Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan J Williams | 4791 | 87.88% | 28 | 73.68% |
Alexander Duyck | 521 | 9.56% | 5 | 13.16% |
Toshi Kani | 91 | 1.67% | 1 | 2.63% |
Vishal Verma | 38 | 0.70% | 1 | 2.63% |
Qian Cai | 8 | 0.15% | 1 | 2.63% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.63% |
Nicolas Iooss | 1 | 0.02% | 1 | 2.63% |
Total | 5452 | 38 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. */ #include <linux/device.h> #include <linux/ndctl.h> #include <linux/uuid.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/nd.h> #include "nd-core.h" #include "label.h" #include "nd.h" static guid_t nvdimm_btt_guid; static guid_t nvdimm_btt2_guid; static guid_t nvdimm_pfn_guid; static guid_t nvdimm_dax_guid; static uuid_t nvdimm_btt_uuid; static uuid_t nvdimm_btt2_uuid; static uuid_t nvdimm_pfn_uuid; static uuid_t nvdimm_dax_uuid; static uuid_t cxl_region_uuid; static uuid_t cxl_namespace_uuid; static const char NSINDEX_SIGNATURE[] = "NAMESPACE_INDEX\0"; static u32 best_seq(u32 a, u32 b) { a &= NSINDEX_SEQ_MASK; b &= NSINDEX_SEQ_MASK; if (a == 0 || a == b) return b; else if (b == 0) return a; else if (nd_inc_seq(a) == b) return b; else return a; } unsigned sizeof_namespace_label(struct nvdimm_drvdata *ndd) { return ndd->nslabel_size; } static size_t __sizeof_namespace_index(u32 nslot) { return ALIGN(sizeof(struct nd_namespace_index) + DIV_ROUND_UP(nslot, 8), NSINDEX_ALIGN); } static int __nvdimm_num_label_slots(struct nvdimm_drvdata *ndd, size_t index_size) { return (ndd->nsarea.config_size - index_size * 2) / sizeof_namespace_label(ndd); } int nvdimm_num_label_slots(struct nvdimm_drvdata *ndd) { u32 tmp_nslot, n; tmp_nslot = ndd->nsarea.config_size / sizeof_namespace_label(ndd); n = __sizeof_namespace_index(tmp_nslot) / NSINDEX_ALIGN; return __nvdimm_num_label_slots(ndd, NSINDEX_ALIGN * n); } size_t sizeof_namespace_index(struct nvdimm_drvdata *ndd) { u32 nslot, space, size; /* * Per UEFI 2.7, the minimum size of the Label Storage Area is large * enough to hold 2 index blocks and 2 labels. The minimum index * block size is 256 bytes. The label size is 128 for namespaces * prior to version 1.2 and at minimum 256 for version 1.2 and later. */ nslot = nvdimm_num_label_slots(ndd); space = ndd->nsarea.config_size - nslot * sizeof_namespace_label(ndd); size = __sizeof_namespace_index(nslot) * 2; if (size <= space && nslot >= 2) return size / 2; dev_err(ndd->dev, "label area (%d) too small to host (%d byte) labels\n", ndd->nsarea.config_size, sizeof_namespace_label(ndd)); return 0; } static int __nd_label_validate(struct nvdimm_drvdata *ndd) { /* * On media label format consists of two index blocks followed * by an array of labels. None of these structures are ever * updated in place. A sequence number tracks the current * active index and the next one to write, while labels are * written to free slots. * * +------------+ * | | * | nsindex0 | * | | * +------------+ * | | * | nsindex1 | * | | * +------------+ * | label0 | * +------------+ * | label1 | * +------------+ * | | * ....nslot... * | | * +------------+ * | labelN | * +------------+ */ struct nd_namespace_index *nsindex[] = { to_namespace_index(ndd, 0), to_namespace_index(ndd, 1), }; const int num_index = ARRAY_SIZE(nsindex); struct device *dev = ndd->dev; bool valid[2] = { 0 }; int i, num_valid = 0; u32 seq; for (i = 0; i < num_index; i++) { u32 nslot; u8 sig[NSINDEX_SIG_LEN]; u64 sum_save, sum, size; unsigned int version, labelsize; memcpy(sig, nsindex[i]->sig, NSINDEX_SIG_LEN); if (memcmp(sig, NSINDEX_SIGNATURE, NSINDEX_SIG_LEN) != 0) { dev_dbg(dev, "nsindex%d