma_desc *desc = dev->buf_ring.desc; void **page_list = dev->buf_ring.pages; int page_idx; int i; if (!page_list) return; if (!desc) goto free_pagelist; for (i = 0, page_idx = 0; i < dev->buf_ring.size; i += MTK_WED_BUF_PER_PAGE) { void *page = page_list[page_idx++]; dma_addr_t buf_addr; if (!page) break; buf_addr = le32_to_cpu(desc[i].buf0); dma_unmap_page(dev->hw->dev, buf_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(page); } dma_free_coherent(dev->hw->dev, dev->buf_ring.size * sizeof(*desc), desc, dev->buf_ring.desc_phys); free_pagelist: kfree(page_list); } static void mtk_wed_free_ring(struct mtk_wed_device *dev, struct mtk_wed_ring *ring) { if (!ring->desc) return; dma_free_coherent(dev->hw->dev, ring->size * sizeof(*ring->desc), ring->desc, ring->desc_phys); } static void mtk_wed_free_tx_rings(struct mtk_wed_device *dev) { int i; for (i = 0; i < ARRAY_SIZE(dev->tx_ring); i++) mtk_wed_free_ring(dev, &dev->tx_ring[i]); for (i = 0; i < ARRAY_SIZE(dev->tx_wdma); i++) mtk_wed_free_ring(dev, &dev->tx_wdma[i]); } static void mtk_wed_set_ext_int(struct mtk_wed_device *dev, bool en) { u32 mask = MTK_WED_EXT_INT_STATUS_ERROR_MASK; if (!dev->hw->num_flows) mask &= ~MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD; wed_w32(dev, MTK_WED_EXT_INT_MASK, en ? mask : 0); wed_r32(dev, MTK_WED_EXT_INT_MASK); } static void mtk_wed_stop(struct mtk_wed_device *dev) { regmap_write(dev->hw->mirror, dev->hw->index * 4, 0); mtk_wed_set_ext_int(dev, false); wed_clr(dev, MTK_WED_CTRL, MTK_WED_CTRL_WDMA_INT_AGENT_EN | MTK_WED_CTRL_WPDMA_INT_AGENT_EN | MTK_WED_CTRL_WED_TX_BM_EN | MTK_WED_CTRL_WED_TX_FREE_AGENT_EN); wed_w32(dev, MTK_WED_WPDMA_INT_TRIGGER, 0); wed_w32(dev, MTK_WED_WDMA_INT_TRIGGER, 0); wdma_w32(dev, MTK_WDMA_INT_MASK, 0); wdma_w32(dev, MTK_WDMA_INT_GRP2, 0); wed_w32(dev, MTK_WED_WPDMA_INT_MASK, 0); wed_clr(dev, MTK_WED_GLO_CFG, MTK_WED_GLO_CFG_TX_DMA_EN | MTK_WED_GLO_CFG_RX_DMA_EN); wed_clr(dev, MTK_WED_WPDMA_GLO_CFG, MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN | MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN); wed_clr(dev, MTK_WED_WDMA_GLO_CFG, MTK_WED_WDMA_GLO_CFG_RX_DRV_EN); } static void mtk_wed_detach(struct mtk_wed_device *dev) { struct device_node *wlan_node = dev->wlan.pci_dev->dev.of_node; struct mtk_wed_hw *hw = dev->hw; mutex_lock(&hw_lock); mtk_wed_stop(dev); wdma_w32(dev, MTK_WDMA_RESET_IDX, MTK_WDMA_RESET_IDX_RX); wdma_w32(dev, MTK_WDMA_RESET_IDX, 0); mtk_wed_reset(dev, MTK_WED_RESET_WED); mtk_wed_free_buffer(dev); mtk_wed_free_tx_rings(dev); if (of_dma_is_coherent(wlan_node)) regmap_update_bits(hw->hifsys, HIFSYS_DMA_AG_MAP, BIT(hw->index), BIT(hw->index)); if (!hw_list[!hw->index]->wed_dev && hw->eth->dma_dev != hw->eth->dev) mtk_eth_set_dma_device(hw->eth, hw->eth->dev); memset(dev, 0, sizeof(*dev)); module_put(THIS_MODULE); hw->wed_dev = NULL; mutex_unlock(&hw_lock); } static void mtk_wed_hw_init_early(struct mtk_wed_device *dev) { u32 mask, set; u32 offset; mtk_wed_stop(dev); mtk_wed_reset(dev, MTK_WED_RESET_WED); mask = MTK_WED_WDMA_GLO_CFG_BT_SIZE | MTK_WED_WDMA_GLO_CFG_DYNAMIC_DMAD_RECYCLE | MTK_WED_WDMA_GLO_CFG_RX_DIS_FSM_AUTO_IDLE; set = FIELD_PREP(MTK_WED_WDMA_GLO_CFG_BT_SIZE, 2) | MTK_WED_WDMA_GLO_CFG_DYNAMIC_SKIP_DMAD_PREP | MTK_WED_WDMA_GLO_CFG_IDLE_DMAD_SUPPLY; wed_m32(dev, MTK_WED_WDMA_GLO_CFG, mask, set); wdma_set(dev, MTK_WDMA_GLO_CFG, MTK_WDMA_GLO_CFG_RX_INFO_PRERES); offset = dev->hw->index ? 