Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neil Armstrong | 2929 | 72.73% | 7 | 41.18% |
Sunny Luo | 1046 | 25.97% | 3 | 17.65% |
Alexey Khoroshilov | 16 | 0.40% | 1 | 5.88% |
Miaoqian Lin | 15 | 0.37% | 1 | 5.88% |
Dongliang Mu | 7 | 0.17% | 1 | 5.88% |
Linus Walleij | 6 | 0.15% | 1 | 5.88% |
zpershuai | 6 | 0.15% | 2 | 11.76% |
Yue haibing | 2 | 0.05% | 1 | 5.88% |
Total | 4027 | 17 |
/* * Driver for Amlogic Meson SPI communication controller (SPICC) * * Copyright (C) BayLibre, SAS * Author: Neil Armstrong <narmstrong@baylibre.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/reset.h> /* * The Meson SPICC controller could support DMA based transfers, but is not * implemented by the vendor code, and while having the registers documentation * it has never worked on the GXL Hardware. * The PIO mode is the only mode implemented, and due to badly designed HW : * - all transfers are cutted in 16 words burst because the FIFO hangs on * TX underflow, and there is no TX "Half-Empty" interrupt, so we go by * FIFO max size chunk only * - CS management is dumb, and goes UP between every burst, so is really a * "Data Valid" signal than a Chip Select, GPIO link should be used instead * to have a CS go down over the full transfer */ #define SPICC_MAX_BURST 128 /* Register Map */ #define SPICC_RXDATA 0x00 #define SPICC_TXDATA 0x04 #define SPICC_CONREG 0x08 #define SPICC_ENABLE BIT(0) #define SPICC_MODE_MASTER BIT(1) #define SPICC_XCH BIT(2) #define SPICC_SMC BIT(3) #define SPICC_POL BIT(4) #define SPICC_PHA BIT(5) #define SPICC_SSCTL BIT(6) #define SPICC_SSPOL BIT(7) #define SPICC_DRCTL_MASK GENMASK(9, 8) #define SPICC_DRCTL_IGNORE 0 #define SPICC_DRCTL_FALLING 1 #define SPICC_DRCTL_LOWLEVEL 2 #define SPICC_CS_MASK GENMASK(13, 12) #define SPICC_DATARATE_MASK GENMASK(18, 16) #define SPICC_DATARATE_DIV4 0 #define SPICC_DATARATE_DIV8 1 #define SPICC_DATARATE_DIV16 2 #define SPICC_DATARATE_DIV32 3 #define SPICC_BITLENGTH_MASK GENMASK(24, 19) #define SPICC_BURSTLENGTH_MASK GENMASK(31, 25) #define SPICC_INTREG 0x0c #define SPICC_TE_EN BIT(0) /* TX FIFO Empty Interrupt */ #define SPICC_TH_EN BIT(1) /* TX FIFO Half-Full Interrupt */ #define SPICC_TF_EN BIT(2) /* TX FIFO Full Interrupt */ #define SPICC_RR_EN BIT(3) /* RX FIFO Ready Interrupt */ #define SPICC_RH_EN BIT(4) /* RX FIFO Half-Full Interrupt */ #define SPICC_RF_EN BIT(5) /* RX FIFO Full Interrupt */ #define SPICC_RO_EN BIT(6) /* RX FIFO Overflow Interrupt */ #define SPICC_TC_EN BIT(7) /* Transfert Complete Interrupt */ #define SPICC_DMAREG 0x10 #define SPICC_DMA_ENABLE BIT(0) #define SPICC_TXFIFO_THRESHOLD_MASK GENMASK(5, 1) #define SPICC_RXFIFO_THRESHOLD_MASK GENMASK(10, 6) #define SPICC_READ_BURST_MASK GENMASK(14, 11) #define SPICC_WRITE_BURST_MASK GENMASK(18, 15) #define SPICC_DMA_URGENT BIT(19) #define SPICC_DMA_THREADID_MASK GENMASK(25, 20) #define SPICC_DMA_BURSTNUM_MASK GENMASK(31, 26) #define SPICC_STATREG 0x14 #define SPICC_TE BIT(0) /* TX FIFO Empty Interrupt */ #define SPICC_TH BIT(1) /* TX FIFO Half-Full Interrupt */ #define SPICC_TF BIT(2) /* TX FIFO Full Interrupt */ #define SPICC_RR BIT(3) /* RX FIFO Ready Interrupt */ #define SPICC_RH BIT(4) /* RX FIFO Half-Full Interrupt */ #define SPICC_RF BIT(5) /* RX FIFO Full Interrupt */ #define SPICC_RO BIT(6) /* RX FIFO Overflow Interrupt */ #define SPICC_TC BIT(7) /* Transfert Complete Interrupt */ #define SPICC_PERIODREG 0x18 #define SPICC_PERIOD GENMASK(14, 0) /* Wait cycles */ #define SPICC_TESTREG 0x1c #define SPICC_TXCNT_MASK GENMASK(4, 0) /* TX FIFO Counter */ #define SPICC_RXCNT_MASK GENMASK(9, 5) /* RX FIFO Counter */ #define SPICC_SMSTATUS_MASK GENMASK(12, 10) /* State Machine Status */ #define SPICC_LBC_RO BIT(13) /* Loop Back Control Read-Only */ #define SPICC_LBC_W1 BIT(14) /* Loop Back Control Write-Only */ #define SPICC_SWAP_RO BIT(14) /* RX FIFO Data Swap Read-Only */ #define SPICC_SWAP_W1 BIT(15) /* RX FIFO Data Swap Write-Only */ #define SPICC_DLYCTL_RO_MASK GENMASK(20, 15) /* Delay Control Read-Only */ #define SPICC_MO_DELAY_MASK GENMASK(17, 16) /* Master Output Delay */ #define SPICC_MO_NO_DELAY 0 #define SPICC_MO_DELAY_1_CYCLE 1 #define SPICC_MO_DELAY_2_CYCLE 2 #define SPICC_MO_DELAY_3_CYCLE 3 #define SPICC_MI_DELAY_MASK GENMASK(19, 18) /* Master Input Delay */ #define SPICC_MI_NO_DELAY 0 #define SPICC_MI_DELAY_1_CYCLE 1 #define SPICC_MI_DELAY_2_CYCLE 2 #define SPICC_MI_DELAY_3_CYCLE 3 #define SPICC_MI_CAP_DELAY_MASK GENMASK(21, 20) /* Master Capture Delay */ #define SPICC_CAP_AHEAD_2_CYCLE 0 #define SPICC_CAP_AHEAD_1_CYCLE 1 #define SPICC_CAP_NO_DELAY 2 #define SPICC_CAP_DELAY_1_CYCLE 3 #define SPICC_FIFORST_RO_MASK GENMASK(22, 21) /* FIFO Softreset Read-Only */ #define SPICC_FIFORST_W1_MASK GENMASK(23, 22) /* FIFO Softreset Write-Only */ #define SPICC_DRADDR 0x20 /* Read Address of DMA */ #define SPICC_DWADDR 0x24 /* Write Address of DMA */ #define SPICC_ENH_CTL0 0x38 /* Enhanced Feature */ #define SPICC_ENH_CLK_CS_DELAY_MASK GENMASK(15, 0) #define SPICC_ENH_DATARATE_MASK GENMASK(23, 16) #define SPICC_ENH_DATARATE_EN BIT(24) #define SPICC_ENH_MOSI_OEN BIT(25) #define SPICC_ENH_CLK_OEN BIT(26) #define SPICC_ENH_CS_OEN BIT(27) #define SPICC_ENH_CLK_CS_DELAY_EN BIT(28) #define SPICC_ENH_MAIN_CLK_AO BIT(29) #define writel_bits_relaxed(mask, val, addr) \ writel_relaxed((readl_relaxed(addr) & ~(mask)) | (val), addr) struct meson_spicc_data { unsigned int max_speed_hz; unsigned int min_speed_hz; unsigned int fifo_size; bool has_oen; bool has_enhance_clk_div; bool has_pclk; }; struct meson_spicc_device { struct spi_master *master; struct platform_device *pdev; void __iomem *base; struct clk *core; struct clk *pclk; struct clk_divider pow2_div; struct clk *clk; struct spi_message *message; struct spi_transfer *xfer; const struct meson_spicc_data *data; u8 *tx_buf; u8 *rx_buf; unsigned int bytes_per_word; unsigned long tx_remain; unsigned long rx_remain; unsigned long xfer_remain; }; #define pow2_clk_to_spicc(_div) container_of(_div, struct meson_spicc_device, pow2_div) static void meson_spicc_oen_enable(struct meson_spicc_device *spicc) { u32 conf; if (!spicc->data->has_oen) return; conf = readl_relaxed(spicc->base + SPICC_ENH_CTL0) | SPICC_ENH_MOSI_OEN | SPICC_ENH_CLK_OEN | SPICC_ENH_CS_OEN; writel_relaxed(conf, spicc->base + SPICC_ENH_CTL0); } static inline bool meson_spicc_txfull(struct meson_spicc_device *spicc) { return !!FIELD_GET(SPICC_TF, readl_relaxed(spicc->base + SPICC_STATREG)); } static inline bool meson_spicc_rxready(struct meson_spicc_device *spicc) { return FIELD_GET(SPICC_RH | SPICC_RR | SPICC_RF, readl_relaxed(spicc->base + SPICC_STATREG)); } static inline u32 meson_spicc_pull_data(struct meson_spicc_device *spicc) { unsigned int bytes = spicc->bytes_per_word; unsigned int byte_shift = 0; u32 data = 0; u8 byte; while (bytes--) { byte = *spicc->tx_buf++; data |= (byte & 0xff) << byte_shift; byte_shift += 8; } spicc->tx_remain--; return data; } static inline void meson_spicc_push_data(struct meson_spicc_device *spicc, u32 data) { unsigned int bytes = spicc->bytes_per_word; unsigned int byte_shift = 0; u8 byte; while (bytes--) { byte = (data >> byte_shift) & 0xff; *spicc->rx_buf++ = byte; byte_shift += 8; } spicc->rx_remain--; } static inline void meson_spicc_rx(struct meson_spicc_device *spicc) { /* Empty RX FIFO */ while (spicc->rx_remain && meson_spicc_rxready(spicc)) meson_spicc_push_data(spicc, readl_relaxed(spicc->base + SPICC_RXDATA)); } static inline void meson_spicc_tx(struct meson_spicc_device *spicc) { /* Fill Up TX FIFO */ while (spicc->tx_remain && !meson_spicc_txfull(spicc)) writel_relaxed(meson_spicc_pull_data(spicc), spicc->base + SPICC_TXDATA); } static inline void meson_spicc_setup_burst(struct meson_spicc_device *spicc) { unsigned int burst_len = min_t(unsigned int, spicc->xfer_remain / spicc->bytes_per_word, spicc->data->fifo_size); /* Setup Xfer variables */ spicc->tx_remain = burst_len; spicc->rx_remain = burst_len; spicc->xfer_remain -= burst_len * spicc->bytes_per_word; /* Setup burst length */ writel_bits_relaxed(SPICC_BURSTLENGTH_MASK, FIELD_PREP(SPICC_BURSTLENGTH_MASK, burst_len - 1), spicc->base + SPICC_CONREG); /* Fill TX FIFO */ meson_spicc_tx(spicc); } static irqreturn_t meson_spicc_irq(int irq, void *data) { struct meson_spicc_device *spicc = (void *) data; writel_bits_relaxed(SPICC_TC, SPICC_TC, spicc->base + SPICC_STATREG); /* Empty RX FIFO */ meson_spicc_rx(spicc); if (!spicc->xfer_remain) { /* Disable all IRQs */ writel(0, spicc->base + SPICC_INTREG); spi_finalize_current_transfer(spicc->master); return IRQ_HANDLED; } /* Setup burst */ meson_spicc_setup_burst(spicc); /* Start burst */ writel_bits_relaxed(SPICC_XCH, SPICC_XCH, spicc->base + SPICC_CONREG); return IRQ_HANDLED; } static void meson_spicc_auto_io_delay(struct meson_spicc_device *spicc) { u32 div, hz; u32 mi_delay, cap_delay; u32 conf; if (spicc->data->has_enhance_clk_div) { div = FIELD_GET(SPICC_ENH_DATARATE_MASK, readl_relaxed(spicc->base + SPICC_ENH_CTL0)); div++; div <<= 1; } else { div = FIELD_GET(SPICC_DATARATE_MASK, readl_relaxed(spicc->base + SPICC_CONREG)); div += 2; div = 1 << div; } mi_delay = SPICC_MI_NO_DELAY; cap_delay = SPICC_CAP_AHEAD_2_CYCLE; hz = clk_get_rate(spicc->clk); if (hz >= 100000000) cap_delay = SPICC_CAP_DELAY_1_CYCLE; else if (hz >= 80000000) cap_delay = SPICC_CAP_NO_DELAY; else if (hz >= 40000000) cap_delay = SPICC_CAP_AHEAD_1_CYCLE; else if (div >= 16) mi_delay = SPICC_MI_DELAY_3_CYCLE; else if (div >= 8) mi_delay = SPICC_MI_DELAY_2_CYCLE; else if (div >= 6) mi_delay = SPICC_MI_DELAY_1_CYCLE; conf = readl_relaxed(spicc->base + SPICC_TESTREG); conf &= ~(SPICC_MO_DELAY_MASK | SPICC_MI_DELAY_MASK | SPICC_MI_CAP_DELAY_MASK); conf |= FIELD_PREP(SPICC_MI_DELAY_MASK, mi_delay); conf |= FIELD_PREP(SPICC_MI_CAP_DELAY_MASK, cap_delay); writel_relaxed(conf, spicc->base + SPICC_TESTREG); } static void meson_spicc_setup_xfer(struct meson_spicc_device *spicc, struct spi_transfer *xfer) { u32 conf, conf_orig; /* Read original configuration */ conf = conf_orig = readl_relaxed(spicc->base + SPICC_CONREG); /* Setup word width */ conf &= ~SPICC_BITLENGTH_MASK; conf |= FIELD_PREP(SPICC_BITLENGTH_MASK, (spicc->bytes_per_word << 3) - 1); /* Ignore if unchanged */ if (conf != conf_orig) writel_relaxed(conf, spicc->base + SPICC_CONREG); clk_set_rate(spicc->clk, xfer->speed_hz); meson_spicc_auto_io_delay(spicc); writel_relaxed(0, spicc->base + SPICC_DMAREG); } static void meson_spicc_reset_fifo(struct meson_spicc_device *spicc) { if (spicc->data->has_oen) writel_bits_relaxed(SPICC_ENH_MAIN_CLK_AO, SPICC_ENH_MAIN_CLK_AO, spicc->base + SPICC_ENH_CTL0); writel_bits_relaxed(SPICC_FIFORST_W1_MASK, SPICC_FIFORST_W1_MASK, spicc->base + SPICC_TESTREG); while (meson_spicc_rxready(spicc)) readl_relaxed(spicc->base + SPICC_RXDATA); if (spicc->data->has_oen) writel_bits_relaxed(SPICC_ENH_MAIN_CLK_AO, 0, spicc->base + SPICC_ENH_CTL0); } static int meson_spicc_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct meson_spicc_device *spicc = spi_master_get_devdata(master); /* Store current transfer */ spicc->xfer = xfer; /* Setup transfer parameters */ spicc->tx_buf = (u8 *)xfer->tx_buf; spicc->rx_buf = (u8 *)xfer->rx_buf; spicc->xfer_remain = xfer->len; /* Pre-calculate word size */ spicc->bytes_per_word = DIV_ROUND_UP(spicc->xfer->bits_per_word, 8); if (xfer->len % spicc->bytes_per_word) return -EINVAL; /* Setup transfer parameters */ meson_spicc_setup_xfer(spicc, xfer); meson_spicc_reset_fifo(spicc); /* Setup burst */ meson_spicc_setup_burst(spicc); /* Start burst */ writel_bits_relaxed(SPICC_XCH, SPICC_XCH, spicc->base + SPICC_CONREG); /* Enable interrupts */ writel_relaxed(SPICC_TC_EN, spicc->base + SPICC_INTREG); return 1; } static int meson_spicc_prepare_message(struct spi_master *master, struct spi_message *message) { struct meson_spicc_device *spicc = spi_master_get_devdata(master); struct spi_device *spi = message->spi; u32 conf = readl_relaxed(spicc->base + SPICC_CONREG) & SPICC_DATARATE_MASK; /* Store current message */ spicc->message = message; /* Enable Master */ conf |= SPICC_ENABLE; conf |= SPICC_MODE_MASTER; /* SMC = 0 */ /* Setup transfer mode */ if (spi->mode & SPI_CPOL) conf |= SPICC_POL; else conf &= ~SPICC_POL; if (spi->mode & SPI_CPHA) conf |= SPICC_PHA; else conf &= ~SPICC_PHA; /* SSCTL = 0 */ if (spi->mode & SPI_CS_HIGH) conf |= SPICC_SSPOL; else conf &= ~SPICC_SSPOL; if (spi->mode & SPI_READY) conf |= FIELD_PREP(SPICC_DRCTL_MASK, SPICC_DRCTL_LOWLEVEL); else conf |= FIELD_PREP(SPICC_DRCTL_MASK, SPICC_DRCTL_IGNORE); /* Select CS */ conf |= FIELD_PREP(SPICC_CS_MASK, spi->chip_select); /* Default 8bit word */ conf |= FIELD_PREP(SPICC_BITLENGTH_MASK, 8 - 1); writel_relaxed(conf, spicc->base + SPICC_CONREG); /* Setup no wait cycles by default */ writel_relaxed(0, spicc->base + SPICC_PERIODREG); writel_bits_relaxed(SPICC_LBC_W1, 0, spicc->base + SPICC_TESTREG); return 0; } static int meson_spicc_unprepare_transfer(struct spi_master *master) { struct meson_spicc_device *spicc = spi_master_get_devdata(master); u32 conf = readl_relaxed(spicc->base + SPICC_CONREG) & SPICC_DATARATE_MASK; /* Disable all IRQs */ writel(0, spicc->base + SPICC_INTREG); device_reset_optional(&spicc->pdev->dev); /* Set default configuration, keeping datarate field */ writel_relaxed(conf, spicc->base + SPICC_CONREG); return 0; } static int meson_spicc_setup(struct spi_device *spi) { if (!spi->controller_state) spi->controller_state = spi_master_get_devdata(spi->master); return 0; } static void meson_spicc_cleanup(struct spi_device *spi) { spi->controller_state = NULL; } /* * The Clock Mux * x-----------------x