signature invalid\n", i); continue; } /* label sizes larger than 128 arrived with v1.2 */ version = __le16_to_cpu(nsindex[i]->major) * 100 + __le16_to_cpu(nsindex[i]->minor); if (version >= 102) labelsize = 1 << (7 + nsindex[i]->labelsize); else labelsize = 128; if (labelsize != sizeof_namespace_label(ndd)) { dev_dbg(dev, "nsindex%d labelsize %d invalid\n", i, nsindex[i]->labelsize); continue; } sum_save = __le64_to_cpu(nsindex[i]->checksum); nsindex[i]->checksum = __cpu_to_le64(0); sum = nd_fletcher64(nsindex[i], sizeof_namespace_index(ndd), 1); nsindex[i]->checksum = __cpu_to_le64(sum_save); if (sum != sum_save) { dev_dbg(dev, "nsindex%d checksum invalid\n", i); continue; } seq = __le32_to_cpu(nsindex[i]->seq); if ((seq & NSINDEX_SEQ_MASK) == 0) { dev_dbg(dev, "nsindex%d sequence: %#x invalid\n", i, seq); continue; } /* sanity check the index against expected values */ if (__le64_to_cpu(nsindex[i]->myoff) != i * sizeof_namespace_index(ndd)) { dev_dbg(dev, "nsindex%d myoff: %#llx invalid\n", i, (unsigned long long) __le64_to_cpu(nsindex[i]->myoff)); continue; } if (__le64_to_cpu(nsindex[i]->otheroff) != (!i) * sizeof_namespace_index(ndd)) { dev_dbg(dev, "nsindex%d otheroff: %#llx invalid\n", i, (unsigned long long) __le64_to_cpu(nsindex[i]->otheroff)); continue; } if (__le64_to_cpu(nsindex[i]->labeloff) != 2 * sizeof_namespace_index(ndd)) { dev_dbg(dev, "nsindex%d labeloff: %#llx invalid\n", i, (unsigned long long) __le64_to_cpu(nsindex[i]->labeloff)); continue; } size = __le64_to_cpu(nsindex[i]->mysize); if (size > sizeof_namespace_index(ndd) || size < sizeof(struct nd_namespace_index)) { dev_dbg(dev, "nsindex%d mysize: %#llx invalid\n", i, size); continue; } nslot = __le32_to_cpu(nsindex[i]->nslot); if (nslot * sizeof_namespace_label(ndd) + 2 * sizeof_namespace_index(ndd) > ndd->nsarea.config_size) { dev_dbg(dev, "nsindex%d nslot: %u invalid, config_size: %#x\n", i, nslot, ndd->nsarea.config_size); continue; } valid[i] = true; num_valid++; } switch (num_valid) { case 0: break; case 1: for (i = 0; i < num_index; i++) if (valid[i]) return i; /* can't have num_valid > 0 but valid[] = { false, false } */ WARN_ON(1); break; default: /* pick the best index... */ seq = best_seq(__le32_to_cpu(nsindex[0]->seq), __le32_to_cpu(nsindex[1]->seq)); if (seq == (__le32_to_cpu(nsindex[1]->seq) & NSINDEX_SEQ_MASK)) return 1; else return 0; break; } return -1; } static int nd_label_validate(struct nvdimm_drvdata *ndd) { /* * In order to probe for and validate namespace index blocks we * need to know the size of the labels, and we can't trust the * size of the labels until we validate the index blocks. * Resolve this dependency loop by probing for known label * sizes, but default to v1.2 256-byte namespace labels if * discovery fails. */ int label_size[] = { 128, 256 }; int i, rc; for (i = 0; i < ARRAY_SIZE(label_size); i++) { ndd->nslabel_size = label_size[i]; rc = __nd_label_validate(ndd); if (rc >= 0) return rc; } return -1; } static void nd_label_copy(struct nvdimm_drvdata *ndd, struct nd_namespace_index *dst, struct nd_namespace_index *src) { /* just exit if either destination or source is NULL */ if (!dst || !src) return; memcpy(dst, src, sizeof_namespace_index(ndd)); } static struct nd_namespace_label *nd_label_base(struct nvdimm_drvdata *ndd) { void *base = to_namespace_index(ndd, 0); return base + 2 * sizeof_namespace_index(ndd); } static int to_slot(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label) { unsigned long label, base; label = (unsigned long) nd_label; base = (unsigned long) nd_label_base(ndd); return (label - base) / sizeof_namespace_label(ndd); } static struct nd_namespace_label *to_label(struct nvdimm_drvdata *ndd, int slot) { unsigned long label, base; base = (unsigned long) nd_label_base(ndd); label = base + sizeof_namespace_label(ndd) * slot; return (struct nd_namespace_label *) label; } #define for_each_clear_bit_le(bit, addr, size) \ for ((bit) = find_next_zero_bit_le((addr), (size), 0); \ (bit) < (size); \ (bit) = find_next_zero_bit_le((addr), (size), (bit) + 1)) /** * preamble_index - common variable initialization for nd_label_* routines * @ndd: dimm container for the relevant label set * @idx: namespace_index index * @nsindex_out: on return set to the currently active namespace index * @free: on return set to the free label bitmap in the index * @nslot: on return set to the number of slots in the label space */ static bool preamble_index(struct nvdimm_drvdata *ndd, int idx, struct nd_namespace_index **nsindex_out, unsigned long **free, u32 *nslot) { struct nd_namespace_index *nsindex; nsindex = to_namespace_index(ndd, idx); if (nsindex == NULL) return false; *free = (unsigned long *) nsindex->free; *nslot = __le32_to_cpu(nsindex->nslot); *nsindex_out = nsindex; return true; } char *nd_label_gen_id(struct nd_label_id *label_id, const uuid_t *uuid, u32 flags) { if (!label_id || !uuid) return NULL; snprintf(label_id->id, ND_LABEL_ID_SIZE, "pmem-%pUb", uuid); return label_id->id; } static bool preamble_current(struct nvdimm_drvdata *ndd, struct nd_namespace_index **nsindex, unsigned long **free, u32 *nslot) { return preamble_index(ndd, ndd->ns_current, nsindex, free, nslot); } static bool preamble_next(struct nvdimm_drvdata *ndd, struct nd_namespace_index **nsindex, unsigned long **free, u32 *nslot) { return preamble_index(ndd, ndd->ns_next, nsindex, free, nslot); } static bool nsl_validate_checksum(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label) { u64 sum, sum_save; if (!ndd->cxl && !efi_namespace_label_has(ndd, checksum)) return true; sum_save = nsl_get_checksum(ndd, nd_label); nsl_set_checksum(ndd, nd_label, 0); sum = nd_fletcher64(nd_label, sizeof_namespace_label(ndd), 1); nsl_set_checksum(ndd, nd_label, sum_save); return sum == sum_save; } static void nsl_calculate_checksum(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label) { u64 sum; if (!ndd->cxl && !efi_namespace_label_has(ndd, checksum)) return; nsl_set_checksum(ndd, nd_label, 0); sum = nd_fletcher64(nd_label, sizeof_namespace_label(ndd), 1); nsl_set_checksum(ndd, nd_label, sum); } static bool slot_valid(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label, u32 slot) { bool valid; /* check that we are written where we expect to be written */ if (slot != nsl_get_slot(ndd, nd_label)) return false; valid = nsl_validate_checksum(ndd, nd_label); if (!valid) dev_dbg(ndd->dev, "fail checksum. slot: %d\n", slot); return valid; } int nd_label_reserve_dpa(struct nvdimm_drvdata *ndd) { struct nd_namespace_index *nsindex; unsigned long *free; u32 nslot, slot; if (!preamble_current(ndd, &nsindex, &free, &nslot)) return 0; /* no label, nothing to reserve */ for_each_clear_bit_le(slot, free, nslot) { struct nd_namespace_label *nd_label; struct nd_region *nd_region = NULL; struct nd_label_id label_id; struct resource *res; uuid_t label_uuid; u32 flags; nd_label = to_label(ndd, slot); if (!slot_valid(ndd, nd_label, slot)) continue; nsl_get_uuid(ndd, nd_label, &label_uuid); flags = nsl_get_flags(ndd, nd_label); nd_label_gen_id(&label_id, &label_uuid, flags); res = nvdimm_allocate_dpa(ndd, &label_id, nsl_get_dpa(ndd, nd_label), nsl_get_rawsize(ndd, nd_label)); nd_dbg_dpa(nd_region, ndd, res, "reserve\n"); if (!res) return -EBUSY; } return 0; } int nd_label_data_init(struct nvdimm_drvdata *ndd) { size_t config_size, read_size, max_xfer, offset; struct nd_namespace_index *nsindex; unsigned int i; int rc = 0; u32 nslot; if (ndd->data) return 0; if (ndd->nsarea.status || ndd->nsarea.max_xfer == 0) { dev_dbg(ndd->dev, "failed to init config data area: (%u:%u)\n", ndd->nsarea.max_xfer, ndd->nsarea.config_size); return -ENXIO; } /* * We need to determine the maximum index area as this is the section * we must read and validate before we can start processing labels. * * If the area is too small to contain the two indexes and 2 labels * then we abort. * * Start at a label size of 128 as this should result in the largest * possible namespace index size. */ ndd->nslabel_size = 128; read_size = sizeof_namespace_index(ndd) * 2; if (!read_size) return -ENXIO; /* Allocate config data */ config_size = ndd->nsarea.config_size; ndd->data = kvzalloc(config_size, GFP_KERNEL); if (!ndd->data) return -ENOMEM; /* * We want to guarantee as few reads as possible while conserving * memory. To do that we figure out how much unused space will be left * in the last read, divide that by the total number of reads it is * going to take given our maximum transfer size, and then reduce our * maximum transfer size based on that result. */ max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size); if (read_size < max_xfer) { /* trim waste */ max_xfer -= ((max_xfer - 1) - (config_size - 1) % max_xfer) / DIV_ROUND_UP(config_size, max_xfer); /* make certain we read indexes in exactly 1 read */ if (max_xfer < read_size) max_xfer = read_size; } /* Make our initial read size a multiple of max_xfer size */ read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer, config_size); /* Read the index data */ rc = nvdimm_get_config_data(ndd, ndd->data, 0, read_size); if (rc) goto out_err; /* Validate index data, if not valid assume all labels are invalid */ ndd->ns_current = nd_label_validate(ndd); if (ndd->ns_current < 0) return 0; /* Record our index values */ ndd->ns_next = nd_label_next_nsindex(ndd->ns_current); /* Copy "current" index on top of the "next" index */ nsindex = to_current_namespace_index(ndd); nd_label_copy(ndd, to_next_namespace_index(ndd), nsindex); /* Determine starting offset for label data */ offset = __le64_to_cpu(nsindex->labeloff); nslot = __le32_to_cpu(nsindex->nslot); /* Loop through the free list pulling in any active labels */ for (i = 0; i < nslot; i++, offset += ndd->nslabel_size) { size_t label_read_size; /* zero out the unused labels */ if (test_bit_le(i, nsindex->free)) { memset(ndd->data + offset, 0, ndd->nslabel_size); continue; } /* if we already read past here then just continue */ if (offset + ndd->nslabel_size <= read_size) continue; /* if we haven't read in a while reset our read_size offset */ if (read_size < offset) read_size = offset; /* determine how much more will be read after this next call. */ label_read_size = offset + ndd->nslabel_size - read_size; label_read_size = DIV_ROUND_UP(label_read_size, max_xfer) * max_xfer; /* truncate last read if needed */ if (read_size + label_read_size > config_size) label_read_size = config_size - read_size; /* Read the label data */ rc = nvdimm_get_config_data(ndd, ndd->data + read_size, read_size, label_read_size); if (rc) goto out_err; /* push read_size to next read offset */ read_size += label_read_size; } dev_dbg(ndd->dev, "len: %zu rc: %d\n", offset, rc); out_err: return rc; } int nd_label_active_count(struct nvdimm_drvdata *ndd) { struct