Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Buesch | 3120 | 76.64% | 4 | 20.00% |
Hauke Mehrtens | 384 | 9.43% | 6 | 30.00% |
Gábor Stefanik | 363 | 8.92% | 1 | 5.00% |
Rafał Miłecki | 120 | 2.95% | 4 | 20.00% |
Joe Perches | 39 | 0.96% | 1 | 5.00% |
Larry Finger | 37 | 0.91% | 1 | 5.00% |
Connor Hansen | 4 | 0.10% | 1 | 5.00% |
Paul Gortmaker | 3 | 0.07% | 1 | 5.00% |
Alexander A. Klimov | 1 | 0.02% | 1 | 5.00% |
Total | 4071 | 20 |
/* * Sonics Silicon Backplane * Broadcom ChipCommon Power Management Unit driver * * Copyright 2009, Michael Buesch <m@bues.ch> * Copyright 2007, Broadcom Corporation * * Licensed under the GNU/GPL. See COPYING for details. */ #include "ssb_private.h" #include <linux/ssb/ssb.h> #include <linux/ssb/ssb_regs.h> #include <linux/ssb/ssb_driver_chipcommon.h> #include <linux/delay.h> #include <linux/export.h> #ifdef CONFIG_BCM47XX #include <linux/bcm47xx_nvram.h> #endif static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset) { chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset); return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA); } static void ssb_chipco_pll_write(struct ssb_chipcommon *cc, u32 offset, u32 value) { chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset); chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value); } static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc, u32 offset, u32 mask, u32 set) { u32 value; chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR); chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset); chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR); value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA); value &= mask; value |= set; chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value); chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA); } struct pmu0_plltab_entry { u16 freq; /* Crystal frequency in kHz.*/ u8 xf; /* Crystal frequency value for PMU control */ u8 wb_int; u32 wb_frac; }; static const struct pmu0_plltab_entry pmu0_plltab[] = { { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, }, { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, }, { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, }, { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, }, { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, }, { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, }, { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, }, { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, }, { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, }, { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, }, { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, }, { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, }, { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, }, { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, }, }; #define SSB_PMU0_DEFAULT_XTALFREQ 20000 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq) { const struct pmu0_plltab_entry *e; unsigned int i; for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) { e = &pmu0_plltab[i]; if (e->freq == crystalfreq) return e; } return NULL; } /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */ static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc, u32 crystalfreq) { struct ssb_bus *bus = cc->dev->bus; const struct pmu0_plltab_entry *e = NULL; u32 pmuctl, tmp, pllctl; unsigned int i; if (crystalfreq) e = pmu0_plltab_find_entry(crystalfreq); if (!e) e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ); BUG_ON(!e); crystalfreq = e->freq; cc->pmu.crystalfreq = e->freq; /* Check if the PLL already is programmed to this frequency. */ pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) { /* We're already there... */ return; } dev_info(cc->dev->dev, "Programming PLL to %u.%03u MHz\n", crystalfreq / 1000, crystalfreq % 1000); /* First turn the PLL off. */ switch (bus->chip_id) { case 0x4328: chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << SSB_PMURES_4328_BB_PLL_PU)); chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, ~(1 << SSB_PMURES_4328_BB_PLL_PU)); break; case 0x5354: chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << SSB_PMURES_5354_BB_PLL_PU)); chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, ~(1 << SSB_PMURES_5354_BB_PLL_PU)); break; default: WARN_ON(1); } for (i = 1500; i; i--) { tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)) break; udelay(10); } tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT) dev_emerg(cc->dev->dev, "Failed to turn the PLL off!\n"); /* Set PDIV in PLL control 0. */ pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0); if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ) pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK; else pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK; ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl); /* Set WILD in PLL control 1. */ pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1); pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD; pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK); pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK; pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK; if (e->wb_frac == 0) pllctl |= SSB_PMU0_PLLCTL1_STOPMOD; ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl); /* Set WILD in PLL control 2. */ pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2); pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI; pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI; ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl); /* Set the crystalfrequency and the divisor. */ pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV; pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT) & SSB_CHIPCO_PMU_CTL_ILP_DIV; pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ; pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ; chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl); } struct pmu1_plltab_entry { u16 freq; /* Crystal frequency in kHz.