Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shanker Donthineni | 618 | 60.00% | 1 | 11.11% |
Daniel Walker | 195 | 18.93% | 1 | 11.11% |
Michal Simek | 114 | 11.07% | 1 | 11.11% |
Rob Herring | 71 | 6.89% | 1 | 11.11% |
Timur Tabi | 24 | 2.33% | 1 | 11.11% |
Stephen Boyd | 4 | 0.39% | 1 | 11.11% |
Jiri Slaby | 2 | 0.19% | 1 | 11.11% |
Greg Kroah-Hartman | 1 | 0.10% | 1 | 11.11% |
Christopher Covington | 1 | 0.10% | 1 | 11.11% |
Total | 1030 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2010, 2014, 2022 The Linux Foundation. All rights reserved. */ #include <linux/console.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/init.h> #include <linux/kfifo.h> #include <linux/serial.h> #include <linux/serial_core.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <asm/dcc.h> #include <asm/processor.h> #include "hvc_console.h" /* DCC Status Bits */ #define DCC_STATUS_RX (1 << 30) #define DCC_STATUS_TX (1 << 29) #define DCC_INBUF_SIZE 128 #define DCC_OUTBUF_SIZE 1024 /* Lock to serialize access to DCC fifo */ static DEFINE_SPINLOCK(dcc_lock); static DEFINE_KFIFO(inbuf, unsigned char, DCC_INBUF_SIZE); static DEFINE_KFIFO(outbuf, unsigned char, DCC_OUTBUF_SIZE); static void dcc_uart_console_putchar(struct uart_port *port, unsigned char ch) { while (__dcc_getstatus() & DCC_STATUS_TX) cpu_relax(); __dcc_putchar(ch); } static void dcc_early_write(struct console *con, const char *s, unsigned n) { struct earlycon_device *dev = con->data; uart_console_write(&dev->port, s, n, dcc_uart_console_putchar); } static int __init dcc_early_console_setup(struct earlycon_device *device, const char *opt) { device->con->write = dcc_early_write; return 0; } EARLYCON_DECLARE(dcc, dcc_early_console_setup); static int hvc_dcc_put_chars(uint32_t vt, const char *buf, int count) { int i; for (i = 0; i < count; i++) { while (__dcc_getstatus() & DCC_STATUS_TX) cpu_relax(); __dcc_putchar(buf[i]); } return count; } static int hvc_dcc_get_chars(uint32_t vt, char *buf, int count) { int i; for (i = 0; i < count; ++i) if (__dcc_getstatus() & DCC_STATUS_RX) buf[i] = __dcc_getchar(); else break; return i; } /* * Check if the DCC is enabled. If CONFIG_HVC_DCC_SERIALIZE_SMP is enabled, * then we assume then this function will be called first on core0. That way, * dcc_core0_available will be true only if it's available on core0. */ static bool hvc_dcc_check(void) { unsigned long time = jiffies + (HZ / 10); static bool dcc_core0_available; /* * If we're not on core 0, but we previously confirmed that DCC is * active, then just return true. */ int cpu = get_cpu(); if (IS_ENABLED(CONFIG_HVC_DCC_SERIALIZE_SMP) && cpu && dcc_core0_available) { put_cpu(); return true; } put_cpu(); /* Write a test character to check if it is handled */ __dcc_putchar('\n'); while (time_is_after_jiffies(time)) { if (!(__dcc_getstatus() & DCC_STATUS_TX)) { dcc_core0_available = true; return true; } } return false; } /* * Workqueue function that writes the output FIFO to the DCC on core 0. */ static void dcc_put_work(struct work_struct *work) { unsigned char ch; unsigned long irqflags; spin_lock_irqsave(&dcc_lock, irqflags); /* While there's data in the output FIFO, write it to the DCC */ while (kfifo_get(&outbuf, &ch)) hvc_dcc_put_chars(0, &ch, 1); /* While we're at it, check for any input characters */ while (!kfifo_is_full(&inbuf)) { if (!hvc_dcc_get_chars(0, &ch, 1)) break; kfifo_put(&inbuf, ch); } spin_unlock_irqrestore(&dcc_lock, irqflags); } static DECLARE_WORK(dcc_pwork, dcc_put_work); /* * Workqueue function that reads characters from DCC and puts them into the * input FIFO. */ static void dcc_get_work(struct work_struct *work) { unsigned char ch; unsigned long irqflags; /* * Read characters from DCC and put them into the input FIFO, as * long as there is