nd_namespace_index *nsindex; unsigned long *free; u32 nslot, slot; int count = 0; if (!preamble_current(ndd, &nsindex, &free, &nslot)) return 0; for_each_clear_bit_le(slot, free, nslot) { struct nd_namespace_label *nd_label; nd_label = to_label(ndd, slot); if (!slot_valid(ndd, nd_label, slot)) { u32 label_slot = nsl_get_slot(ndd, nd_label); u64 size = nsl_get_rawsize(ndd, nd_label); u64 dpa = nsl_get_dpa(ndd, nd_label); dev_dbg(ndd->dev, "slot%d invalid slot: %d dpa: %llx size: %llx\n", slot, label_slot, dpa, size); continue; } count++; } return count; } struct nd_namespace_label *nd_label_active(struct nvdimm_drvdata *ndd, int n) { struct nd_namespace_index *nsindex; unsigned long *free; u32 nslot, slot; if (!preamble_current(ndd, &nsindex, &free, &nslot)) return NULL; for_each_clear_bit_le(slot, free, nslot) { struct nd_namespace_label *nd_label; nd_label = to_label(ndd, slot); if (!slot_valid(ndd, nd_label, slot)) continue; if (n-- == 0) return to_label(ndd, slot); } return NULL; } u32 nd_label_alloc_slot(struct nvdimm_drvdata *ndd) { struct nd_namespace_index *nsindex; unsigned long *free; u32 nslot, slot; if (!preamble_next(ndd, &nsindex, &free, &nslot)) return UINT_MAX; WARN_ON(!is_nvdimm_bus_locked(ndd->dev)); slot = find_next_bit_le(free, nslot, 0); if (slot == nslot) return UINT_MAX; clear_bit_le(slot, free); return slot; } bool nd_label_free_slot(struct nvdimm_drvdata *ndd, u32 slot) { struct nd_namespace_index *nsindex; unsigned long *free; u32 nslot; if (!preamble_next(ndd, &nsindex, &free, &nslot)) return false; WARN_ON(!is_nvdimm_bus_locked(ndd->dev)); if (slot < nslot) return !test_and_set_bit_le(slot, free); return false; } u32 nd_label_nfree(struct nvdimm_drvdata *ndd) { struct nd_namespace_index *nsindex; unsigned long *free; u32 nslot; WARN_ON(!is_nvdimm_bus_locked(ndd->dev)); if (!preamble_next(ndd, &nsindex, &free, &nslot)) return nvdimm_num_label_slots(ndd); return bitmap_weight(free, nslot); } static int nd_label_write_index(struct nvdimm_drvdata *ndd, int index, u32 seq, unsigned long flags) { struct nd_namespace_index *nsindex; unsigned long offset; u64 checksum; u32 nslot; int rc; nsindex = to_namespace_index(ndd, index); if (flags & ND_NSINDEX_INIT) nslot = nvdimm_num_label_slots(ndd); else nslot = __le32_to_cpu(nsindex->nslot); memcpy(nsindex->sig, NSINDEX_SIGNATURE, NSINDEX_SIG_LEN); memset(&nsindex->flags, 0, 3); nsindex->labelsize = sizeof_namespace_label(ndd) >> 8; nsindex->seq = __cpu_to_le32(seq); offset = (unsigned long) nsindex - (unsigned long) to_namespace_index(ndd, 0); nsindex->myoff = __cpu_to_le64(offset); nsindex->mysize = __cpu_to_le64(sizeof_namespace_index(ndd)); offset = (unsigned long) to_namespace_index(ndd, nd_label_next_nsindex(index)) - (unsigned long) to_namespace_index(ndd, 0); nsindex->otheroff = __cpu_to_le64(offset); offset = (unsigned long) nd_label_base(ndd) - (unsigned long) to_namespace_index(ndd, 0); nsindex->labeloff = __cpu_to_le64(offset); nsindex->nslot = __cpu_to_le32(nslot); nsindex->major = __cpu_to_le16(1); if (sizeof_namespace_label(ndd) < 256) nsindex->minor = __cpu_to_le16(1); else nsindex->minor = __cpu_to_le16(2); nsindex->checksum = __cpu_to_le64(0); if (flags & ND_NSINDEX_INIT) { unsigned long *free = (unsigned long *) nsindex->free; u32 nfree = ALIGN(nslot, BITS_PER_LONG); int last_bits, i; memset(nsindex->free, 0xff, nfree / 8); for (i = 0, last_bits = nfree - nslot; i < last_bits; i++) clear_bit_le(nslot + i, free); } checksum = nd_fletcher64(nsindex, sizeof_namespace_index(ndd), 1); nsindex->checksum = __cpu_to_le64(checksum); rc = nvdimm_set_config_data(ndd, __le64_to_cpu(nsindex->myoff), nsindex, sizeof_namespace_index(ndd)); if (rc < 0) return rc; if (flags & ND_NSINDEX_INIT) return 0; /* copy the index we just wrote to the new 'next' */ WARN_ON(index != ndd->ns_next); nd_label_copy(ndd, to_current_namespace_index(ndd), nsindex); ndd->ns_current = nd_label_next_nsindex(ndd->ns_current); ndd->ns_next = nd_label_next_nsindex(ndd->ns_next); WARN_ON(ndd->ns_current == ndd->ns_next); return 0; } static unsigned long nd_label_offset(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label) { return (unsigned long) nd_label - (unsigned long) to_namespace_index(ndd, 0); } static enum nvdimm_claim_class guid_to_nvdimm_cclass(guid_t *guid) { if (guid_equal(guid, &nvdimm_btt_guid)) return NVDIMM_CCLASS_BTT; else if (guid_equal(guid, &nvdimm_btt2_guid)) return NVDIMM_CCLASS_BTT2; else if (guid_equal(guid, &nvdimm_pfn_guid)) return NVDIMM_CCLASS_PFN; else if (guid_equal(guid, &nvdimm_dax_guid)) return NVDIMM_CCLASS_DAX; else if (guid_equal(guid, &guid_null)) return NVDIMM_CCLASS_NONE; return NVDIMM_CCLASS_UNKNOWN; } /* CXL labels store UUIDs instead of GUIDs for the same data */ static enum nvdimm_claim_class uuid_to_nvdimm_cclass(uuid_t *uuid) { if (uuid_equal(uuid, &nvdimm_btt_uuid)) return NVDIMM_CCLASS_BTT; else if (uuid_equal(uuid, &nvdimm_btt2_uuid)) return NVDIMM_CCLASS_BTT2; else if (uuid_equal(uuid, &nvdimm_pfn_uuid)) return NVDIMM_CCLASS_PFN; else if (uuid_equal(uuid, &nvdimm_dax_uuid)) return NVDIMM_CCLASS_DAX; else if (uuid_equal(uuid, &uuid_null)) return NVDIMM_CCLASS_NONE; return NVDIMM_CCLASS_UNKNOWN; } static const guid_t *to_abstraction_guid(enum nvdimm_claim_class claim_class, guid_t *target) { if (claim_class == NVDIMM_CCLASS_BTT) return &nvdimm_btt_guid; else if (claim_class == NVDIMM_CCLASS_BTT2) return &nvdimm_btt2_guid; else if (claim_class == NVDIMM_CCLASS_PFN) return &nvdimm_pfn_guid; else if (claim_class == NVDIMM_CCLASS_DAX) return &nvdimm_dax_guid; else if (claim_class == NVDIMM_CCLASS_UNKNOWN) { /* * If we're modifying a namespace for which we don't * know the claim_class, don't touch the existing guid. */ return target; } else return &guid_null; } /* CXL labels store UUIDs instead of GUIDs for the same data */ static const uuid_t *to_abstraction_uuid(enum nvdimm_claim_class claim_class, uuid_t *target) { if (claim_class == NVDIMM_CCLASS_BTT) return &nvdimm_btt_uuid; else if (claim_class == NVDIMM_CCLASS_BTT2) return &nvdimm_btt2_uuid; else if (claim_class == NVDIMM_CCLASS_PFN) return &nvdimm_pfn_uuid; else if (claim_class == NVDIMM_CCLASS_DAX) return &nvdimm_dax_uuid; else if (claim_class == NVDIMM_CCLASS_UNKNOWN) { /* * If we're modifying a namespace for which we don't * know the claim_class, don't touch the existing uuid. */ return target; } else return &uuid_null; } static void reap_victim(struct nd_mapping *nd_mapping, struct nd_label_ent *victim) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); u32 slot = to_slot(ndd, victim->label); dev_dbg(ndd->dev, "free: %d\n", slot); nd_label_free_slot(ndd, slot); victim->label = NULL; } static void nsl_set_type_guid(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label, guid_t *guid) { if (efi_namespace_label_has(ndd, type_guid)) guid_copy(&nd_label->efi.type_guid, guid); } bool nsl_validate_type_guid(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label, guid_t *guid) { if (ndd->cxl || !efi_namespace_label_has(ndd, type_guid)) return true; if (!guid_equal(&nd_label->efi.type_guid, guid)) { dev_dbg(ndd->dev, "expect type_guid %pUb got %pUb\n", guid, &nd_label->efi.type_guid); return