x------------x x------\ * |---| pow2 fixed div |---| pow2 div |----| | * | x-----------------x x------------x | | * src ---| | mux |-- out * | x-----------------x x------------x | | * |---| enh fixed div |---| enh div |0---| | * x-----------------x x------------x x------/ * * Clk path for GX series: * src -> pow2 fixed div -> pow2 div -> out * * Clk path for AXG series: * src -> pow2 fixed div -> pow2 div -> mux -> out * src -> enh fixed div -> enh div -> mux -> out * * Clk path for G12A series: * pclk -> pow2 fixed div -> pow2 div -> mux -> out * pclk -> enh fixed div -> enh div -> mux -> out * * The pow2 divider is tied to the controller HW state, and the * divider is only valid when the controller is initialized. * * A set of clock ops is added to make sure we don't read/set this * clock rate while the controller is in an unknown state. */ static unsigned long meson_spicc_pow2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); struct meson_spicc_device *spicc = pow2_clk_to_spicc(divider); if (!spicc->master->cur_msg || !spicc->master->busy) return 0; return clk_divider_ops.recalc_rate(hw, parent_rate); } static int meson_spicc_pow2_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_divider *divider = to_clk_divider(hw); struct meson_spicc_device *spicc = pow2_clk_to_spicc(divider); if (!spicc->master->cur_msg || !spicc->master->busy) return -EINVAL; return clk_divider_ops.determine_rate(hw, req); } static int meson_spicc_pow2_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_divider *divider = to_clk_divider(hw); struct meson_spicc_device *spicc = pow2_clk_to_spicc(divider); if (!spicc->master->cur_msg || !spicc->master->busy) return -EINVAL; return clk_divider_ops.set_rate(hw, rate, parent_rate); } const struct clk_ops meson_spicc_pow2_clk_ops = { .recalc_rate = meson_spicc_pow2_recalc_rate, .determine_rate = meson_spicc_pow2_determine_rate, .set_rate = meson_spicc_pow2_set_rate, }; static int meson_spicc_pow2_clk_init(struct meson_spicc_device *spicc) { struct device *dev = &spicc->pdev->dev; struct clk_fixed_factor *pow2_fixed_div; struct clk_init_data init; struct clk *clk; struct clk_parent_data parent_data[2]; char name[64]; memset(&init, 0, sizeof(init)); memset(&parent_data, 0, sizeof(parent_data)); init.parent_data = parent_data; /* algorithm for pow2 div: rate = freq / 4 / (2 ^ N) */ pow2_fixed_div = devm_kzalloc(dev, sizeof(*pow2_fixed_div), GFP_KERNEL); if (!pow2_fixed_div) return -ENOMEM; snprintf(name, sizeof(name), "%s#pow2_fixed_div", dev_name(dev)); init.name = name; init.ops = &clk_fixed_factor_ops; init.flags = 0; if (spicc->data->has_pclk) parent_data[0].hw = __clk_get_hw(spicc->pclk); else parent_data[0].hw = __clk_get_hw(spicc->core); init.num_parents = 1; pow2_fixed_div->mult = 1, pow2_fixed_div->div = 4, pow2_fixed_div->hw.init = &init; clk = devm_clk_register(dev, &pow2_fixed_div->hw); if (WARN_ON(IS_ERR(clk))) return PTR_ERR(clk); snprintf(name, sizeof(name), "%s#pow2_div", dev_name(dev)); init.name = name; init.ops = &meson_spicc_pow2_clk_ops; /* * Set NOCACHE here to make sure we read the actual HW value * since we reset the HW after each transfer. */ init.