room and we have characters to read. */ spin_lock_irqsave(&dcc_lock, irqflags); while (!kfifo_is_full(&inbuf)) { if (!hvc_dcc_get_chars(0, &ch, 1)) break; kfifo_put(&inbuf, ch); } spin_unlock_irqrestore(&dcc_lock, irqflags); } static DECLARE_WORK(dcc_gwork, dcc_get_work); /* * Write characters directly to the DCC if we're on core 0 and the FIFO * is empty, or write them to the FIFO if we're not. */ static int hvc_dcc0_put_chars(u32 vt, const char *buf, int count) { int len; unsigned long irqflags; if (!IS_ENABLED(CONFIG_HVC_DCC_SERIALIZE_SMP)) return hvc_dcc_put_chars(vt, buf, count); spin_lock_irqsave(&dcc_lock, irqflags); if (smp_processor_id() || (!kfifo_is_empty(&outbuf))) { len = kfifo_in(&outbuf, buf, count); spin_unlock_irqrestore(&dcc_lock, irqflags); /* * We just push data to the output FIFO, so schedule the * workqueue that will actually write that data to DCC. * CPU hotplug is disabled in dcc_init so CPU0 cannot be * offlined after the cpu online check. */ if (cpu_online(0)) schedule_work_on(0, &dcc_pwork); return len; } /* * If we're already on core 0, and the FIFO is empty, then just * write the data to DCC. */ len = hvc_dcc_put_chars(vt, buf, count); spin_unlock_irqrestore(&dcc_lock, irqflags); return len; } /* * Read characters directly from the DCC if we're on core 0 and the FIFO * is empty, or read them from the FIFO if we're not. */ static int hvc_dcc0_get_chars(u32 vt, char *buf, int count) { int len; unsigned long irqflags; if (!IS_ENABLED(CONFIG_HVC_DCC_SERIALIZE_SMP)) return hvc_dcc_get_chars(vt, buf, count); spin_lock_irqsave(&dcc_lock, irqflags); if (smp_processor_id() || (!kfifo_is_empty(&inbuf))) { len = kfifo_out(&inbuf, buf, count); spin_unlock_irqrestore(&dcc_lock, irqflags); /* * If the FIFO was empty, there may be characters in the DCC * that we haven't read yet. Schedule a workqueue to fill * the input FIFO, so that the next time this function is * called, we'll have data. CPU hotplug is disabled in dcc_init * so CPU0 cannot be offlined after the cpu online check. */ if (!len && cpu_online(0)) schedule_work_on(0, &dcc_gwork); return len; } /* * If we're already on core 0, and the FIFO is empty, then just * read the data from DCC. */ len = hvc_dcc_get_chars(vt, buf, count); spin_unlock_irqrestore(&dcc_lock, irqflags); return len; } static const struct hv_ops hvc_dcc_get_put_ops = { .get_chars = hvc_dcc0_get_chars, .put_chars = hvc_dcc0_put_chars, }; static int __init hvc_dcc_console_init(void) { int ret; if (!hvc_dcc_check()) return -ENODEV; /* Returns -1 if error */ ret = hvc_instantiate(0, 0, &hvc_dcc_get_put_ops); return ret < 0 ? -ENODEV : 0; } console_initcall(hvc_dcc_console_init); static int __init hvc_dcc_init(void) { struct hvc_struct *p; if (!hvc_dcc_check()) return -ENODEV; if (IS_ENABLED(CONFIG_HVC_DCC_SERIALIZE_SMP)) { pr_warn("\n"); pr_warn("********************************************************************\n"); pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); pr_warn("** **\n"); pr_warn("** HVC_DCC_SERIALIZE_SMP SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); pr_warn("** **\n"); pr_warn("** This means that this is a DEBUG kernel and unsafe for **\n"); pr_warn("** production use and has important feature like CPU hotplug **\n"); pr_warn("** disabled. **\n"); pr_warn("** **\n"); pr_warn("** If you see this message and you are not debugging the **\n"); pr_warn("** kernel, report this immediately to your vendor! **\n"); pr_warn("** **\n"); pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); pr_warn("********************************************************************\n"); cpu_hotplug_disable(); } p = hvc_alloc(0, 0, &hvc_dcc_get_put_ops, 128); return PTR_ERR_OR_ZERO(p); } device_initcall(hvc_dcc_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1