0x04000400 : 0; wed_w32(dev, MTK_WED_WDMA_OFFSET0, 0x2a042a20 + offset); wed_w32(dev, MTK_WED_WDMA_OFFSET1, 0x29002800 + offset); wed_w32(dev, MTK_WED_PCIE_CFG_BASE, MTK_PCIE_BASE(dev->hw->index)); wed_w32(dev, MTK_WED_WPDMA_CFG_BASE, dev->wlan.wpdma_phys); } static void mtk_wed_hw_init(struct mtk_wed_device *dev) { if (dev->init_done) return; dev->init_done = true; mtk_wed_set_ext_int(dev, false); wed_w32(dev, MTK_WED_TX_BM_CTRL, MTK_WED_TX_BM_CTRL_PAUSE | FIELD_PREP(MTK_WED_TX_BM_CTRL_VLD_GRP_NUM, dev->buf_ring.size / 128) | FIELD_PREP(MTK_WED_TX_BM_CTRL_RSV_GRP_NUM, MTK_WED_TX_RING_SIZE / 256)); wed_w32(dev, MTK_WED_TX_BM_BASE, dev->buf_ring.desc_phys); wed_w32(dev, MTK_WED_TX_BM_TKID, FIELD_PREP(MTK_WED_TX_BM_TKID_START, dev->wlan.token_start) | FIELD_PREP(MTK_WED_TX_BM_TKID_END, dev->wlan.token_start + dev->wlan.nbuf - 1)); wed_w32(dev, MTK_WED_TX_BM_BUF_LEN, MTK_WED_PKT_SIZE); wed_w32(dev, MTK_WED_TX_BM_DYN_THR, FIELD_PREP(MTK_WED_TX_BM_DYN_THR_LO, 1) | MTK_WED_TX_BM_DYN_THR_HI); mtk_wed_reset(dev, MTK_WED_RESET_TX_BM); wed_set(dev, MTK_WED_CTRL, MTK_WED_CTRL_WED_TX_BM_EN | MTK_WED_CTRL_WED_TX_FREE_AGENT_EN); wed_clr(dev, MTK_WED_TX_BM_CTRL, MTK_WED_TX_BM_CTRL_PAUSE); } static void mtk_wed_ring_reset(struct mtk_wdma_desc *desc, int size) { int i; for (i = 0; i < size; i++) { desc[i].buf0 = 0; desc[i].ctrl = cpu_to_le32(MTK_WDMA_DESC_CTRL_DMA_DONE); desc[i].buf1 = 0; desc[i].info = 0; } } static u32 mtk_wed_check_busy(struct mtk_wed_device *dev) { if (wed_r32(dev, MTK_WED_GLO_CFG) & MTK_WED_GLO_CFG_TX_DMA_BUSY) return true; if (wed_r32(dev, MTK_WED_WPDMA_GLO_CFG) & MTK_WED_WPDMA_GLO_CFG_TX_DRV_BUSY) return true; if (wed_r32(dev, MTK_WED_CTRL) & MTK_WED_CTRL_WDMA_INT_AGENT_BUSY) return true; if (wed_r32(dev, MTK_WED_WDMA_GLO_CFG) & MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY) return true; if (wdma_r32(dev, MTK_WDMA_GLO_CFG) & MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY) return true; if (wed_r32(dev, MTK_WED_CTRL) & (MTK_WED_CTRL_WED_TX_BM_BUSY | MTK_WED_CTRL_WED_TX_FREE_AGENT_BUSY)) return true; return false; } static int mtk_wed_poll_busy(struct mtk_wed_device *dev) { int sleep = 15000; int timeout = 100 * sleep; u32 val; return read_poll_timeout(mtk_wed_check_busy, val, !val, sleep, timeout, false, dev); } static void mtk_wed_reset_dma(struct mtk_wed_device *dev) { bool busy = false; u32 val; int i; for (i = 0; i < ARRAY_SIZE(dev->tx_ring); i++) { struct mtk_wdma_desc *desc = dev->tx_ring[i].desc; if (!desc) continue; mtk_wed_ring_reset(desc, MTK_WED_TX_RING_SIZE); } if (mtk_wed_poll_busy(dev)) busy = mtk_wed_check_busy(dev); if (busy) { mtk_wed_reset(dev, MTK_WED_RESET_WED_TX_DMA); } else { wed_w32(dev, MTK_WED_RESET_IDX, MTK_WED_RESET_IDX_TX | MTK_WED_RESET_IDX_RX); wed_w32(dev, MTK_WED_RESET_IDX, 0); } wdma_w32(dev, MTK_WDMA_RESET_IDX, MTK_WDMA_RESET_IDX_RX); wdma_w32(dev, MTK_WDMA_RESET_IDX, 0); if (busy) { mtk_wed_reset(dev, MTK_WED_RESET_WDMA_INT_AGENT); mtk_wed_reset(dev, MTK_WED_RESET_WDMA_RX_DRV); } else { wed_w32(dev, MTK_WED_WDMA_RESET_IDX, MTK_WED_WDMA_RESET_IDX_RX | MTK_WED_WDMA_RESET_IDX_DRV); wed_w32(dev, MTK_WED_WDMA_RESET_IDX, 0); wed_set(dev, MTK_WED_WDMA_GLO_CFG, MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE); wed_clr(dev, MTK_WED_WDMA_GLO_CFG, MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE); } for (i = 0; i < 100; i++) { val = wed_r32(dev, MTK_WED_TX_BM_INTF); if (FIELD_GET(MTK_WED_TX_BM_INTF_TKFIFO_FDEP, val) == 0x40) break; } mtk_wed_reset(dev, MTK_WED_RESET_TX_FREE_AGENT); mtk_wed_reset(dev, MTK_WED_RESET_TX_BM); if (busy) { mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_INT_AGENT); mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_TX_DRV); mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_RX_DRV); } else { wed_w32(dev, MTK_WED_WPDMA_RESET_IDX, MTK_WED_WPDMA_RESET_IDX_TX | MTK_WED_WPDMA_RESET_IDX_RX); wed_w32(dev, MTK_WED_WPDMA_RESET_IDX, 0); } } static int mtk_wed_ring_alloc(struct mtk_wed_device *dev, struct mtk_wed_ring *ring, int size) { ring->desc = dma_alloc_coherent(dev->hw->dev, size * sizeof(*ring->desc), &ring->desc_phys, GFP_KERNEL); if (!ring->desc) return -ENOMEM; ring->size = size; mtk_wed_ring_reset(ring->desc, size); return 0; } static int mtk_wed_wdma_ring_setup(struct mtk_wed_device *dev, int idx, int size) { struct mtk_wed_ring *wdma = &dev->tx_wdma[idx]; if (mtk_wed_ring_alloc(dev, wdma, MTK_WED_WDMA_RING_SIZE)) return -ENOMEM; wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_BASE, wdma->desc_phys); wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_COUNT, size); wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_CPU_IDX, 0); wed_w32(dev, MTK_WED_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_BASE, wdma->desc_phys); wed_w32(dev, MTK_WED_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_COUNT, size); return 0; } static void mtk_wed_start(struct mtk_wed_device *dev, u32 irq_mask) { u32 wdma_mask; u32 val; int i; for (i = 0; i < ARRAY_SIZE(dev->tx_wdma); i++) if (!dev->tx_wdma[i].desc) mtk_wed_wdma_ring_setup(dev, i, 16); wdma_mask = FIELD_PREP(MTK_WDMA_INT_MASK_RX_DONE, GENMASK(1, 0)); mtk_wed_hw_init(dev); wed_set(dev, MTK_WED_CTRL, MTK_WED_CTRL_WDMA_INT_AGENT_EN | MTK_WED_CTRL_WPDMA_INT_AGENT_EN | MTK_WED_CTRL_WED_TX_BM_EN | MTK_WED_CTRL_WED_TX_FREE_AGENT_EN); wed_w32(dev, MTK_WED_PCIE_INT_TRIGGER, MTK_WED_PCIE_INT_TRIGGER_STATUS); wed_w32(dev, MTK_WED_WPDMA_INT_TRIGGER, MTK_WED_WPDMA_INT_TRIGGER_RX_DONE | MTK_WED_WPDMA_INT_TRIGGER_TX_DONE); wed_set(dev, MTK_WED_WPDMA_INT_CTRL, MTK_WED_WPDMA_INT_CTRL_SUBRT_ADV); wed_w32(dev, MTK_WED_WDMA_INT_TRIGGER, wdma_mask); wed_clr(dev, MTK_WED_WDMA_INT_CTRL, wdma_mask); wdma_w32(dev, MTK_WDMA_INT_MASK, wdma_mask); wdma_w32(dev, MTK_WDMA_INT_GRP2, wdma_mask); wed_w32(dev, MTK_WED_WPDMA_INT_MASK, irq_mask); wed_w32(dev, MTK_WED_INT_MASK, irq_mask); wed_set(dev, MTK_WED_GLO_CFG, MTK_WED_GLO_CFG_TX_DMA_EN | MTK_WED_GLO_CFG_RX_DMA_EN); wed_set(dev, MTK_WED_WPDMA_GLO_CFG, MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN | MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN); wed_set(dev, MTK_WED_WDMA_GLO_CFG, MTK_WED_WDMA_GLO_CFG_RX_DRV_EN); mtk_wed_set_ext_int(dev, true); val = dev->wlan.wpdma_phys | MTK_PCIE_MIRROR_MAP_EN | FIELD_PREP(MTK_PCIE_MIRROR_MAP_WED_ID, dev->hw->index); if (dev->hw->index) val |= BIT(1); val |= BIT(0); regmap_write(dev->hw->mirror, dev->hw->index * 4, val); dev->running = true; } static int mtk_wed_attach(struct mtk_wed_device *dev) __releases(RCU) { struct mtk_wed_hw *hw; int ret = 0; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "mtk_wed_attach without holding the RCU read lock"); if (pci_domain_nr(dev->wlan.pci_dev->bus) > 1 || !try_module_get(THIS_MODULE)) ret = -ENODEV; rcu_read_unlock(); if (ret) return ret; mutex_lock(&hw_lock); hw = mtk_wed_assign(dev); if (!hw) { module_put(THIS_MODULE); ret = -ENODEV; goto out; } dev_info(&dev->wlan.pci_dev->dev, "attaching wed device %d\n", hw->index); dev->hw = hw; dev->dev = hw->dev; dev->irq = hw->irq; dev->wdma_idx = hw->index; if (hw->eth->dma_dev == hw->eth->dev && of_dma_is_coherent(hw->eth->dev->of_node)) mtk_eth_set_dma_device(hw->eth, hw->dev); ret = mtk_wed_buffer_alloc(dev); if (ret) { mtk_wed_detach(dev); goto out; } mtk_wed_hw_init_early(dev); regmap_update_bits(hw->hifsys, HIFSYS_DMA_AG_MAP, BIT(hw->index), 0); out: mutex_unlock(&hw_lock); return ret; } static int mtk_wed_tx_ring_setup(struct mtk_wed_device *dev, int idx, void __iomem *regs) { struct mtk_wed_ring *ring = &dev->tx_ring[idx]; /* * Tx ring redirection: * Instead of configuring the WLAN PDMA TX ring directly, the WLAN * driver allocated DMA ring gets configured into WED MTK_WED_RING_TX(n) * registers. * * WED driver posts its own DMA ring as WLAN PDMA TX and configures it * into MTK_WED_WPDMA_RING_TX(n) registers. * It gets filled with packets picked up from WED TX ring and from * WDMA RX. */ BUG_ON(idx >= ARRAY_SIZE(dev->tx_ring)); if (mtk_wed_ring_alloc(dev, ring, MTK_WED_TX_RING_SIZE)) return -ENOMEM; if (mtk_wed_wdma_ring_setup(dev, idx, MTK_WED_WDMA_RING_SIZE)) return -ENOMEM; ring->reg_base = MTK_WED_RING_TX(idx); ring->wpdma = regs; /* WED -> WPDMA */ wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_BASE, ring->desc_phys); wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_COUNT, MTK_WED_TX_RING_SIZE); wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_CPU_IDX, 0); wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_BASE, ring->desc_phys); wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_COUNT, MTK_WED_TX_RING_SIZE); wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_CPU_IDX, 0); return 0; } static int mtk_wed_txfree_ring_setup(struct mtk_wed_device *dev, void __iomem *regs) { struct mtk_wed_ring *ring = &dev->txfree_ring; int i; /* * For txfree event handling, the same DMA ring is shared between WED * and WLAN. The WLAN driver accesses the ring index registers through * WED */ ring->reg_base = MTK_WED_RING_RX(1); ring->wpdma = regs; for (i = 0; i < 12; i += 4) { u32 val = readl(regs + i); wed_w32(dev, MTK_WED_RING_RX(1) + i, val); wed_w32(dev, MTK_WED_WPDMA_RING_RX(1) + i, val); } return 0; } static u32 mtk_wed_irq_get(struct mtk_wed_device *dev, u32 