Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan J Williams | 10280 | 94.95% | 64 | 78.05% |
Vishal Verma | 320 | 2.96% | 3 | 3.66% |
Aneesh Kumar K.V | 78 | 0.72% | 3 | 3.66% |
Dmitry V. Krivenok | 68 | 0.63% | 1 | 1.22% |
Ross Zwisler | 37 | 0.34% | 1 | 1.22% |
Ira Weiny | 23 | 0.21% | 1 | 1.22% |
Dan Carpenter | 6 | 0.06% | 1 | 1.22% |
Kangjie Lu | 4 | 0.04% | 1 | 1.22% |
Toshi Kani | 3 | 0.03% | 1 | 1.22% |
Andy Shevchenko | 2 | 0.02% | 2 | 2.44% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.22% |
Fabian Frederick | 2 | 0.02% | 1 | 1.22% |
Colin Ian King | 1 | 0.01% | 1 | 1.22% |
Keith Busch | 1 | 0.01% | 1 | 1.22% |
Total | 10827 | 82 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. */ #include <linux/module.h> #include <linux/device.h> #include <linux/sort.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/nd.h> #include "nd-core.h" #include "pmem.h" #include "pfn.h" #include "nd.h" static void namespace_io_release(struct device *dev) { struct nd_namespace_io *nsio = to_nd_namespace_io(dev); kfree(nsio); } static void namespace_pmem_release(struct device *dev) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); struct nd_region *nd_region = to_nd_region(dev->parent); if (nspm->id >= 0) ida_simple_remove(&nd_region->ns_ida, nspm->id); kfree(nspm->alt_name); kfree(nspm->uuid); kfree(nspm); } static bool is_namespace_pmem(const struct device *dev); static bool is_namespace_io(const struct device *dev); static int is_uuid_busy(struct device *dev, void *data) { uuid_t *uuid1 = data, *uuid2 = NULL; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); uuid2 = nspm->uuid; } else if (is_nd_btt(dev)) { struct nd_btt *nd_btt = to_nd_btt(dev); uuid2 = nd_btt->uuid; } else if (is_nd_pfn(dev)) { struct nd_pfn *nd_pfn = to_nd_pfn(dev); uuid2 = nd_pfn->uuid; } if (uuid2 && uuid_equal(uuid1, uuid2)) return -EBUSY; return 0; } static int is_namespace_uuid_busy(struct device *dev, void *data) { if (is_nd_region(dev)) return device_for_each_child(dev, data, is_uuid_busy); return 0; } /** * nd_is_uuid_unique - verify that no other namespace has @uuid * @dev: any device on a nvdimm_bus * @uuid: uuid to check */ bool nd_is_uuid_unique(struct device *dev, uuid_t *uuid) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!nvdimm_bus) return false; WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm_bus->dev)); if (device_for_each_child(&nvdimm_bus->dev, uuid, is_namespace_uuid_busy) != 0) return false; return true; } bool pmem_should_map_pages(struct device *dev) { struct nd_region *nd_region = to_nd_region(dev->parent); struct nd_namespace_common *ndns = to_ndns(dev); struct nd_namespace_io *nsio; if (!IS_ENABLED(CONFIG_ZONE_DEVICE)) return false; if (!test_bit(ND_REGION_PAGEMAP, &nd_region->flags)) return false; if (is_nd_pfn(dev) || is_nd_btt(dev)) return false; if (ndns->force_raw) return false; nsio = to_nd_namespace_io(dev); if (region_intersects(nsio->res.start, resource_size(&nsio->res), IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) == REGION_MIXED) return false; return ARCH_MEMREMAP_PMEM == MEMREMAP_WB; } EXPORT_SYMBOL(pmem_should_map_pages); unsigned int pmem_sector_size(struct nd_namespace_common *ndns) { if (is_namespace_pmem(&ndns->dev)) { struct nd_namespace_pmem *nspm; nspm = to_nd_namespace_pmem(&ndns->dev); if (nspm->lbasize == 0 || nspm->lbasize == 512) /* default */; else if (nspm->lbasize == 4096) return 4096; else dev_WARN(&ndns->dev, "unsupported sector size: %ld\n", nspm->lbasize); } /* * There is no namespace label (is_namespace_io()), or the label * indicates the default sector size. */ return 512; } EXPORT_SYMBOL(pmem_sector_size); const char *nvdimm_namespace_disk_name(struct nd_namespace_common *ndns, char *name) { struct nd_region *nd_region = to_nd_region(ndns->dev.parent); const char *suffix = NULL; if (ndns->claim && is_nd_btt(ndns->claim)) suffix = "s"; if (is_namespace_pmem(&ndns->dev) || is_namespace_io(&ndns->dev)) { int nsidx = 0; if (is_namespace_pmem(&ndns->dev)) { struct nd_namespace_pmem *nspm; nspm = to_nd_namespace_pmem(&ndns->dev); nsidx = nspm->id; } if (nsidx) sprintf(name, "pmem%d.%d%s", nd_region->id, nsidx, suffix ? suffix : ""); else sprintf(name, "pmem%d%s", nd_region->id, suffix ? suffix : ""); } else { return NULL; } return name; } EXPORT_SYMBOL(nvdimm_namespace_disk_name); const uuid_t *nd_dev_to_uuid(struct device *dev) { if (!dev) return &uuid_null; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); return nspm->uuid; } else return &uuid_null; } EXPORT_SYMBOL(nd_dev_to_uuid); static ssize_t nstype_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev->parent); return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); } static DEVICE_ATTR_RO(nstype); static ssize_t __alt_name_store(struct device *dev, const char *buf, const size_t len) { char *input, *pos, *alt_name, **ns_altname; ssize_t rc; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); ns_altname = &nspm->alt_name; } else return -ENXIO; if (dev->driver || to_ndns(dev)->claim) return -EBUSY; input = kstrndup(buf, len, GFP_KERNEL); if (!input) return -ENOMEM; pos = strim(input); if (strlen(pos) + 1 > NSLABEL_NAME_LEN) { rc = -EINVAL; goto out; } alt_name = kzalloc(NSLABEL_NAME_LEN, GFP_KERNEL); if (!alt_name) { rc = -ENOMEM; goto out; } kfree(*ns_altname); *ns_altname = alt_name; sprintf(*ns_altname, "%s", pos); rc = len; out: kfree(input); return rc; } static int nd_namespace_label_update(struct nd_region *nd_region, struct device *dev) { dev_WARN_ONCE(dev, dev->driver || to_ndns(dev)->claim, "namespace must be idle during label update\n"); if (dev->driver || to_ndns(dev)->claim) return 0; /* * Only allow label writes that will result in a valid namespace * or deletion of an existing namespace. */ if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); resource_size_t size = resource_size(&nspm->nsio.res); if (size == 0 && nspm->uuid) /* delete allocation */; else if (!nspm->uuid) return 0; return nd_pmem_namespace_label_update(nd_region, nspm, size); } else return -ENXIO; } static ssize_t alt_name_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct nd_region *nd_region = to_nd_region(dev->parent); ssize_t rc; device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); rc = __alt_name_store(dev, buf, len); if (rc >= 0) rc = nd_namespace_label_update(nd_region, dev); dev_dbg(dev, "%s(%zd)\n", rc < 0 ? "fail " : "", rc); nvdimm_bus_unlock(dev); device_unlock(dev); return