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE; parent_data[0].hw = &pow2_fixed_div->hw; init.num_parents = 1; spicc->pow2_div.shift = 16, spicc->pow2_div.width = 3, spicc->pow2_div.flags = CLK_DIVIDER_POWER_OF_TWO, spicc->pow2_div.reg = spicc->base + SPICC_CONREG; spicc->pow2_div.hw.init = &init; spicc->clk = devm_clk_register(dev, &spicc->pow2_div.hw); if (WARN_ON(IS_ERR(spicc->clk))) return PTR_ERR(spicc->clk); return 0; } static int meson_spicc_enh_clk_init(struct meson_spicc_device *spicc) { struct device *dev = &spicc->pdev->dev; struct clk_fixed_factor *enh_fixed_div; struct clk_divider *enh_div; struct clk_mux *mux; struct clk_init_data init; struct clk *clk; struct clk_parent_data parent_data[2]; char name[64]; memset(&init, 0, sizeof(init)); memset(&parent_data, 0, sizeof(parent_data)); init.parent_data = parent_data; /* algorithm for enh div: rate = freq / 2 / (N + 1) */ enh_fixed_div = devm_kzalloc(dev, sizeof(*enh_fixed_div), GFP_KERNEL); if (!enh_fixed_div) return -ENOMEM; snprintf(name, sizeof(name), "%s#enh_fixed_div", dev_name(dev)); init.name = name; init.ops = &clk_fixed_factor_ops; init.flags = 0; if (spicc->data->has_pclk) parent_data[0].hw = __clk_get_hw(spicc->pclk); else parent_data[0].hw = __clk_get_hw(spicc->core); init.num_parents = 1; enh_fixed_div->mult = 1, enh_fixed_div->div = 2, enh_fixed_div->hw.init = &init; clk = devm_clk_register(dev, &enh_fixed_div->hw); if (WARN_ON(IS_ERR(clk))) return PTR_ERR(clk); enh_div = devm_kzalloc(dev, sizeof(*enh_div), GFP_KERNEL); if (!enh_div) return -ENOMEM; snprintf(name, sizeof(name), "%s#enh_div", dev_name(dev)); init.name = name; init.ops = &clk_divider_ops; init.flags = CLK_SET_RATE_PARENT; parent_data[0].hw = &enh_fixed_div->hw; init.num_parents = 1; enh_div->shift = 16, enh_div->width = 8, enh_div->reg = spicc->base + SPICC_ENH_CTL0; enh_div->hw.init = &init; clk = devm_clk_register(dev, &enh_div->hw); if (WARN_ON(IS_ERR(clk))) return PTR_ERR(clk); mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL); if (!mux) return -ENOMEM; snprintf(name, sizeof(name), "%s#sel", dev_name(dev)); init.name = name; init.ops = &clk_mux_ops; parent_data[0].hw = &spicc->pow2_div.hw; parent_data[1].hw = &enh_div->hw; init.num_parents = 2; init.flags = CLK_SET_RATE_PARENT; mux->mask = 0x1, mux->shift = 24, mux->reg = spicc->base + SPICC_ENH_CTL0; mux->hw.init = &init; spicc->clk = devm_clk_register(dev, &mux->hw); if (WARN_ON(IS_ERR(spicc->clk))) return PTR_ERR(spicc->clk); return 0; } static int meson_spicc_probe(struct platform_device *pdev) { struct spi_master *master; struct meson_spicc_device *spicc; int ret, irq; master = spi_alloc_master(&pdev->dev, sizeof(*spicc)); if (!master) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } spicc = spi_master_get_devdata(master); spicc->master = master; spicc->data = of_device_get_match_data(&pdev->dev); if (!spicc->data) { dev_err(&pdev->dev, "failed to get match data\n"); ret = -EINVAL; goto out_master; } spicc->pdev = pdev; platform_set_drvdata(pdev, spicc); spicc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(spicc->base)) { dev_err(&pdev->dev, "io resource mapping failed\n"); ret = PTR_ERR(spicc->base); goto out_master; } /* Set master mode and enable controller */ writel_relaxed(SPICC_ENABLE | SPICC_MODE_MASTER, spicc->base + SPICC_CONREG); /* Disable all IRQs */ writel_relaxed(0, spicc->base + SPICC_INTREG); irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto out_master; } ret = devm_request_irq(&pdev->dev, irq, meson_spicc_irq, 0, NULL, spicc); if (ret) { dev_err(&pdev->dev, "irq request failed\n"); goto out_master; } spicc->core = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(spicc->core)) { dev_err(&pdev->dev, "core clock request failed\n"); ret = PTR_ERR(spicc->core); goto out_master; } if (spicc->data->has_pclk) { spicc->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(spicc->pclk)) { dev_err(&pdev->dev, "pclk clock request failed\n"); ret = PTR_ERR(spicc->pclk); goto out_master; } } ret = clk_prepare_enable(spicc->core); if (ret) { dev_err(&pdev->dev, "core clock enable failed\n"); goto out_master; } ret = clk_prepare_enable(spicc->pclk); if (ret) { dev_err(&pdev->dev, "pclk clock enable failed\n"); goto out_core_clk; } device_reset_optional(&pdev->dev); master->num_chipselect = 4; master->dev.of_node = pdev->dev.of_node; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH; master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(24) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); master->min_speed_hz = spicc->data->min_speed_hz; master->max_speed_hz = spicc->data->max_speed_hz; master->setup = meson_spicc_setup; master->cleanup = meson_spicc_cleanup; master->prepare_message = meson_spicc_prepare_message; master->unprepare_transfer_hardware = meson_spicc_unprepare_transfer; master->transfer_one = meson_spicc_transfer_one; master->use_gpio_descriptors = true; meson_spicc_oen_enable(spicc); ret = meson_spicc_pow2_clk_init(spicc); if (ret) { dev_err(&pdev->dev, "pow2 clock registration failed\n"); goto out_clk; } if (spicc->data->has_enhance_clk_div) { ret = meson_spicc_enh_clk_init(spicc); if (ret) { dev_err(&pdev->dev, "clock registration failed\n"); goto out_clk; } } ret = devm_spi_register_master(&pdev->dev, master); if (ret) { dev_err(&pdev->dev, "spi master registration failed\n"); goto out_clk; } return 0; out_clk: clk_disable_unprepare(spicc->pclk); out_core_clk: clk_disable_unprepare(spicc->core); out_master: spi_master_put(master); return ret; } static int meson_spicc_remove(struct platform_device *pdev) { struct meson_spicc_device *spicc = platform_get_drvdata(pdev); /* Disable SPI */ writel(0, spicc->base + SPICC_CONREG); clk_disable_unprepare(spicc->core); clk_disable_unprepare(spicc->pclk); spi_master_put(spicc->master); return 0; } static const struct meson_spicc_data meson_spicc_gx_data = { .max_speed_hz = 30000000, .min_speed_hz = 325000, .fifo_size = 16, }; static const struct meson_spicc_data meson_spicc_axg_data = { .max_speed_hz = 80000000, .min_speed_hz = 325000, .fifo_size = 16, .has_oen = true, .has_enhance_clk_div = true, }; static const struct meson_spicc_data meson_spicc_g12a_data = { .max_speed_hz = 166666666, .min_speed_hz = 50000, .fifo_size = 15, .has_oen = true, .has_enhance_clk_div = true, .has_pclk = true, }; static const struct of_device_id meson_spicc_of_match[] = { { .compatible = "amlogic,meson-gx-spicc", .data = &meson_spicc_gx_data, }, { .compatible = "amlogic,meson-axg-spicc", .data = &meson_spicc_axg_data, }, { .compatible = "amlogic,meson-g12a-spicc", .data = &meson_spicc_g12a_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, meson_spicc_of_match); static struct platform_driver meson_spicc_driver = { .probe = meson_spicc_probe, .remove = meson_spicc_remove, .driver = { .name = "meson-spicc", .of_match_table = of_match_ptr(meson_spicc_of_match), }, }; module_platform_driver(meson_spicc_driver); MODULE_DESCRIPTION("Meson SPI Communication Controller driver"); MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1