*/ u8 xf; /* Crystal frequency value for PMU control */ u8 ndiv_int; u32 ndiv_frac; u8 p1div; u8 p2div; }; static const struct pmu1_plltab_entry pmu1_plltab[] = { { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, }, { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, }, { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, }, { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, }, { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, }, { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, }, { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, }, { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, }, { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, }, { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, }, { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, }, { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, }, { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, }, { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, }, { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, }, }; #define SSB_PMU1_DEFAULT_XTALFREQ 15360 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq) { const struct pmu1_plltab_entry *e; unsigned int i; for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) { e = &pmu1_plltab[i]; if (e->freq == crystalfreq) return e; } return NULL; } /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */ static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc, u32 crystalfreq) { struct ssb_bus *bus = cc->dev->bus; const struct pmu1_plltab_entry *e = NULL; u32 buffer_strength = 0; u32 tmp, pllctl, pmuctl; unsigned int i; if (bus->chip_id == 0x4312) { /* We do not touch the BCM4312 PLL and assume * the default crystal settings work out-of-the-box. */ cc->pmu.crystalfreq = 20000; return; } if (crystalfreq) e = pmu1_plltab_find_entry(crystalfreq); if (!e) e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ); BUG_ON(!e); crystalfreq = e->freq; cc->pmu.crystalfreq = e->freq; /* Check if the PLL already is programmed to this frequency. */ pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) { /* We're already there... */ return; } dev_info(cc->dev->dev, "Programming PLL to %u.%03u MHz\n", crystalfreq / 1000, crystalfreq % 1000); /* First turn the PLL off. */ switch (bus->chip_id) { case 0x4325: chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) | (1 << SSB_PMURES_4325_HT_AVAIL))); chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) | (1 << SSB_PMURES_4325_HT_AVAIL))); /* Adjust the BBPLL to 2 on all channels later. */ buffer_strength = 0x222222; break; default: WARN_ON(1); } for (i = 1500; i; i--) { tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)) break; udelay(10); } tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT) dev_emerg(cc->dev->dev, "Failed to turn the PLL off!\n"); /* Set p1div and p2div. */ pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0); pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV); pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV; pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV; ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl); /* Set ndiv int and ndiv mode */ pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2); pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE); pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT; pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE; ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl); /* Set ndiv frac */ pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3); pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC; pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC; ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl); /* Change the drive strength, if required. */ if (buffer_strength) { pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5); pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV; pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV; ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl); } /* Tune the crystalfreq and the divisor. */ pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ); pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT) & SSB_CHIPCO_PMU_CTL_ILP_DIV; pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ; chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl); } static void ssb_pmu_pll_init(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */ if (bus->bustype == SSB_BUSTYPE_SSB) { #ifdef CONFIG_BCM47XX char buf[20]; if (bcm47xx_nvram_getenv("xtalfreq", buf, sizeof(buf)) >= 0) crystalfreq = simple_strtoul(buf, NULL, 0); #endif } switch (bus->chip_id) { case 0x4312: case 0x4325: ssb_pmu1_pllinit_r0(cc, crystalfreq); break; case 0x4328: ssb_pmu0_pllinit_r0(cc, crystalfreq); break; case 0x5354: if (crystalfreq == 0) crystalfreq = 25000; ssb_pmu0_pllinit_r0(cc, crystalfreq); break; case 0x4322: if (cc->pmu.rev == 2) { chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A); chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0); } break; case 43222: break; default: dev_err(cc->dev->dev, "ERROR: PLL init unknown for device %04X\n", bus->chip_id); } } struct pmu_res_updown_tab_entry { u8 resource; /* The resource number */ u16 updown; /* The updown value */ }; enum pmu_res_depend_tab_task { PMU_RES_DEP_SET = 1, PMU_RES_DEP_ADD, PMU_RES_DEP_REMOVE, }; struct pmu_res_depend_tab_entry { u8 resource; /* The resource number */ u8 task; /* SET | ADD | REMOVE */ u32 depend; /* The depend mask */ }; static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = { { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, }, { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, }, { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, }, { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, }, { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, }, { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, }, { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, }, { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, }, { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, }, { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, }, { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, }, { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, }, }; static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = { { /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */ .resource = SSB_PMURES_4328_ILP_REQUEST, .task = PMU_RES_DEP_SET, .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) | (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)), }, }; static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = { { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, }, }; static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = { { /* Adjust HT-Available dependencies. */ .resource = SSB_PMURES_4325_HT_AVAIL, .task = PMU_RES_DEP_ADD, .