mask) { u32 val; val = wed_r32(dev, MTK_WED_EXT_INT_STATUS); wed_w32(dev, MTK_WED_EXT_INT_STATUS, val); val &= MTK_WED_EXT_INT_STATUS_ERROR_MASK; if (!dev->hw->num_flows) val &= ~MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD; if (val && net_ratelimit()) pr_err("mtk_wed%d: error status=%08x\n", dev->hw->index, val); val = wed_r32(dev, MTK_WED_INT_STATUS); val &= mask; wed_w32(dev, MTK_WED_INT_STATUS, val); /* ACK */ return val; } static void mtk_wed_irq_set_mask(struct mtk_wed_device *dev, u32 mask) { if (!dev->running) return; mtk_wed_set_ext_int(dev, !!mask); wed_w32(dev, MTK_WED_INT_MASK, mask); } int mtk_wed_flow_add(int index) { struct mtk_wed_hw *hw = hw_list[index]; int ret; if (!hw || !hw->wed_dev) return -ENODEV; if (hw->num_flows) { hw->num_flows++; return 0; } mutex_lock(&hw_lock); if (!hw->wed_dev) { ret = -ENODEV; goto out; } ret = hw->wed_dev->wlan.offload_enable(hw->wed_dev); if (!ret) hw->num_flows++; mtk_wed_set_ext_int(hw->wed_dev, true); out: mutex_unlock(&hw_lock); return ret; } void mtk_wed_flow_remove(int index) { struct mtk_wed_hw *hw = hw_list[index]; if (!hw) return; if (--hw->num_flows) return; mutex_lock(&hw_lock); if (!hw->wed_dev) goto out; hw->wed_dev->wlan.offload_disable(hw->wed_dev); mtk_wed_set_ext_int(hw->wed_dev, true); out: mutex_unlock(&hw_lock); } void mtk_wed_add_hw(struct device_node *np, struct mtk_eth *eth, void __iomem *wdma, int index) { static const struct mtk_wed_ops wed_ops = { .attach = mtk_wed_attach, .tx_ring_setup = mtk_wed_tx_ring_setup, .txfree_ring_setup = mtk_wed_txfree_ring_setup, .start = mtk_wed_start, .stop = mtk_wed_stop, .reset_dma = mtk_wed_reset_dma, .reg_read = wed_r32, .reg_write = wed_w32, .irq_get = mtk_wed_irq_get, .irq_set_mask = mtk_wed_irq_set_mask, .detach = mtk_wed_detach, }; struct device_node *eth_np = eth->dev->of_node; struct platform_device *pdev; struct mtk_wed_hw *hw; struct regmap *regs; int irq; if (!np) return; pdev = of_find_device_by_node(np); if (!pdev) return; get_device(&pdev->dev); irq = platform_get_irq(pdev, 0); if (irq < 0) return; regs = syscon_regmap_lookup_by_phandle(np, NULL); if (IS_ERR(regs)) return; rcu_assign_pointer(mtk_soc_wed_ops, &wed_ops); mutex_lock(&hw_lock); if (WARN_ON(hw_list[index])) goto unlock; hw = kzalloc(sizeof(*hw), GFP_KERNEL); if (!hw) goto unlock; hw->node = np; hw->regs = regs; hw->eth = eth; hw->dev = &pdev->dev; hw->wdma = wdma; hw->index = index; hw->irq = irq; hw->mirror = syscon_regmap_lookup_by_phandle(eth_np, "mediatek,pcie-mirror"); hw->hifsys = syscon_regmap_lookup_by_phandle(eth_np, "mediatek,hifsys"); if (IS_ERR(hw->mirror) || IS_ERR(hw->hifsys)) { kfree(hw); goto unlock; } if (!index) { regmap_write(hw->mirror, 0, 0); regmap_write(hw->mirror, 4, 0); } mtk_wed_hw_add_debugfs(hw); hw_list[index] = hw; unlock: mutex_unlock(&hw_lock); } void mtk_wed_exit(void) { int i; rcu_assign_pointer(mtk_soc_wed_ops, NULL); synchronize_rcu(); for (i = 0; i < ARRAY_SIZE(hw_list); i++) { struct mtk_wed_hw *hw; hw = hw_list[i]; if (!hw) continue; hw_list[i] = NULL; debugfs_remove(hw->debugfs_dir); put_device(hw->dev); kfree(hw); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1