Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sourav Poddar | 1919 | 43.15% | 8 | 18.18% |
Vignesh R | 1222 | 27.48% | 9 | 20.45% |
Jean Pihet | 411 | 9.24% | 3 | 6.82% |
Boris Brezillon | 350 | 7.87% | 2 | 4.55% |
Atsushi Nemoto | 150 | 3.37% | 1 | 2.27% |
Mugunthan V N | 101 | 2.27% | 1 | 2.27% |
Ben Hutchings | 101 | 2.27% | 2 | 4.55% |
Tudor-Dan Ambarus | 53 | 1.19% | 1 | 2.27% |
Prahlad V | 39 | 0.88% | 2 | 4.55% |
Jean-Jacques Hiblot | 29 | 0.65% | 1 | 2.27% |
Axel Lin | 25 | 0.56% | 3 | 6.82% |
Wei Yongjun | 15 | 0.34% | 2 | 4.55% |
Christophe Jaillet | 9 | 0.20% | 1 | 2.27% |
Miaoqian Lin | 7 | 0.16% | 1 | 2.27% |
Jingoo Han | 6 | 0.13% | 1 | 2.27% |
Nicholas Mc Guire | 4 | 0.09% | 1 | 2.27% |
Felipe Balbi | 2 | 0.04% | 1 | 2.27% |
Chi Minghao | 1 | 0.02% | 1 | 2.27% |
Alexander A. Klimov | 1 | 0.02% | 1 | 2.27% |
Colin Ian King | 1 | 0.02% | 1 | 2.27% |
Thomas Gleixner | 1 | 0.02% | 1 | 2.27% |
Total | 4447 | 44 |
// SPDX-License-Identifier: GPL-2.0-only /* * TI QSPI driver * * Copyright (C) 2013 Texas Instruments Incorporated - https://www.ti.com * Author: Sourav Poddar <sourav.poddar@ti.com> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/omap-dma.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pinctrl/consumer.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/sizes.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> struct ti_qspi_regs { u32 clkctrl; }; struct ti_qspi { struct completion transfer_complete; /* list synchronization */ struct mutex list_lock; struct spi_master *master; void __iomem *base; void __iomem *mmap_base; size_t mmap_size; struct regmap *ctrl_base; unsigned int ctrl_reg; struct clk *fclk; struct device *dev; struct ti_qspi_regs ctx_reg; dma_addr_t mmap_phys_base; dma_addr_t rx_bb_dma_addr; void *rx_bb_addr; struct dma_chan *rx_chan; u32 cmd; u32 dc; bool mmap_enabled; int current_cs; }; #define QSPI_PID (0x0) #define QSPI_SYSCONFIG (0x10) #define QSPI_SPI_CLOCK_CNTRL_REG (0x40) #define QSPI_SPI_DC_REG (0x44) #define QSPI_SPI_CMD_REG (0x48) #define QSPI_SPI_STATUS_REG (0x4c) #define QSPI_SPI_DATA_REG (0x50) #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n)) #define QSPI_SPI_SWITCH_REG (0x64) #define QSPI_SPI_DATA_REG_1 (0x68) #define QSPI_SPI_DATA_REG_2 (0x6c) #define QSPI_SPI_DATA_REG_3 (0x70) #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000) /* Clock Control */ #define QSPI_CLK_EN (1 << 31) #define QSPI_CLK_DIV_MAX 0xffff /* Command */ #define QSPI_EN_CS(n) (n << 28) #define QSPI_WLEN(n) ((n - 1) << 19) #define QSPI_3_PIN (1 << 18) #define QSPI_RD_SNGL (1 << 16) #define QSPI_WR_SNGL (2 << 16) #define QSPI_RD_DUAL (3 << 16) #define QSPI_RD_QUAD (7 << 16) #define QSPI_INVAL (4 << 16) #define QSPI_FLEN(n) ((n - 1) << 0) #define QSPI_WLEN_MAX_BITS 128 #define QSPI_WLEN_MAX_BYTES 16 #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS) /* STATUS REGISTER */ #define BUSY 0x01 #define WC 0x02 /* Device Control */ #define QSPI_DD(m, n) (m << (3 + n * 8)) #define QSPI_CKPHA(n) (1 << (2 + n * 8)) #define QSPI_CSPOL(n) (1 << (1 + n * 8)) #define QSPI_CKPOL(n) (1 << (n * 8)) #define QSPI_FRAME 4096 #define QSPI_AUTOSUSPEND_TIMEOUT 2000 #define MEM_CS_EN(n) ((n + 1) << 8) #define MEM_CS_MASK (7 << 8) #define MM_SWITCH 0x1 #define QSPI_SETUP_RD_NORMAL (0x0 << 12) #define QSPI_SETUP_RD_DUAL (0x1 << 12) #define QSPI_SETUP_RD_QUAD (0x3 << 12) #define QSPI_SETUP_ADDR_SHIFT 8 #define QSPI_SETUP_DUMMY_SHIFT 10 #define QSPI_DMA_BUFFER_SIZE SZ_64K static inline unsigned long ti_qspi_read(struct ti_qspi *qspi, unsigned long reg) { return readl(qspi->base + reg); } static inline void ti_qspi_write(struct