rc < 0 ? rc : len; } static ssize_t alt_name_show(struct device *dev, struct device_attribute *attr, char *buf) { char *ns_altname; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); ns_altname = nspm->alt_name; } else return -ENXIO; return sprintf(buf, "%s\n", ns_altname ? ns_altname : ""); } static DEVICE_ATTR_RW(alt_name); static int scan_free(struct nd_region *nd_region, struct nd_mapping *nd_mapping, struct nd_label_id *label_id, resource_size_t n) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); int rc = 0; while (n) { struct resource *res, *last; last = NULL; for_each_dpa_resource(ndd, res) if (strcmp(res->name, label_id->id) == 0) last = res; res = last; if (!res) return 0; if (n >= resource_size(res)) { n -= resource_size(res); nd_dbg_dpa(nd_region, ndd, res, "delete %d\n", rc); nvdimm_free_dpa(ndd, res); /* retry with last resource deleted */ continue; } rc = adjust_resource(res, res->start, resource_size(res) - n); if (rc == 0) res->flags |= DPA_RESOURCE_ADJUSTED; nd_dbg_dpa(nd_region, ndd, res, "shrink %d\n", rc); break; } return rc; } /** * shrink_dpa_allocation - for each dimm in region free n bytes for label_id * @nd_region: the set of dimms to reclaim @n bytes from * @label_id: unique identifier for the namespace consuming this dpa range * @n: number of bytes per-dimm to release * * Assumes resources are ordered. Starting from the end try to * adjust_resource() the allocation to @n, but if @n is larger than the * allocation delete it and find the 'new' last allocation in the label * set. */ static int shrink_dpa_allocation(struct nd_region *nd_region, struct nd_label_id *label_id, resource_size_t n) { int i; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; int rc; rc = scan_free(nd_region, nd_mapping, label_id, n); if (rc) return rc; } return 0; } static resource_size_t init_dpa_allocation(struct nd_label_id *label_id, struct nd_region *nd_region, struct nd_mapping *nd_mapping, resource_size_t n) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res; int rc = 0; /* first resource allocation for this label-id or dimm */ res = nvdimm_allocate_dpa(ndd, label_id, nd_mapping->start, n); if (!res) rc = -EBUSY; nd_dbg_dpa(nd_region, ndd, res, "init %d\n", rc); return rc ? n : 0; } /** * space_valid() - validate free dpa space against constraints * @nd_region: hosting region of the free space * @ndd: dimm device data for debug * @label_id: namespace id to allocate space * @prev: potential allocation that precedes free space * @next: allocation that follows the given free space range * @exist: first allocation with same id in the mapping * @n: range that must satisfied for pmem allocations * @valid: free space range to validate * * BLK-space is valid as long as it does not precede a PMEM * allocation in a given region. PMEM-space must be contiguous * and adjacent to an existing existing allocation (if one * exists). If reserving PMEM any space is valid. */ static void space_valid(struct nd_region *nd_region, struct nvdimm_drvdata *ndd, struct nd_label_id *label_id, struct resource *prev, struct resource *next, struct resource *exist, resource_size_t n, struct resource *valid) { bool is_reserve = strcmp(label_id->id, "pmem-reserve") == 0; unsigned long align; align = nd_region->align / nd_region->ndr_mappings; valid->start = ALIGN(valid->start, align); valid->end = ALIGN_DOWN(valid->end + 1, align) - 1; if (valid->start >= valid->end) goto invalid; if (is_reserve) return; /* allocation needs to be contiguous, so this is all or nothing */ if (resource_size(valid) < n) goto invalid; /* we've got all the space we need and no existing allocation */ if (!exist) return; /* allocation needs to be contiguous with the existing namespace */ if (valid->start == exist->end + 1 || valid->end == exist->start - 1) return; invalid: /* truncate @valid size to 0 */ valid->end = valid->start - 1; } enum alloc_loc { ALLOC_ERR = 0, ALLOC_BEFORE, ALLOC_MID, ALLOC_AFTER, }; static resource_size_t scan_allocate(struct nd_region *nd_region, struct nd_mapping *nd_mapping, struct nd_label_id *label_id, resource_size_t n) { resource_size_t mapping_end = nd_mapping->start + nd_mapping->size - 1; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res, *exist = NULL, valid; const resource_size_t to_allocate = n; int first; for_each_dpa_resource(ndd, res) if (strcmp(label_id->id, res->name) == 0) exist = res; valid.start = nd_mapping->start; valid.end = mapping_end; valid.name = "free space"; retry: first = 0; for_each_dpa_resource(ndd, res) { struct resource *next = res->sibling, *new_res = NULL; resource_size_t allocate, available = 0; enum alloc_loc loc = ALLOC_ERR; const char *action; int rc = 0; /* ignore resources outside this nd_mapping */ if (res->start > mapping_end) continue; if (res->end < nd_mapping->start) continue; /* space at the beginning of the mapping */ if (!first++ && res->start > nd_mapping->start) { valid.start = nd_mapping->start; valid.end = res->start - 1; space_valid(nd_region, ndd, label_id, NULL, next, exist, to_allocate, &valid); available = resource_size(&valid); if (available) loc = ALLOC_BEFORE; } /* space between allocations */ if (!loc && next) { valid.start = res->start + resource_size(res); valid.end = min(mapping_end, next->start - 1); space_valid(nd_region, ndd, label_id, res, next, exist, to_allocate, &valid); available = resource_size(&valid); if (available) loc = ALLOC_MID; } /* space at the end of the mapping */ if (!loc && !next) { valid.start = res->start + resource_size(res); valid.end = mapping_end; space_valid(nd_region, ndd, label_id, res, next, exist, to_allocate, &valid); available = resource_size(&valid); if (available) loc = ALLOC_AFTER; } if (!loc || !available) continue; allocate = min(available, n); switch (loc) { case ALLOC_BEFORE: if (strcmp(res->name, label_id->id) == 0) { /* adjust current resource up */ rc = adjust_resource(res, res->start - allocate, resource_size(res) + allocate); action = "cur grow up"; } else action = "allocate"; break; case ALLOC_MID: if (strcmp(next->name, label_id->id) == 0) { /* adjust next resource up */ rc = adjust_resource(next, next->start - allocate, resource_size(next) + allocate); new_res = next; action = "next grow up"; } else if (strcmp(res->name, label_id->id) == 0) { action = "grow down"; } else action = "allocate"; break; case ALLOC_AFTER: if (strcmp(res->name, label_id->id) == 0) action = "grow down"; else action = "allocate"; break; default: return n; } if (strcmp(action, "allocate") == 0) { new_res = nvdimm_allocate_dpa(ndd, label_id, valid.start, allocate); if (!new_res) rc = -EBUSY; } else if (strcmp(action, "grow down") == 0) { /* adjust current resource down */ rc = adjust_resource(res, res->start, resource_size(res) + allocate); if (rc == 0) res->flags |= DPA_RESOURCE_ADJUSTED; } if (!new_res) new_res = res; nd_dbg_dpa(nd_region, ndd, new_res, "%s(%d) %d\n", action, loc, rc); if (rc) return n; n -= allocate; if (n) { /* * Retry scan with newly inserted resources. * For example, if we did an ALLOC_BEFORE * insertion there may also have been space * available for an ALLOC_AFTER insertion, so we * need to check this same resource again */ goto retry; } else return 0; } if (n == to_allocate) return init_dpa_allocation(label_id, nd_region, nd_mapping, n); return n; } static int merge_dpa(struct nd_region *nd_region, struct nd_mapping *nd_mapping, struct nd_label_id *label_id) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res; if (strncmp("pmem", label_id->id, 4) == 0) return 0; retry: for_each_dpa_resource(ndd, res) { int rc; struct resource *next = res->sibling; resource_size_t end = res->start + resource_size(res); if (!next || strcmp(res->name, label_id->id) != 0 || strcmp(next->name, label_id->id) != 0 || end != next->start) continue; end += resource_size(next); nvdimm_free_dpa(ndd, next); rc = adjust_resource(res, res->start, end - res->start); nd_dbg_dpa(nd_region, ndd, res, "merge %d\n", rc); if (rc) return rc; res->flags |= DPA_RESOURCE_ADJUSTED; goto retry; } return 0; } int __reserve_free_pmem(struct device *dev, void *data) { struct nvdimm *nvdimm = data; struct nd_region *nd_region; struct nd_label_id label_id; int i; if (!is_memory(dev)) return 0; nd_region = to_nd_region(dev); if (nd_region->ndr_mappings == 0) return 0; memset(&label_id, 0, sizeof(label_id)); strcat(label_id.id, "pmem-reserve"); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; resource_size_t n, rem = 0; if (nd_mapping->nvdimm != nvdimm) continue; n = nd_pmem_available_dpa(nd_region, nd_mapping); if (n == 0) return 0; rem = scan_allocate(nd_region, nd_mapping, &label_id, n); dev_WARN_ONCE(&nd_region->dev, rem, "pmem reserve underrun: %#llx of %#llx bytes\n", (unsigned long long) n - rem, (unsigned long long) n); return rem ? -ENXIO : 0; } return 0; } void release_free_pmem(struct nvdimm_bus *nvdimm_bus, struct nd_mapping *nd_mapping) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res, *_res; for_each_dpa_resource_safe(ndd, res, _res) if (strcmp(res->name, "pmem-reserve") == 0) nvdimm_free_dpa(ndd, res); } /** * grow_dpa_allocation - for each dimm allocate n bytes for @label_id * @nd_region: the set of dimms to allocate @n more bytes from * @label_id: unique identifier for the namespace consuming this dpa range * @n: number of bytes per-dimm to add to the existing allocation * * Assumes resources are ordered. For BLK regions, first consume * BLK-only available DPA free space, then consume PMEM-aliased DPA * space starting at the highest DPA. For PMEM regions start * allocations from the start of an interleave set and end at the first * BLK allocation or the end of the interleave set, whichever comes * first. */ static int grow_dpa_allocation(struct nd_region *nd_region, struct nd_label_id *label_id, resource_size_t n) { int i; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; resource_size_t rem = n; int rc; rem = scan_allocate(nd_region, nd_mapping, label_id, rem); dev_WARN_ONCE(&nd_region->dev, rem, "allocation underrun: %#llx of %#llx bytes\n", (unsigned long long) n - rem, (unsigned long long) n); if (rem) return -ENXIO; rc = merge_dpa(nd_region, nd_mapping, label_id); if (rc) return rc; } return 0; } static void nd_namespace_pmem_set_resource(struct nd_region *nd_region, struct nd_namespace_pmem *nspm, resource_size_t size) { struct resource *res = &nspm->nsio.res; resource_size_t offset = 0; if (size && !nspm->uuid) { WARN_ON_ONCE(1); size = 0; } if (size && nspm->uuid) { struct nd_mapping *nd_mapping = &nd_region->mapping[0]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_label_id label_id; struct resource *res; if (!ndd) { size = 0; goto out; } nd_label_gen_id(&label_id, nspm->uuid, 0); /* calculate a spa offset from the dpa allocation offset */ for_each_dpa_resource(ndd, res) if (strcmp(res->name, label_id.id) == 0) { offset = (res->start - nd_mapping->start) * nd_region->ndr_mappings; goto out; } WARN_ON_ONCE(1); size = 0; } out: res->start = nd_region->ndr_start + offset; res->end = res->start + size - 1; } static bool uuid_not_set(const uuid_t *uuid, struct device *dev, const char *where) { if (!uuid) { dev_dbg(dev, "%s: uuid not set\n", where); return true; } return false; } static ssize_t __size_store(struct device *dev, unsigned long long val) { resource_size_t allocated = 0, available = 0; struct nd_region *nd_region = to_nd_region(dev->parent); struct nd_namespace_common *ndns = to_ndns(dev); struct nd_mapping *nd_mapping; struct nvdimm_drvdata *ndd; struct nd_label_id label_id; u32 flags = 0, remainder; int rc, i, id = -1; uuid_t *uuid = NULL; if (dev->driver || ndns->claim) return -EBUSY; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); uuid = nspm->uuid; id = nspm->id; } /* * We need a uuid for the allocation-label and dimm(s) on which * to store the label. */ if (uuid_not_set(uuid, dev, __func__)) return -ENXIO; if (nd_region->ndr_mappings == 0) { dev_dbg(dev, "not associated with dimm(s)\n"); return -ENXIO; } div_u64_rem(val, nd_region->align, &remainder); if (remainder) { dev_dbg(dev, "%llu is not %ldK aligned\n", val, nd_region->align / SZ_1K); return -EINVAL; } nd_label_gen_id(&label_id, uuid, flags); for (i = 0; i < nd_region->ndr_mappings; i++) { nd_mapping = &nd_region->mapping[i]; ndd = to_ndd(nd_mapping); /* * All dimms in an interleave set, need to be enabled * for the size to be changed. */ if (!ndd) return -ENXIO; allocated += nvdimm_allocated_dpa(ndd, &label_id); } available = nd_region_allocatable_dpa(nd_region); if (val > available + allocated) return -ENOSPC; if (val == allocated) return 0; val = div_u64(val, nd_region->ndr_mappings); allocated = div_u64(allocated, nd_region->ndr_mappings); if (val < allocated) rc = shrink_dpa_allocation(nd_region, &label_id, allocated - val); else rc = grow_dpa_allocation(nd_region, &label_id, val - allocated); if (rc) return rc; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); nd_namespace_pmem_set_resource(nd_region, nspm, val * nd_region->ndr_mappings); } /* * Try to delete the namespace if we deleted all of its * allocation, this is not the seed or 0th device for the * region, and it is not actively claimed by a btt, pfn, or dax * instance. */ if (val == 0 && id != 0 && nd_region->ns_seed != dev && !ndns->claim) nd_device_unregister(dev, ND_ASYNC); return rc; } static ssize_t size_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct nd_region *nd_region = to_nd_region(dev->parent); unsigned long long val; uuid_t **uuid = NULL; int rc; rc = kstrtoull(buf, 0, &val); if (rc) return rc; device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); rc = __size_store(dev, val); if (rc >= 0) rc = nd_namespace_label_update(nd_region, dev); if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); uuid = &nspm->uuid; } if (rc == 0 && val == 0 && uuid) { /* setting size zero == 'delete namespace' */ kfree(*uuid); *uuid = NULL; } dev_dbg(dev, "%llx %s (%d)\n", val, rc < 0 ? "fail" : "success", rc); nvdimm_bus_unlock(dev); device_unlock(dev); return rc < 0 ? rc : len; } resource_size_t __nvdimm_namespace_capacity(struct nd_namespace_common *ndns) { struct device *dev = &ndns->dev; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); return resource_size(&nspm->nsio.res); } else if (is_namespace_io(dev)) { struct nd_namespace_io *nsio = to_nd_namespace_io(dev); return resource_size(&nsio->res); } else WARN_ONCE(1, "unknown namespace type\n"); return 0; } resource_size_t nvdimm_namespace_capacity(struct nd_namespace_common *ndns) { resource_size_t size; nvdimm_bus_lock(&ndns->dev); size = __nvdimm_namespace_capacity(ndns); nvdimm_bus_unlock(&ndns->dev); return size; } EXPORT_SYMBOL(nvdimm_namespace_capacity); bool nvdimm_namespace_locked(struct nd_namespace_common *ndns) { int i; bool locked = false; struct device *dev = &ndns->dev; struct nd_region *nd_region = to_nd_region(dev->parent); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; if (test_bit(NDD_LOCKED, &nvdimm->flags)) { dev_dbg(dev, "%s locked\n", nvdimm_name(nvdimm)); locked = true; } } return locked; } EXPORT_SYMBOL(nvdimm_namespace_locked); static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%llu\n", (unsigned long long) nvdimm_namespace_capacity(to_ndns(dev))); } static DEVICE_ATTR(size, 0444, size_show, size_store); static uuid_t *namespace_to_uuid(struct device *dev) { if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); return nspm->uuid; } return ERR_PTR(-ENXIO); } static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, char *buf) { uuid_t *uuid = namespace_to_uuid(dev); if (IS_ERR(uuid)) return PTR_ERR(uuid); if (uuid) return sprintf(buf, "%pUb\n", uuid); return sprintf(buf, "\n"); } /** * namespace_update_uuid - check for a unique uuid and whether we're "renaming" * @nd_region: parent region so we can updates all dimms in the set * @dev: namespace type for generating label_id * @new_uuid: incoming uuid * @old_uuid: reference to the uuid storage location in the namespace object */ static int namespace_update_uuid(struct nd_region *nd_region, struct device *dev, uuid_t *new_uuid, uuid_t **old_uuid) { struct nd_label_id old_label_id; struct nd_label_id new_label_id; int i; if (!nd_is_uuid_unique(dev, new_uuid)) return -EINVAL; if (*old_uuid == NULL) goto out; /* * If we've already written a label with this uuid, then it's * too late to rename because we can't reliably update the uuid * without losing the old namespace. Userspace must delete this * namespace to abandon the old uuid. */ for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; /* * This check by itself is sufficient because old_uuid * would be NULL above if this uuid did not exist in the * currently written set. * * FIXME: can we delete uuid with zero dpa allocated? */ if (list_empty(&nd_mapping->labels)) return -EBUSY; } nd_label_gen_id(&old_label_id, *old_uuid, 0); nd_label_gen_id(&new_label_id, new_uuid, 0); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_label_ent *label_ent; struct resource *res; for_each_dpa_resource(ndd, res) if (strcmp(res->name, old_label_id.id) == 0) sprintf((void *) res->name, "%s", new_label_id.id); mutex_lock(&nd_mapping->lock); list_for_each_entry(label_ent, &nd_mapping->labels, list) { struct nd_namespace_label *nd_label = label_ent->label; struct nd_label_id label_id; uuid_t uuid; if (!nd_label) continue; nsl_get_uuid(ndd, nd_label, &uuid); nd_label_gen_id(&label_id, &uuid, nsl_get_flags(ndd, nd_label)); if (strcmp(old_label_id.id, label_id.id) == 0) set_bit(ND_LABEL_REAP, &label_ent->flags); } mutex_unlock(&nd_mapping->lock); } kfree(*old_uuid); out: *old_uuid = new_uuid; return 0; } static ssize_t uuid_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct nd_region *nd_region = to_nd_region(dev->parent); uuid_t *uuid = NULL; uuid_t **ns_uuid; ssize_t rc = 0; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); ns_uuid = &nspm->uuid; } else return -ENXIO; device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); if (to_ndns(dev)->claim) rc = -EBUSY; if (rc >= 0) rc = nd_uuid_store(dev, &uuid, buf, len); if (rc >= 0) rc = namespace_update_uuid(nd_region, dev, uuid, ns_uuid); if (rc >= 0) rc = nd_namespace_label_update(nd_region, dev); else kfree(uuid); dev_dbg(dev, "result: %zd wrote: %s%s", rc, buf, buf[len - 1] == '\n' ? "" : "\n"); nvdimm_bus_unlock(dev); device_unlock(dev); return rc < 0 ? rc : len; } static DEVICE_ATTR_RW(uuid); static ssize_t resource_show(struct device *dev, struct device_attribute *attr, char *buf) { struct resource *res; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); res = &nspm->nsio.res; } else if (is_namespace_io(dev)) { struct nd_namespace_io *nsio = to_nd_namespace_io(dev); res = &nsio->res; } else return -ENXIO; /* no address to convey if the namespace has no allocation */ if (resource_size(res) == 0) return -ENXIO; return sprintf(buf, "%#llx\n", (unsigned long long) res->start); } static DEVICE_ATTR_ADMIN_RO(resource); static const unsigned long pmem_lbasize_supported[] = { 512, 4096, 0 }; static ssize_t sector_size_show(struct device *dev, struct device_attribute *attr, char *buf) { if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); return nd_size_select_show(nspm->lbasize, pmem_lbasize_supported, buf); } return -ENXIO; } static ssize_t