false; } return true; } static void nsl_set_claim_class(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label, enum nvdimm_claim_class claim_class) { if (ndd->cxl) { uuid_t uuid; import_uuid(&uuid, nd_label->cxl.abstraction_uuid); export_uuid(nd_label->cxl.abstraction_uuid, to_abstraction_uuid(claim_class, &uuid)); return; } if (!efi_namespace_label_has(ndd, abstraction_guid)) return; guid_copy(&nd_label->efi.abstraction_guid, to_abstraction_guid(claim_class, &nd_label->efi.abstraction_guid)); } enum nvdimm_claim_class nsl_get_claim_class(struct nvdimm_drvdata *ndd, struct nd_namespace_label *nd_label) { if (ndd->cxl) { uuid_t uuid; import_uuid(&uuid, nd_label->cxl.abstraction_uuid); return uuid_to_nvdimm_cclass(&uuid); } if (!efi_namespace_label_has(ndd, abstraction_guid)) return NVDIMM_CCLASS_NONE; return guid_to_nvdimm_cclass(&nd_label->efi.abstraction_guid); } static int __pmem_label_update(struct nd_region *nd_region, struct nd_mapping *nd_mapping, struct nd_namespace_pmem *nspm, int pos, unsigned long flags) { struct nd_namespace_common *ndns = &nspm->nsio.common; struct nd_interleave_set *nd_set = nd_region->nd_set; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_namespace_label *nd_label; struct nd_namespace_index *nsindex; struct nd_label_ent *label_ent; struct nd_label_id label_id; struct resource *res; unsigned long *free; u32 nslot, slot; size_t offset; u64 cookie; int rc; if (!preamble_next(ndd, &nsindex, &free, &nslot)) return -ENXIO; cookie = nd_region_interleave_set_cookie(nd_region, nsindex); nd_label_gen_id(&label_id, nspm->uuid, 0); for_each_dpa_resource(ndd, res) if (strcmp(res->name, label_id.id) == 0) break; if (!res) { WARN_ON_ONCE(1); return -ENXIO; } /* allocate and write the label to the staging (next) index */ slot = nd_label_alloc_slot(ndd); if (slot == UINT_MAX) return -ENXIO; dev_dbg(ndd->dev, "allocated: %d\n", slot); nd_label = to_label(ndd, slot); memset(nd_label, 0, sizeof_namespace_label(ndd)); nsl_set_uuid(ndd, nd_label, nspm->uuid); nsl_set_name(ndd, nd_label, nspm->alt_name); nsl_set_flags(ndd, nd_label, flags); nsl_set_nlabel(ndd, nd_label, nd_region->ndr_mappings); nsl_set_nrange(ndd, nd_label, 1); nsl_set_position(ndd, nd_label, pos); nsl_set_isetcookie(ndd, nd_label, cookie); nsl_set_rawsize(ndd, nd_label, resource_size(res)); nsl_set_lbasize(ndd, nd_label, nspm->lbasize); nsl_set_dpa(ndd, nd_label, res->start); nsl_set_slot(ndd, nd_label, slot); nsl_set_type_guid(ndd, nd_label, &nd_set->type_guid); nsl_set_claim_class(ndd, nd_label, ndns->claim_class); nsl_calculate_checksum(ndd, nd_label); nd_dbg_dpa(nd_region, ndd, res, "\n"); /* update label */ offset = nd_label_offset(ndd, nd_label); rc = nvdimm_set_config_data(ndd, offset, nd_label, sizeof_namespace_label(ndd)); if (rc < 0) return rc; /* Garbage collect the previous label */ mutex_lock(&nd_mapping->lock); list_for_each_entry(label_ent, &nd_mapping->labels, list) { if (!label_ent->label) continue; if (test_and_clear_bit(ND_LABEL_REAP, &label_ent->flags) || nsl_uuid_equal(ndd, label_ent->label, nspm->uuid)) reap_victim(nd_mapping, label_ent); } /* update index */ rc = nd_label_write_index(ndd, ndd->ns_next, nd_inc_seq(__le32_to_cpu(nsindex->seq)), 0); if (rc == 0) { list_for_each_entry(label_ent, &nd_mapping->labels, list) if (!label_ent->label) { label_ent->label = nd_label; nd_label = NULL; break; } dev_WARN_ONCE(&nspm->nsio.common.dev, nd_label, "failed to track label: %d\n", to_slot(ndd, nd_label)); if (nd_label) rc = -ENXIO; } mutex_unlock(&nd_mapping->lock); return rc; } static int init_labels(struct nd_mapping *nd_mapping, int