ti_qspi *qspi, unsigned long val, unsigned long reg) { writel(val, qspi->base + reg); } static int ti_qspi_setup(struct spi_device *spi) { struct ti_qspi *qspi = spi_master_get_devdata(spi->master); int ret; if (spi->master->busy) { dev_dbg(qspi->dev, "master busy doing other transfers\n"); return -EBUSY; } if (!qspi->master->max_speed_hz) { dev_err(qspi->dev, "spi max frequency not defined\n"); return -EINVAL; } spi->max_speed_hz = min(spi->max_speed_hz, qspi->master->max_speed_hz); ret = pm_runtime_resume_and_get(qspi->dev); if (ret < 0) { dev_err(qspi->dev, "pm_runtime_get_sync() failed\n"); return ret; } pm_runtime_mark_last_busy(qspi->dev); ret = pm_runtime_put_autosuspend(qspi->dev); if (ret < 0) { dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n"); return ret; } return 0; } static void ti_qspi_setup_clk(struct ti_qspi *qspi, u32 speed_hz) { struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg; int clk_div; u32 clk_ctrl_reg, clk_rate, clk_ctrl_new; clk_rate = clk_get_rate(qspi->fclk); clk_div = DIV_ROUND_UP(clk_rate, speed_hz) - 1; clk_div = clamp(clk_div, 0, QSPI_CLK_DIV_MAX); dev_dbg(qspi->dev, "hz: %d, clock divider %d\n", speed_hz, clk_div); pm_runtime_resume_and_get(qspi->dev); clk_ctrl_new = QSPI_CLK_EN | clk_div; if (ctx_reg->clkctrl != clk_ctrl_new) { clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG); clk_ctrl_reg &= ~QSPI_CLK_EN; /* disable SCLK */ ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG); /* enable SCLK */ ti_qspi_write(qspi, clk_ctrl_new, QSPI_SPI_CLOCK_CNTRL_REG); ctx_reg->clkctrl = clk_ctrl_new; } pm_runtime_mark_last_busy(qspi->dev); pm_runtime_put_autosuspend(qspi->dev); } static void ti_qspi_restore_ctx(struct ti_qspi *qspi) { struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg; ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG); } static inline u32 qspi_is_busy(struct ti_qspi *qspi) { u32 stat; unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT; stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG); while ((stat & BUSY) && time_after(timeout, jiffies)) { cpu_relax(); stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG); } WARN(stat & BUSY, "qspi busy\n"); return stat & BUSY; } static inline int ti_qspi_poll_wc(struct ti_qspi *qspi) { u32 stat; unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT; do { stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG); if (stat & WC) return 0; cpu_relax(); } while (time_after(timeout, jiffies)); stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG); if (stat & WC) return 0; return -ETIMEDOUT; } static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t, int count) { int wlen, xfer_len; unsigned int cmd; const u8 *txbuf; u32 data; txbuf = t->tx_buf; cmd = qspi->cmd | QSPI_WR_SNGL; wlen = t->bits_per_word >> 3; /* in bytes */ xfer_len = wlen; while (count) { if (qspi_is_busy(qspi)) return -EBUSY; switch (wlen) { case 1: dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n", cmd, qspi->dc, *txbuf); if (count >= QSPI_WLEN_MAX_BYTES) { u32 *txp = (u32 *)txbuf; data = cpu_to_be32(*txp++); writel(data, qspi->base + QSPI_SPI_DATA_REG_3); data = cpu_to_be32(*txp++); writel(data, qspi->base + QSPI_SPI_DATA_REG_2); data = cpu_to_be32(*txp++); writel(data, qspi->base + QSPI_SPI_DATA_REG_1); data = cpu_to_be32(*txp++); writel(data, qspi->base + QSPI_SPI_DATA_REG); xfer_len = QSPI_WLEN_MAX_BYTES; cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS); } else { writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG); cmd = qspi->cmd | QSPI_WR_SNGL; xfer_len = wlen; cmd |= QSPI_WLEN(wlen); } break; case 2: dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n", cmd, qspi->dc, *txbuf); writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG); break; case 4: dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n", cmd, qspi->dc, *txbuf); writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG); break; } ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG); if (ti_qspi_poll_wc(qspi)) { dev_err(qspi->dev, "write timed out\n"); return -ETIMEDOUT; } txbuf += xfer_len; count -= xfer_len; } return 0; } static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t, int count) { int wlen; unsigned int cmd; u32 rx; u8 rxlen, rx_wlen; u8 *rxbuf; rxbuf = t->rx_buf; cmd = qspi->cmd; switch (t->rx_nbits) { case SPI_NBITS_DUAL: cmd |= QSPI_RD_DUAL; break; case SPI_NBITS_QUAD: cmd |= QSPI_RD_QUAD; break; default: cmd |= QSPI_RD_SNGL; break; } wlen = t->bits_per_word >> 3; /* in bytes */ rx_wlen = wlen; while (count) { dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc); if (qspi_is_busy(qspi)) return -EBUSY; switch (wlen) { case 1: /* * Optimize the 8-bit words transfers, as used by * the SPI flash devices. */ if (count >= QSPI_WLEN_MAX_BYTES) { rxlen = QSPI_WLEN_MAX_BYTES; } else { rxlen = min(count, 4); } rx_wlen = rxlen << 3; cmd &= ~QSPI_WLEN_MASK; cmd |= QSPI_WLEN(rx_wlen); break; default: rxlen = wlen; break; } ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG); if (ti_qspi_poll_wc(qspi)) { dev_err(qspi->dev, "read timed out\n"); return -ETIMEDOUT; } switch (wlen) { case 1: /* * Optimize the 8-bit words transfers, as used by * the SPI flash devices. */ if (count >= QSPI_WLEN_MAX_BYTES) { u32 *rxp = (u32 *) rxbuf; rx = readl(qspi->base + QSPI_SPI_DATA_REG_3); *rxp++ = be32_to_cpu(rx); rx = readl(qspi->base + QSPI_SPI_DATA_REG_2); *rxp++ = be32_to_cpu(rx); rx = readl(qspi->base + QSPI_SPI_DATA_REG_1); *rxp++ = be32_to_cpu(rx); rx = readl(qspi->base + QSPI_SPI_DATA_REG); *rxp++ = be32_to_cpu(rx); } else { u8 *rxp = rxbuf; rx = readl(qspi->base + QSPI_SPI_DATA_REG); if (rx_wlen >= 8) *rxp++ = rx >> (rx_wlen - 8); if (rx_wlen >= 16) *rxp++ = rx >> (rx_wlen - 16); if (rx_wlen >= 24) *rxp++ = rx >> (rx_wlen - 24); if (rx_wlen >= 32) *rxp++ = rx; } break; case 2: *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG); break; case 4: *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG); break; } rxbuf += rxlen; count -= rxlen; } return 0; } static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t, int count) { int ret; if (t->tx_buf) { ret = qspi_write_msg(qspi, t, count); if (ret) { dev_dbg(qspi->dev, "Error while writing\n"); return ret; } } if (t->rx_buf) { ret = qspi_read_msg(qspi, t, count); if (ret) { dev_dbg(qspi->dev, "Error while reading\n"); return ret; } } return 0; } static void ti_qspi_dma_callback(void *param) { struct ti_qspi *qspi = param; complete(&qspi->transfer_complete); } static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len) { struct dma_chan *chan = qspi->rx_chan; dma_cookie_t cookie; enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; struct dma_async_tx_descriptor *tx; int ret; unsigned long time_left; tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); if (!tx) { dev_err(qspi->dev, "device_prep_dma_memcpy error\n"); return -EIO; } tx->callback = ti_qspi_dma_callback; tx->callback_param = qspi; cookie = tx->tx_submit(tx); reinit_completion(&qspi->transfer_complete); ret = dma_submit_error(cookie); if (ret) { dev_err(qspi->dev, "dma_submit_error %d\n", cookie); return -EIO; } dma_async_issue_pending(chan); time_left = wait_for_completion_timeout(&qspi->transfer_complete, msecs_to_jiffies(len)); if (time_left == 