sector_size_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct nd_region *nd_region = to_nd_region(dev->parent); const unsigned long *supported; unsigned long *lbasize; ssize_t rc = 0; if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); lbasize = &nspm->lbasize; supported = pmem_lbasize_supported; } else return -ENXIO; device_lock(dev); nvdimm_bus_lock(dev); if (to_ndns(dev)->claim) rc = -EBUSY; if (rc >= 0) rc = nd_size_select_store(dev, buf, lbasize, supported); if (rc >= 0) rc = nd_namespace_label_update(nd_region, dev); dev_dbg(dev, "result: %zd %s: %s%s", rc, rc < 0 ? "tried" : "wrote", buf, buf[len - 1] == '\n' ? "" : "\n"); nvdimm_bus_unlock(dev); device_unlock(dev); return rc ? rc : len; } static DEVICE_ATTR_RW(sector_size); static ssize_t dpa_extents_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev->parent); struct nd_label_id label_id; uuid_t *uuid = NULL; int count = 0, i; u32 flags = 0; nvdimm_bus_lock(dev); if (is_namespace_pmem(dev)) { struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev); uuid = nspm->uuid; flags = 0; } if (!uuid) goto out; nd_label_gen_id(&label_id, uuid, flags); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res; for_each_dpa_resource(ndd, res) if (strcmp(res->name, label_id.id) == 0) count++; } out: nvdimm_bus_unlock(dev); return sprintf(buf, "%d\n", count); } static DEVICE_ATTR_RO(dpa_extents); static int btt_claim_class(struct device *dev) { struct nd_region *nd_region = to_nd_region(dev->parent); int i, loop_bitmask = 0; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_namespace_index *nsindex; /* * If any of the DIMMs do not support labels the only * possible BTT format is v1. */ if (!ndd) { loop_bitmask = 0; break; } nsindex = to_namespace_index(ndd, ndd->ns_current); if (nsindex == NULL) loop_bitmask |= 1; else { /* check whether existing labels are v1.1 or v1.2 */ if (__le16_to_cpu(nsindex->major) == 1 && __le16_to_cpu(nsindex->minor) == 1) loop_bitmask |= 2; else loop_bitmask |= 4; } } /* * If nsindex is null loop_bitmask's bit 0 will be set, and if an index * block is found, a v1.1 label for any mapping will set bit 1, and a * v1.2 label will set bit 2. * * At the end of the loop, at most one of the three bits must be set. * If multiple bits were set, it means the different mappings disagree * about their labels, and this must be cleaned up first. * * If all the label index blocks are found to agree, nsindex of NULL * implies labels haven't been initialized yet, and when they will, * they will be of the 1.2 format, so we can assume BTT2.0 * * If 1.1 labels are found, we enforce BTT1.1, and if 1.2 labels are * found, we enforce BTT2.0 * * If the loop was never entered, default to BTT1.1 (legacy namespaces) */ switch (loop_bitmask) { case 0: case 2: return NVDIMM_CCLASS_BTT; case 1: case 4: return NVDIMM_CCLASS_BTT2; default: return -ENXIO; } } static ssize_t holder_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_namespace_common *ndns = to_ndns(dev); ssize_t rc; device_lock(dev); rc = sprintf(buf, "%s\n", ndns->claim ? dev_name(ndns->claim) : ""); device_unlock(dev); return rc; } static DEVICE_ATTR_RO(holder); static int __holder_class_store(struct device *dev, const char *buf) { struct nd_namespace_common *ndns = to_ndns(dev); if (dev->driver || ndns->claim) return -EBUSY; if (sysfs_streq(buf, "btt")) { int rc = btt_claim_class(dev); if (rc < NVDIMM_CCLASS_NONE) return rc; ndns->claim_class = rc; } else if (sysfs_streq(buf, "pfn")) ndns->claim_class = NVDIMM_CCLASS_PFN; else if (sysfs_streq(buf, "dax")) ndns->claim_class = NVDIMM_CCLASS_DAX; else if (sysfs_streq(buf, "")) ndns->claim_class = NVDIMM_CCLASS_NONE; else return -EINVAL; return 0; } static ssize_t holder_class_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct nd_region *nd_region = to_nd_region(dev->parent); int rc; device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); rc = __holder_class_store(dev, buf); if (rc >= 0) rc = nd_namespace_label_update(nd_region, dev); dev_dbg(dev, "%s(%d)\n", rc < 0 ? "fail " : "", rc); nvdimm_bus_unlock(dev); device_unlock(dev); return rc < 0 ? rc : len; } static ssize_t holder_class_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_namespace_common *ndns = to_ndns(dev); ssize_t rc; device_lock(dev); if (ndns->claim_class == NVDIMM_CCLASS_NONE) rc = sprintf(buf, "\n"); else if ((ndns->claim_class == NVDIMM_CCLASS_BTT) || (ndns->claim_class == NVDIMM_CCLASS_BTT2)) rc = sprintf(buf, "btt\n"); else if (ndns->claim_class == NVDIMM_CCLASS_PFN) rc = sprintf(buf, "pfn\n"); else if (ndns->claim_class == NVDIMM_CCLASS_DAX) rc = sprintf(buf, "dax\n"); else rc = sprintf(buf, "<unknown>\n"); device_unlock(dev); return rc; } static DEVICE_ATTR_RW(holder_class); static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_namespace_common *ndns = to_ndns(dev); struct device *claim; char *mode; ssize_t rc; device_lock(dev); claim = ndns->claim; if (claim && is_nd_btt(claim)) mode = "safe"; else if (claim && is_nd_pfn(claim)) mode = "memory"; else if (claim && is_nd_dax(claim)) mode = "dax"; else if (!claim && pmem_should_map_pages(dev)) mode = "memory"; else mode = "raw"; rc = sprintf(buf, "%s\n", mode); device_unlock(dev); return rc; } static DEVICE_ATTR_RO(mode); static ssize_t force_raw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { bool force_raw; int rc = strtobool(buf, &force_raw); if (rc) return rc; to_ndns(dev)->force_raw = force_raw; return len; } static ssize_t force_raw_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", to_ndns(dev)->force_raw); } static DEVICE_ATTR_RW(force_raw); static struct attribute *nd_namespace_attributes[] = { &dev_attr_nstype.attr, &dev_attr_size.attr, &dev_attr_mode.attr, &dev_attr_uuid.attr, &dev_attr_holder.attr, &dev_attr_resource.attr, &dev_attr_alt_name.attr, &dev_attr_force_raw.attr, &dev_attr_sector_size.attr, &dev_attr_dpa_extents.attr, &dev_attr_holder_class.attr, NULL, }; static umode_t namespace_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); if (is_namespace_pmem(dev)) { if (a == &dev_attr_size.attr) return 0644; return a->mode; } /* base is_namespace_io() attributes */ if (a == &dev_attr_nstype.attr || a == &dev_attr_size.attr || a == &dev_attr_holder.attr || a == &dev_attr_holder_class.attr || a == &dev_attr_force_raw.attr || a == &dev_attr_mode.attr || a == &dev_attr_resource.attr) return a->mode; return 0; } static struct attribute_group nd_namespace_attribute_group = { .attrs = nd_namespace_attributes, .is_visible = namespace_visible, }; static const struct attribute_group *nd_namespace_attribute_groups[] = { &nd_device_attribute_group, &nd_namespace_attribute_group, &nd_numa_attribute_group, NULL, }; static const struct device_type namespace_io_device_type = { .name = "nd_namespace_io", .release = namespace_io_release, .groups = nd_namespace_attribute_groups, }; static const struct device_type namespace_pmem_device_type = { .name = "nd_namespace_pmem", .release = namespace_pmem_release, .groups = nd_namespace_attribute_groups, }; static bool is_namespace_pmem(const struct device *dev) { return dev ? dev->type == &namespace_pmem_device_type : false; } static bool is_namespace_io(const struct device *dev) { return dev ? dev->type == &namespace_io_device_type : false; } struct nd_namespace_common *nvdimm_namespace_common_probe(struct device *dev) { struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL; struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL; struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL; struct nd_namespace_common *ndns = NULL; resource_size_t size; if (nd_btt || nd_pfn || nd_dax) { if (nd_btt) ndns = nd_btt->ndns; else if (nd_pfn) ndns = nd_pfn->ndns; else if (nd_dax) ndns = nd_dax->nd_pfn.ndns; if (!ndns) return ERR_PTR(-ENODEV); /* * Flush any in-progess probes / removals in the driver * for the raw personality of this namespace. */ device_lock(&ndns->dev); device_unlock(&ndns->dev); if (ndns->dev.driver) { dev_dbg(&ndns->dev, "is active, can't bind %s\n", dev_name(dev)); return ERR_PTR(-EBUSY); } if (dev_WARN_ONCE(&ndns->dev, ndns->claim != dev, "host (%s) vs claim (%s) mismatch\n", dev_name(dev), dev_name(ndns->claim))) return ERR_PTR(-ENXIO); } else { ndns = to_ndns(dev); if (ndns->claim) { dev_dbg(dev, "claimed by %s, failing probe\n", dev_name(ndns->claim)); return ERR_PTR(-ENXIO); } } if (nvdimm_namespace_locked(ndns)) return ERR_PTR(-EACCES); size = nvdimm_namespace_capacity(ndns); if (size < ND_MIN_NAMESPACE_SIZE) { dev_dbg(&ndns->dev, "%pa, too small must be at least %#x\n", &size, ND_MIN_NAMESPACE_SIZE); return ERR_PTR(-ENODEV); } /* * Note, alignment validation for fsdax and devdax mode * namespaces happens in nd_pfn_validate() where infoblock * padding parameters can be applied. */ if (pmem_should_map_pages(dev)) { struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); struct resource *res = &nsio->res; if (!IS_ALIGNED(res->start | (res->end + 1), memremap_compat_align())) { dev_err(&ndns->dev, "%pr misaligned, unable to map\n", res); return ERR_PTR(-EOPNOTSUPP); } } if (is_namespace_pmem(&ndns->dev)) { struct nd_namespace_pmem *nspm; nspm = to_nd_namespace_pmem(&ndns->dev); if (uuid_not_set(nspm->uuid, &ndns->dev, __func__)) return ERR_PTR(-ENODEV); } return ndns; } EXPORT_SYMBOL(nvdimm_namespace_common_probe); int devm_namespace_enable(struct device *dev, struct nd_namespace_common *ndns, resource_size_t size) { return devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev), size); } EXPORT_SYMBOL_GPL(devm_namespace_enable); void devm_namespace_disable(struct device *dev, struct nd_namespace_common *ndns) { devm_nsio_disable(dev, to_nd_namespace_io(&ndns->dev)); } EXPORT_SYMBOL_GPL(devm_namespace_disable); static struct device **create_namespace_io(struct nd_region *nd_region) { struct nd_namespace_io *nsio; struct device *dev, **devs; struct resource *res; nsio = kzalloc(sizeof(*nsio), GFP_KERNEL); if (!nsio) return NULL; devs = kcalloc(2, sizeof(struct device *), GFP_KERNEL); if (!devs) { kfree(nsio); return NULL; } dev = &nsio->common.dev; dev->type = &namespace_io_device_type; dev->parent = &nd_region->dev; res = &nsio->res; res->name = dev_name(&nd_region->dev); res->flags = IORESOURCE_MEM; res->start = nd_region->ndr_start; res->end = res->start + nd_region->ndr_size - 1; devs[0] = dev; return devs; } static bool has_uuid_at_pos(struct nd_region *nd_region, const uuid_t *uuid, u64 cookie, u16 pos) { struct nd_namespace_label *found = NULL; int i; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nd_interleave_set *nd_set = nd_region->nd_set; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_label_ent *label_ent; bool found_uuid = false; list_for_each_entry(label_ent, &nd_mapping->labels, list) { struct nd_namespace_label *nd_label = label_ent->label; u16 position; if (!nd_label) continue; position = nsl_get_position(ndd, nd_label); if (!nsl_validate_isetcookie(ndd, nd_label, cookie)) continue; if (!nsl_uuid_equal(ndd, nd_label, uuid)) continue; if (!nsl_validate_type_guid(ndd, nd_label, &nd_set->type_guid)) continue; if (found_uuid) { dev_dbg(ndd->dev, "duplicate entry for uuid\n"); return false; } found_uuid = true; if (!nsl_validate_nlabel(nd_region, ndd, nd_label)) continue; if (position != pos) continue; found = nd_label; break; } if (found) break; } return found != NULL; } static int select_pmem_id(struct nd_region *nd_region, const uuid_t *pmem_id) { int i; if (!pmem_id) return -ENODEV; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_namespace_label *nd_label = NULL; u64 hw_start, hw_end, pmem_start, pmem_end; struct nd_label_ent *label_ent; lockdep_assert_held(&nd_mapping->lock); list_for_each_entry(label_ent, &nd_mapping->labels, list) { nd_label = label_ent->label; if (!nd_label) continue; if (nsl_uuid_equal(ndd, nd_label, pmem_id)) break; nd_label = NULL; } if (!nd_label) { WARN_ON(1); return -EINVAL; } /* * Check that this label is compliant with the dpa * range published in NFIT */ hw_start = nd_mapping->start; hw_end = hw_start + nd_mapping->size; pmem_start = nsl_get_dpa(ndd, nd_label); pmem_end = pmem_start + nsl_get_rawsize(ndd, nd_label); if (pmem_start >= hw_start && pmem_start < hw_end && pmem_end <= hw_end && pmem_end > hw_start) /* pass */; else { dev_dbg(&nd_region->dev, "%s invalid label for %pUb\n", dev_name(ndd->dev), nsl_uuid_raw(ndd, nd_label)); return -EINVAL; } /* move recently validated label to the front of the list */ list_move(&label_ent->list, &nd_mapping->labels); } return 0; } /** * create_namespace_pmem - validate interleave set labelling, retrieve label0 * @nd_region: region with mappings to validate * @nspm: target namespace to create * @nd_label: target pmem namespace label to evaluate */ static struct device *create_namespace_pmem(struct nd_region *nd_region, struct nd_mapping *nd_mapping, struct nd_namespace_label *nd_label) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nd_namespace_index *nsindex = to_namespace_index(ndd, ndd->ns_current); u64 cookie = nd_region_interleave_set_cookie(nd_region, nsindex); u64 altcookie = nd_region_interleave_set_altcookie(nd_region); struct nd_label_ent *label_ent; struct nd_namespace_pmem *nspm; resource_size_t size = 0; struct resource *res; struct device *dev; uuid_t uuid; int rc = 0; u16 i; if (cookie == 0) { dev_dbg(&nd_region->dev, "invalid interleave-set-cookie\n"); return ERR_PTR(-ENXIO); } if (!nsl_validate_isetcookie(ndd, nd_label, cookie)) { dev_dbg(&nd_region->dev, "invalid cookie in label: %pUb\n", nsl_uuid_raw(ndd, nd_label)); if (!nsl_validate_isetcookie(ndd, nd_label, altcookie)) return ERR_PTR(-EAGAIN); dev_dbg(&nd_region->dev, "valid altcookie in label: %pUb\n", nsl_uuid_raw(ndd, nd_label)); } nspm = kzalloc(sizeof(*nspm), GFP_KERNEL); if (!nspm) return ERR_PTR(-ENOMEM); nspm->id = -1; dev = &nspm->nsio.common.dev; dev->type = &namespace_pmem_device_type; dev->parent = &nd_region->dev; res = &nspm->nsio.res; res->name = dev_name(&nd_region->dev); res->flags = IORESOURCE_MEM; for (i = 0; i < nd_region->ndr_mappings; i++) { nsl_get_uuid(ndd, nd_label, &uuid); if (has_uuid_at_pos(nd_region, &uuid, cookie, i)) continue; if (has_uuid_at_pos(nd_region, &uuid, altcookie, i)) continue; break; } if (i < nd_region->ndr_mappings) { struct nvdimm *nvdimm = nd_region->mapping[i].nvdimm; /* * Give up if we don't find an instance of a uuid at each * position (from 0 to nd_region->ndr_mappings - 1), or if we * find a dimm with two instances of the same uuid. */ dev_err(&nd_region->dev, "%s missing label for %pUb\n", nvdimm_name(nvdimm), nsl_uuid_raw(ndd, nd_label)); rc = -EINVAL; goto err; } /* * Fix up each mapping's 'labels' to have the validated pmem label for * that position at labels[0], and NULL at labels[1]. In the process, * check that the namespace aligns with interleave-set. */ nsl_get_uuid(ndd, nd_label, &uuid); rc = select_pmem_id(nd_region, &uuid); if (rc) goto err; /* Calculate total size and populate namespace properties from label0 */ for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_namespace_label *label0; struct nvdimm_drvdata *ndd; nd_mapping = &nd_region->mapping[i]; label_ent = list_first_entry_or_null(&nd_mapping->labels, typeof(*label_ent), list); label0 = label_ent ? label_ent->label : NULL; if (!label0) { WARN_ON(1); continue; } ndd = to_ndd(nd_mapping); size += nsl_get_rawsize(ndd, label0); if (nsl_get_position(ndd, label0) != 0) continue; WARN_ON(nspm->alt_name || nspm->uuid); nspm->alt_name = kmemdup(nsl_ref_name(ndd, label0), NSLABEL_NAME_LEN, GFP_KERNEL); nsl_get_uuid(ndd, label0, &uuid); nspm->uuid = kmemdup(&uuid, sizeof(uuid_t), GFP_KERNEL); nspm->lbasize = nsl_get_lbasize(ndd, label0); nspm->nsio.common.claim_class = nsl_get_claim_class(ndd, label0); } if (!nspm->alt_name || !nspm->uuid) { rc = -ENOMEM; goto err; } nd_namespace_pmem_set_resource(nd_region, nspm, size); return dev; err: namespace_pmem_release(dev); switch (rc) { case -EINVAL: dev_dbg(&nd_region->dev, "invalid label(s)\n"); break; case -ENODEV: dev_dbg(&nd_region->dev, "label not found\n"); break; default: dev_dbg(&nd_region->dev, "unexpected err: %d\n", rc); break; } return ERR_PTR(rc); } static struct device *nd_namespace_pmem_create(struct nd_region *nd_region) { struct nd_namespace_pmem *nspm; struct resource *res; struct device *dev; if (!is_memory(&nd_region->dev)) return NULL; nspm = kzalloc(sizeof(*nspm), GFP_KERNEL); if (!nspm) return NULL; dev = &nspm->nsio.common.dev; dev->type = &namespace_pmem_device_type; dev->parent = &nd_region->dev; res = &nspm->nsio.res; res->name = dev_name(&nd_region->dev); res->flags = IORESOURCE_MEM; nspm->id = ida_simple_get(&nd_region->ns_ida, 0, 0, GFP_KERNEL); if (nspm->id < 0) { kfree(nspm); return NULL; } dev_set_name(dev, "namespace%d.%d", nd_region->id, nspm->id); nd_namespace_pmem_set_resource(nd_region, nspm, 0); return dev; } static struct lock_class_key nvdimm_namespace_key; void nd_region_create_ns_seed(struct nd_region *nd_region) { WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); if (nd_region_to_nstype(nd_region) == ND_DEVICE_NAMESPACE_IO) return; nd_region->ns_seed = nd_namespace_pmem_create(nd_region); /* * Seed creation failures are not fatal, provisioning is simply * disabled until memory becomes available */ if (!nd_region->ns_seed) dev_err(&nd_region->dev, "failed to create namespace\n"); else { device_initialize(nd_region->ns_seed); lockdep_set_class(&nd_region->ns_seed->mutex, &nvdimm_namespace_key); nd_device_register(nd_region->ns_seed); } } void nd_region_create_dax_seed(struct nd_region *nd_region) { WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); nd_region->dax_seed = nd_dax_create(nd_region); /* * Seed creation failures are not fatal, provisioning is simply * disabled until memory becomes available */ if (!nd_region->dax_seed) dev_err(&nd_region->dev, "failed to create dax namespace\n"); } void nd_region_create_pfn_seed(struct nd_region *nd_region) { WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); nd_region->pfn_seed = nd_pfn_create(nd_region); /* * Seed creation failures are not fatal, provisioning is simply * disabled until memory becomes available */ if (!nd_region->pfn_seed) dev_err(&nd_region->dev, "failed to create pfn namespace\n"); } void nd_region_create_btt_seed(struct nd_region *nd_region) { WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); nd_region->btt_seed = nd_btt_create(nd_region); /* * Seed creation failures are not fatal, provisioning is simply * disabled until memory becomes available */ if (!nd_region->btt_seed) dev_err(&nd_region->dev, "failed to create btt namespace\n"); } static int add_namespace_resource(struct nd_region *nd_region, struct nd_namespace_label *nd_label, struct device **devs, int count) { struct nd_mapping *nd_mapping = &nd_region->mapping[0]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); int i; for (i = 0; i < count; i++) { uuid_t *uuid = namespace_to_uuid(devs[i]); if (IS_ERR(uuid)) { WARN_ON(1); continue; } if (!nsl_uuid_equal(ndd, nd_label, uuid)) continue; dev_err(&nd_region->dev, "error: conflicting extents for uuid: %pUb\n", uuid); return -ENXIO; } return i; } static int cmp_dpa(const void *a, const void *b) { const struct device *dev_a = *(const struct device **) a; const struct device *dev_b = *(const struct device **) b; struct