num_labels) { int i, old_num_labels = 0; struct nd_label_ent *label_ent; struct nd_namespace_index *nsindex; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); mutex_lock(&nd_mapping->lock); list_for_each_entry(label_ent, &nd_mapping->labels, list) old_num_labels++; mutex_unlock(&nd_mapping->lock); /* * We need to preserve all the old labels for the mapping so * they can be garbage collected after writing the new labels. */ for (i = old_num_labels; i < num_labels; i++) { label_ent = kzalloc(sizeof(*label_ent), GFP_KERNEL); if (!label_ent) return -ENOMEM; mutex_lock(&nd_mapping->lock); list_add_tail(&label_ent->list, &nd_mapping->labels); mutex_unlock(&nd_mapping->lock); } if (ndd->ns_current == -1 || ndd->ns_next == -1) /* pass */; else return max(num_labels, old_num_labels); nsindex = to_namespace_index(ndd, 0); memset(nsindex, 0, ndd->nsarea.config_size); for (i = 0; i < 2; i++) { int rc = nd_label_write_index(ndd, i, 3 - i, ND_NSINDEX_INIT); if (rc) return rc; } ndd->ns_next = 1; ndd->ns_current = 0; return max(num_labels, old_num_labels); } static int del_labels(struct nd_mapping *nd_mapping, uuid_t *uuid) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_label_ent *label_ent, *e; struct nd_namespace_index *nsindex; unsigned long *free; LIST_HEAD(list); u32 nslot, slot; int active = 0; if (!uuid) return 0; /* no index || no labels == nothing to delete */ if (!preamble_next(ndd, &nsindex, &free, &nslot)) return 0; mutex_lock(&nd_mapping->lock); list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { struct nd_namespace_label *nd_label = label_ent->label; if (!nd_label) continue; active++; if (!nsl_uuid_equal(ndd, nd_label, uuid)) continue; active--; slot = to_slot(ndd, nd_label); nd_label_free_slot(ndd, slot); dev_dbg(ndd->dev, "free: %d\n", slot); list_move_tail(&label_ent->list, &list); label_ent->label = NULL; } list_splice_tail_init(&list, &nd_mapping->labels); if (active == 0) { nd_mapping_free_labels(nd_mapping); dev_dbg(ndd->dev, "no more active labels\n"); } mutex_unlock(&nd_mapping->lock); return nd_label_write_index(ndd, ndd->ns_next, nd_inc_seq(__le32_to_cpu(nsindex->seq)), 0); } int nd_pmem_namespace_label_update(struct nd_region *nd_region, struct nd_namespace_pmem *nspm, resource_size_t size) { int i, rc; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res; int count = 0; if (size == 0) { rc = del_labels(nd_mapping, nspm->uuid); if (rc) return rc; continue; } for_each_dpa_resource(ndd, res) if (strncmp(res->name, "pmem", 4) == 0) count++; WARN_ON_ONCE(!count); rc = init_labels(nd_mapping, count); if (rc < 0) return rc; rc = __pmem_label_update(nd_region, nd_mapping, nspm, i, NSLABEL_FLAG_UPDATING); if (rc) return rc; } if (size == 0) return 0; /* Clear the UPDATING flag per UEFI 2.7 expectations */ for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; rc = __pmem_label_update(nd_region, nd_mapping, nspm, i, 0); if (rc) return rc; } return 0; } int __init nd_label_init(void) { WARN_ON(guid_parse(NVDIMM_BTT_GUID, &nvdimm_btt_guid)); WARN_ON(guid_parse(NVDIMM_BTT2_GUID, &nvdimm_btt2_guid)); WARN_ON(guid_parse(NVDIMM_PFN_GUID, &nvdimm_pfn_guid)); WARN_ON(guid_parse(NVDIMM_DAX_GUID, &nvdimm_dax_guid)); WARN_ON(uuid_parse(NVDIMM_BTT_GUID, &nvdimm_btt_uuid)); WARN_ON(uuid_parse(NVDIMM_BTT2_GUID, &nvdimm_btt2_uuid)); WARN_ON(uuid_parse(NVDIMM_PFN_GUID, &nvdimm_pfn_uuid)); WARN_ON(uuid_parse(NVDIMM_DAX_GUID, &nvdimm_dax_uuid)); WARN_ON(uuid_parse(CXL_REGION_UUID, &cxl_region_uuid)); WARN_ON(uuid_parse(CXL_NAMESPACE_UUID, &cxl_namespace_uuid)); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1