0) { dmaengine_terminate_sync(chan); dev_err(qspi->dev, "DMA wait_for_completion_timeout\n"); return -ETIMEDOUT; } return 0; } static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs, void *to, size_t readsize) { dma_addr_t dma_src = qspi->mmap_phys_base + offs; int ret = 0; /* * Use bounce buffer as FS like jffs2, ubifs may pass * buffers that does not belong to kernel lowmem region. */ while (readsize != 0) { size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE, readsize); ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr, dma_src, xfer_len); if (ret != 0) return ret; memcpy(to, qspi->rx_bb_addr, xfer_len); readsize -= xfer_len; dma_src += xfer_len; to += xfer_len; } return ret; } static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg, loff_t from) { struct scatterlist *sg; dma_addr_t dma_src = qspi->mmap_phys_base + from; dma_addr_t dma_dst; int i, len, ret; for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) { dma_dst = sg_dma_address(sg); len = sg_dma_len(sg); ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len); if (ret) return ret; dma_src += len; } return 0; } static void ti_qspi_enable_memory_map(struct spi_device *spi) { struct ti_qspi *qspi = spi_master_get_devdata(spi->master); ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG); if (qspi->ctrl_base) { regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg, MEM_CS_MASK, MEM_CS_EN(spi->chip_select)); } qspi->mmap_enabled = true; qspi->current_cs = spi->chip_select; } static void ti_qspi_disable_memory_map(struct spi_device *spi) { struct ti_qspi *qspi = spi_master_get_devdata(spi->master); ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG); if (qspi->ctrl_base) regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg, MEM_CS_MASK, 0); qspi->mmap_enabled = false; qspi->current_cs = -1; } static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode, u8 data_nbits, u8 addr_width, u8 dummy_bytes) { struct ti_qspi *qspi = spi_master_get_devdata(spi->master); u32 memval = opcode; switch (data_nbits) { case SPI_NBITS_QUAD: memval |= QSPI_SETUP_RD_QUAD; break; case SPI_NBITS_DUAL: memval |= QSPI_SETUP_RD_DUAL; break; default: memval |= QSPI_SETUP_RD_NORMAL; break; } memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT | dummy_bytes << QSPI_SETUP_DUMMY_SHIFT); ti_qspi_write(qspi, memval, QSPI_SPI_SETUP_REG(spi->chip_select)); } static int ti_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct ti_qspi *qspi = spi_controller_get_devdata(mem->spi->master); size_t max_len; if (op->data.dir == SPI_MEM_DATA_IN) { if (op->addr.val < qspi->mmap_size) { /* Limit MMIO to the mmaped region */ if (op->addr.val + op->data.nbytes > qspi->mmap_size) { max_len = qspi->mmap_size - op->addr.val; op->data.nbytes = min((size_t) op->data.nbytes, max_len); } } else { /* * Use fallback mode (SW generated transfers) above the * mmaped region. * Adjust size to comply with the QSPI max frame length. */ max_len = QSPI_FRAME; max_len -= 1 + op->addr.nbytes + op->dummy.nbytes; op->data.nbytes = min((size_t) op->data.nbytes, max_len); } } return 0; } static int ti_qspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master); u32 from = 0; int ret = 0; /* Only optimize read path. */ if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN || !op->addr.nbytes || op->addr.nbytes > 4) return -ENOTSUPP; /* Address exceeds MMIO window size, fall back to regular mode. */ from = op->addr.val; if (from + op->data.nbytes > qspi->mmap_size) return -ENOTSUPP; mutex_lock(&qspi->list_lock); if (!qspi->mmap_enabled || qspi->current_cs != mem->spi->chip_select) { ti_qspi_setup_clk(qspi, mem->spi->max_speed_hz); ti_qspi_enable_memory_map(mem->spi); } ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth, op->addr.nbytes, op->dummy.nbytes); if (qspi->rx_chan) { struct sg_table sgt; if (virt_addr_valid(op->data.buf.in) && !spi_controller_dma_map_mem_op_data(mem->spi->master, op, &sgt)) { ret = ti_qspi_dma_xfer_sg(qspi, sgt, from); spi_controller_dma_unmap_mem_op_data(mem->spi->master, op, &sgt); } else { ret = ti_qspi_dma_bounce_buffer(qspi, from, op->data.buf.in, op->data.nbytes); } } else { memcpy_fromio(op->data.buf.in, qspi->mmap_base + from, op->data.nbytes); } mutex_unlock(&qspi->list_lock); return ret; } static const struct spi_controller_mem_ops ti_qspi_mem_ops = { .exec_op = ti_qspi_exec_mem_op, .adjust_op_size = ti_qspi_adjust_op_size, }; static int ti_qspi_start_transfer_one(struct spi_master *master, struct spi_message *m) { struct ti_qspi *qspi = spi_master_get_devdata(master); struct spi_device *spi = m->spi; struct spi_transfer *t; int status = 0, ret; unsigned int frame_len_words, transfer_len_words; int wlen; /* setup device control reg */ qspi->dc = 0; if (spi->mode & SPI_CPHA) qspi->dc |= QSPI_CKPHA(spi->chip_select); if (spi->mode & SPI_CPOL) qspi->dc |= QSPI_CKPOL(spi->chip_select); if (spi->mode & SPI_CS_HIGH) qspi->dc |= QSPI_CSPOL(spi->chip_select); frame_len_words = 0; list_for_each_entry(t, &m->transfers, transfer_list) frame_len_words += t->len / (t->bits_per_word >> 3); frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME); /* setup command reg */ qspi->cmd = 0; qspi->cmd |= QSPI_EN_CS(spi->chip_select); qspi->cmd |= QSPI_FLEN(frame_len_words); ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG); mutex_lock(&qspi->list_lock); if (qspi->mmap_enabled) ti_qspi_disable_memory_map(spi); list_for_each_entry(t, &m->transfers, transfer_list) { qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) | QSPI_WLEN(t->bits_per_word)); wlen = t->bits_per_word >> 3; transfer_len_words = min(t->len / wlen, frame_len_words); ti_qspi_setup_clk(qspi, t->speed_hz); ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen); if (ret) { dev_dbg(qspi->dev, "transfer message failed\n"); mutex_unlock(&qspi->list_lock); return -EINVAL; } m->actual_length += transfer_len_words * wlen; frame_len_words -= transfer_len_words; if (frame_len_words == 0) break; } mutex_unlock(&qspi->list_lock); ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG); m->status = status; spi_finalize_current_message(master); return status; } static int ti_qspi_runtime_resume(struct device *dev) { struct ti_qspi *qspi; qspi = dev_get_drvdata(dev); ti_qspi_restore_ctx(qspi); return 0; } static void ti_qspi_dma_cleanup(struct ti_qspi *qspi) { if (qspi->rx_bb_addr) dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE, qspi->rx_bb_addr, qspi->rx_bb_dma_addr); if (qspi->rx_chan) dma_release_channel(qspi->rx_chan); } static const struct of_device_id ti_qspi_match[] = { {.compatible = "ti,dra7xxx-qspi" }, {.compatible = "ti,am4372-qspi" }, {}, }; MODULE_DEVICE_TABLE(of, ti_qspi_match); static int ti_qspi_probe(struct platform_device *pdev) { struct ti_qspi *qspi; struct spi_master *master; struct resource *r, *res_mmap; struct device_node *np = pdev->dev.of_node; u32 max_freq; int ret = 0, num_cs, irq; dma_cap_mask_t mask; master = spi_alloc_master(&pdev->dev, sizeof(*qspi)); if (!master) return -ENOMEM; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD; master->flags = SPI_MASTER_HALF_DUPLEX; master->setup = ti_qspi_setup; master->auto_runtime_pm = true; master->transfer_one_message = ti_qspi_start_transfer_one; master->dev.of_node = pdev->dev.of_node; master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); master->mem_ops = &ti_qspi_mem_ops; if (!of_property_read_u32(np, "num-cs", &num_cs)) master->num_chipselect = num_cs; qspi = spi_master_get_devdata(master); qspi->master = master; qspi->dev = &pdev->dev; platform_set_drvdata(pdev, qspi); r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base"); if (r == NULL) { r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(&pdev->dev, "missing platform data\n"); ret = -ENODEV; goto free_master; } } res_mmap = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap"); if (res_mmap == NULL) { res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res_mmap == NULL) { dev_err(&pdev->dev, "memory mapped resource not required\n"); } } if (res_mmap) qspi->mmap_size = resource_size(res_mmap); irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto free_master; } mutex_init(&qspi->list_lock); qspi->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(qspi->base)) { ret = PTR_ERR(qspi->base); goto free_master; } if (of_property_read_bool(np, "syscon-chipselects")) { qspi->ctrl_base = syscon_regmap_lookup_by_phandle(np, "syscon-chipselects"); if (IS_ERR(qspi->ctrl_base)) { ret = PTR_ERR(qspi->ctrl_base); goto free_master; } ret = of_property_read_u32_index(np, "syscon-chipselects", 1, &qspi->ctrl_reg); if (ret) { dev_err(&pdev->dev, "couldn't get ctrl_mod reg index\n"); goto free_master; } } qspi->fclk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(qspi->fclk)) { ret = PTR_ERR(qspi->fclk); dev_err(&pdev->dev, "could not get clk: %d\n", ret); } pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT); pm_runtime_enable(&pdev->dev); if (!of_property_read_u32(np, "spi-max-frequency", &max_freq)) master->max_speed_hz = max_freq; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); qspi->rx_chan = dma_request_chan_by_mask(&mask); if (IS_ERR(qspi->rx_chan)) { dev_err(qspi->dev, "No Rx DMA available, trying mmap mode\n"); qspi->rx_chan = NULL; ret = 0; goto no_dma; } qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE, &qspi->rx_bb_dma_addr, GFP_KERNEL | GFP_DMA); if (!qspi->rx_bb_addr) { dev_err(qspi->dev, "dma_alloc_coherent failed, using PIO mode\n"); dma_release_channel(qspi->rx_chan); goto no_dma; } master->dma_rx = qspi->rx_chan; init_completion(&qspi->transfer_complete); if (res_mmap) qspi->mmap_phys_base = (dma_addr_t)res_mmap->start; no_dma: if (!qspi->rx_chan && res_mmap) { qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap); if (IS_ERR(qspi->mmap_base)) { dev_info(&pdev->dev, "mmap failed with error %ld using PIO mode\n", PTR_ERR(qspi->mmap_base)); qspi->mmap_base = NULL; master->mem_ops = NULL; } } qspi->mmap_enabled = false; qspi->current_cs = -1; ret = devm_spi_register_master(&pdev->dev, master); if (!ret) return 0; ti_qspi_dma_cleanup(qspi); pm_runtime_disable(&pdev->dev); free_master: spi_master_put(master); return ret; } static int ti_qspi_remove(struct platform_device *pdev) { struct ti_qspi *qspi = platform_get_drvdata(pdev); int rc; rc = spi_master_suspend(qspi->master); if (rc) return rc; pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); ti_qspi_dma_cleanup(qspi); return 0; } static const struct dev_pm_ops ti_qspi_pm_ops = { .runtime_resume = ti_qspi_runtime_resume, }; static struct platform_driver ti_qspi_driver = { .probe = ti_qspi_probe, .remove = ti_qspi_remove, .driver = { .name = "ti-qspi", .pm = &ti_qspi_pm_ops, .of_match_table = ti_qspi_match, } }; module_platform_driver(ti_qspi_driver); MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI QSPI controller driver"); MODULE_ALIAS("platform:ti-qspi");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1