nd_namespace_pmem *nspm_a, *nspm_b; if (is_namespace_io(dev_a)) return 0; nspm_a = to_nd_namespace_pmem(dev_a); nspm_b = to_nd_namespace_pmem(dev_b); return memcmp(&nspm_a->nsio.res.start, &nspm_b->nsio.res.start, sizeof(resource_size_t)); } static struct device **scan_labels(struct nd_region *nd_region) { int i, count = 0; struct device *dev, **devs = NULL; struct nd_label_ent *label_ent, *e; struct nd_mapping *nd_mapping = &nd_region->mapping[0]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); resource_size_t map_end = nd_mapping->start + nd_mapping->size - 1; /* "safe" because create_namespace_pmem() might list_move() label_ent */ list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { struct nd_namespace_label *nd_label = label_ent->label; struct device **__devs; if (!nd_label) continue; /* skip labels that describe extents outside of the region */ if (nsl_get_dpa(ndd, nd_label) < nd_mapping->start || nsl_get_dpa(ndd, nd_label) > map_end) continue; i = add_namespace_resource(nd_region, nd_label, devs, count); if (i < 0) goto err; if (i < count) continue; __devs = kcalloc(count + 2, sizeof(dev), GFP_KERNEL); if (!__devs) goto err; memcpy(__devs, devs, sizeof(dev) * count); kfree(devs); devs = __devs; dev = create_namespace_pmem(nd_region, nd_mapping, nd_label); if (IS_ERR(dev)) { switch (PTR_ERR(dev)) { case -EAGAIN: /* skip invalid labels */ continue; case -ENODEV: /* fallthrough to seed creation */ break; default: goto err; } } else devs[count++] = dev; } dev_dbg(&nd_region->dev, "discovered %d namespace%s\n", count, count == 1 ? "" : "s"); if (count == 0) { struct nd_namespace_pmem *nspm; /* Publish a zero-sized namespace for userspace to configure. */ nd_mapping_free_labels(nd_mapping); devs = kcalloc(2, sizeof(dev), GFP_KERNEL); if (!devs) goto err; nspm = kzalloc(sizeof(*nspm), GFP_KERNEL); if (!nspm) goto err; dev = &nspm->nsio.common.dev; dev->type = &namespace_pmem_device_type; nd_namespace_pmem_set_resource(nd_region, nspm, 0); dev->parent = &nd_region->dev; devs[count++] = dev; } else if (is_memory(&nd_region->dev)) { /* clean unselected labels */ for (i = 0; i < nd_region->ndr_mappings; i++) { struct list_head *l, *e; LIST_HEAD(list); int j; nd_mapping = &nd_region->mapping[i]; if (list_empty(&nd_mapping->labels)) { WARN_ON(1); continue; } j = count; list_for_each_safe(l, e, &nd_mapping->labels) { if (!j--) break; list_move_tail(l, &list); } nd_mapping_free_labels(nd_mapping); list_splice_init(&list, &nd_mapping->labels); } } if (count > 1) sort(devs, count, sizeof(struct device *), cmp_dpa, NULL); return devs; err: if (devs) { for (i = 0; devs[i]; i++) namespace_pmem_release(devs[i]); kfree(devs); } return NULL; } static struct device **create_namespaces(struct nd_region *nd_region) { struct nd_mapping *nd_mapping; struct device **devs; int i; if (nd_region->ndr_mappings == 0) return NULL; /* lock down all mappings while we scan labels */ for (i = 0; i < nd_region->ndr_mappings; i++) { nd_mapping = &nd_region->mapping[i]; mutex_lock_nested(&nd_mapping->lock, i); } devs = scan_labels(nd_region); for (i = 0; i < nd_region->ndr_mappings; i++) { int reverse = nd_region->ndr_mappings - 1 - i; nd_mapping = &nd_region->mapping[reverse]; mutex_unlock(&nd_mapping->lock); } return devs; } static void deactivate_labels(void *region) { struct nd_region *nd_region = region; int i; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = nd_mapping->ndd; struct nvdimm *nvdimm = nd_mapping->nvdimm; mutex_lock(&nd_mapping->lock); nd_mapping_free_labels(nd_mapping); mutex_unlock(&nd_mapping->lock); put_ndd(ndd); nd_mapping->ndd = NULL; if (ndd) atomic_dec(&nvdimm->busy); } } static int init_active_labels(struct nd_region *nd_region) { int i, rc = 0; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nvdimm *nvdimm = nd_mapping->nvdimm; struct nd_label_ent *label_ent; int count, j; /* * If the dimm is disabled then we may need to prevent * the region from being activated. */ if (!ndd) { if (test_bit(NDD_LOCKED, &nvdimm->flags)) /* fail, label data may be unreadable */; else if (test_bit(NDD_LABELING, &nvdimm->flags)) /* fail, labels needed to disambiguate dpa */; else continue; dev_err(&nd_region->dev, "%s: is %s, failing probe\n", dev_name(&nd_mapping->nvdimm->dev), test_bit(NDD_LOCKED, &nvdimm->flags) ? "locked" : "disabled"); rc = -ENXIO; goto out; } nd_mapping->ndd = ndd; atomic_inc(&nvdimm->busy); get_ndd(ndd); count = nd_label_active_count(ndd); dev_dbg(ndd->dev, "count: %d\n", count); if (!count) continue; for (j = 0; j < count; j++) { struct nd_namespace_label *label; label_ent = kzalloc(sizeof(*label_ent), GFP_KERNEL); if (!label_ent) break; label = nd_label_active(ndd, j); label_ent->label = label; mutex_lock(&nd_mapping->lock); list_add_tail(&label_ent->list, &nd_mapping->labels); mutex_unlock(&nd_mapping->lock); } if (j < count) break; } if (i < nd_region->ndr_mappings) rc = -ENOMEM; out: if (rc) { deactivate_labels(nd_region); return rc; } return devm_add_action_or_reset(&nd_region->dev, deactivate_labels, nd_region); } int nd_region_register_namespaces(struct nd_region *nd_region, int *err) { struct device **devs = NULL; int i, rc = 0, type; *err = 0; nvdimm_bus_lock(&nd_region->dev); rc = init_active_labels(nd_region); if (rc) { nvdimm_bus_unlock(&nd_region->dev); return rc; } type = nd_region_to_nstype(nd_region); switch (type) { case ND_DEVICE_NAMESPACE_IO: devs = create_namespace_io(nd_region); break; case ND_DEVICE_NAMESPACE_PMEM: devs = create_namespaces(nd_region); break; default: break; } nvdimm_bus_unlock(&nd_region->dev); if (!devs) return -ENODEV; for (i = 0; devs[i]; i++) { struct device *dev = devs[i]; int id; if (type == ND_DEVICE_NAMESPACE_PMEM) { struct nd_namespace_pmem *nspm; nspm = to_nd_namespace_pmem(dev); id = ida_simple_get(&nd_region->ns_ida, 0, 0, GFP_KERNEL); nspm->id = id; } else id = i; if (id < 0) break; dev_set_name(dev, "namespace%d.%d", nd_region->id, id); device_initialize(dev); lockdep_set_class(&dev->mutex, &nvdimm_namespace_key); nd_device_register(dev); } if (i) nd_region->ns_seed = devs[0]; if (devs[i]) { int j; for (j = i; devs[j]; j++) { struct device *dev = devs[j]; device_initialize(dev); put_device(dev); } *err = j - i; /* * All of the namespaces we tried to register failed, so * fail region activation. */ if (*err == 0) rc = -ENODEV; } kfree(devs); if (rc == -ENODEV) return rc; return i; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1