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) | (1 << SSB_PMURES_4325_TX_PWRSW_PU) | (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) | (1 << SSB_PMURES_4325_AFE_PWRSW_PU)), }, }; static void ssb_pmu_resources_init(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; u32 min_msk = 0, max_msk = 0; unsigned int i; const struct pmu_res_updown_tab_entry *updown_tab = NULL; unsigned int updown_tab_size = 0; const struct pmu_res_depend_tab_entry *depend_tab = NULL; unsigned int depend_tab_size = 0; switch (bus->chip_id) { case 0x4312: min_msk = 0xCBB; break; case 0x4322: case 43222: /* We keep the default settings: * min_msk = 0xCBB * max_msk = 0x7FFFF */ break; case 0x4325: /* Power OTP down later. */ min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) | (1 << SSB_PMURES_4325_LNLDO2_PU); if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) & SSB_CHIPCO_CHST_4325_PMUTOP_2B) min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST); /* The PLL may turn on, if it decides so. */ max_msk = 0xFFFFF; updown_tab = pmu_res_updown_tab_4325a0; updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0); depend_tab = pmu_res_depend_tab_4325a0; depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0); break; case 0x4328: min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) | (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) | (1 << SSB_PMURES_4328_XTAL_EN); /* The PLL may turn on, if it decides so. */ max_msk = 0xFFFFF; updown_tab = pmu_res_updown_tab_4328a0; updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0); depend_tab = pmu_res_depend_tab_4328a0; depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0); break; case 0x5354: /* The PLL may turn on, if it decides so. */ max_msk = 0xFFFFF; break; default: dev_err(cc->dev->dev, "ERROR: PMU resource config unknown for device %04X\n", bus->chip_id); } if (updown_tab) { for (i = 0; i < updown_tab_size; i++) { chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL, updown_tab[i].resource); chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM, updown_tab[i].updown); } } if (depend_tab) { for (i = 0; i < depend_tab_size; i++) { chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL, depend_tab[i].resource); switch (depend_tab[i].task) { case PMU_RES_DEP_SET: chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK, depend_tab[i].depend); break; case PMU_RES_DEP_ADD: chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK, depend_tab[i].depend); break; case PMU_RES_DEP_REMOVE: chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK, ~(depend_tab[i].depend)); break; default: WARN_ON(1); } } } /* Set the resource masks. */ if (min_msk) chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk); if (max_msk) chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk); } /* https://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */ void ssb_pmu_init(struct ssb_chipcommon *cc) { u32 pmucap; if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU)) return; pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP); cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION); dev_dbg(cc->dev->dev, "Found rev %u PMU (capabilities 0x%08X)\n", cc->pmu.rev, pmucap); if (cc->pmu.rev == 1) chipco_mask32(cc, SSB_CHIPCO_PMU_CTL, ~SSB_CHIPCO_PMU_CTL_NOILPONW); else chipco_set32(cc, SSB_CHIPCO_PMU_CTL, SSB_CHIPCO_PMU_CTL_NOILPONW); ssb_pmu_pll_init(cc); ssb_pmu_resources_init(cc); } void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc, enum ssb_pmu_ldo_volt_id id, u32 voltage) { struct ssb_bus *bus = cc->dev->bus; u32 addr, shift, mask; switch (bus->chip_id) { case 0x4328: case 0x5354: switch (id) { case LDO_VOLT1: addr = 2; shift = 25; mask = 0xF; break; case LDO_VOLT2: addr = 3; shift = 1; mask = 0xF; break; case LDO_VOLT3: addr = 3; shift = 9; mask = 0xF; break; case LDO_PAREF: addr = 3; shift = 17; mask = 0x3F; break; default: WARN_ON(1); return; } break; case 0x4312: if (WARN_ON(id != LDO_PAREF)) return; addr = 0; shift = 21; mask = 0x3F; break; default: return; } ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift), (voltage & mask) << shift); } void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on) { struct ssb_bus *bus = cc->dev->bus; int ldo; switch (bus->chip_id) { case 0x4312: ldo = SSB_PMURES_4312_PA_REF_LDO; break; case 0x4328: ldo = SSB_PMURES_4328_PA_REF_LDO; break; case 0x5354: ldo = SSB_PMURES_5354_PA_REF_LDO; break; default: return; } if (on) chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo); else chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo)); chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read? } EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage); EXPORT_SYMBOL(ssb_pmu_set_ldo_paref); static u32 ssb_pmu_get_alp_clock_clk0(struct ssb_chipcommon *cc) { u32 crystalfreq; const struct pmu0_plltab_entry *e = NULL; crystalfreq = (chipco_read32(cc, SSB_CHIPCO_PMU_CTL) & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT; e = pmu0_plltab_find_entry(crystalfreq); BUG_ON(!e); return e->freq * 1000; } u32 ssb_pmu_get_alp_clock(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; switch (bus->chip_id) { case 0x5354: return ssb_pmu_get_alp_clock_clk0(cc); default: dev_err(cc->dev->dev, "ERROR: PMU alp clock unknown for device %04X\n", bus->chip_id); return 0; } } u32 ssb_pmu_get_cpu_clock(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; switch (bus->chip_id) { case 0x5354: /* 5354 chip uses a non programmable PLL of frequency 240MHz */ return 240000000; default: dev_err(cc->dev->dev, "ERROR: PMU cpu clock unknown for device %04X\n", bus->chip_id); return 0; } } u32 ssb_pmu_get_controlclock(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; switch (bus->chip_id) { case 0x5354: return 120000000; default: dev_err(cc->dev->dev, "ERROR: PMU controlclock unknown for device %04X\n", bus->chip_id); return 0; } } void ssb_pmu_spuravoid_pllupdate(struct ssb_chipcommon *cc, int spuravoid) { u32 pmu_ctl = 0; switch (cc->dev->bus->chip_id) { case 0x4322: ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100070); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x1014140a); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888854); if (spuravoid == 1) ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05201828); else ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05001828); pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD; break; case 43222: if (spuravoid == 1) { ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11500008); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0C000C06); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x0F600a08); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x2001E920); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888815); } else { ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100008); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0c000c06); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x03000a08); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x200005c0); ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888855); } pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD; break; default: dev_err(cc->dev->dev, "Unknown spuravoidance settings for chip 0x%04X, not changing PLL\n", cc->dev->bus->chip_id); return; } chipco_set32(cc, SSB_CHIPCO_PMU_CTL, pmu_ctl); } EXPORT_SYMBOL_GPL(ssb_pmu_spuravoid_pllupdate);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1