Contributors: 11
	  
        
          | Author | 
          Tokens | 
          Token Proportion | 
          Commits | 
          Commit Proportion | 
        
	  
	  
        
        
          | Dan J Williams | 
          1258 | 
          95.59% | 
          4 | 
          26.67% | 
        
        
          | Yufen Yu | 
          31 | 
          2.36% | 
          2 | 
          13.33% | 
        
        
          | Kyle Spiers | 
          8 | 
          0.61% | 
          1 | 
          6.67% | 
        
        
          | Paul Gortmaker | 
          3 | 
          0.23% | 
          1 | 
          6.67% | 
        
        
          | Akinobu Mita | 
          3 | 
          0.23% | 
          1 | 
          6.67% | 
        
        
          | Alexey Dobriyan | 
          3 | 
          0.23% | 
          1 | 
          6.67% | 
        
        
          | Tejun Heo | 
          3 | 
          0.23% | 
          1 | 
          6.67% | 
        
        
          | Xiu Jianfeng | 
          2 | 
          0.15% | 
          1 | 
          6.67% | 
        
        
          | Tom Rix | 
          2 | 
          0.15% | 
          1 | 
          6.67% | 
        
        
          | Thomas Gleixner | 
          2 | 
          0.15% | 
          1 | 
          6.67% | 
        
        
          | Jason A. Donenfeld | 
          1 | 
          0.08% | 
          1 | 
          6.67% | 
        
	  
	  
        
          | Total | 
          1316 | 
           | 
          15 | 
           | 
	    
	  
    
 
// SPDX-License-Identifier: GPL-2.0-only
/*
 * asynchronous raid6 recovery self test
 * Copyright (c) 2009, Intel Corporation.
 *
 * based on drivers/md/raid6test/test.c:
 * 	Copyright 2002-2007 H. Peter Anvin
 */
#include <linux/async_tx.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/module.h>
#undef pr
#define pr(fmt, args...) pr_info("raid6test: " fmt, ##args)
#define NDISKS 64 /* Including P and Q */
static struct page *dataptrs[NDISKS];
unsigned int dataoffs[NDISKS];
static addr_conv_t addr_conv[NDISKS];
static struct page *data[NDISKS+3];
static struct page *spare;
static struct page *recovi;
static struct page *recovj;
static void callback(void *param)
{
	struct completion *cmp = param;
	complete(cmp);
}
static void makedata(int disks)
{
	int i;
	for (i = 0; i < disks; i++) {
		get_random_bytes(page_address(data[i]), PAGE_SIZE);
		dataptrs[i] = data[i];
		dataoffs[i] = 0;
	}
}
static char disk_type(int d, int disks)
{
	if (d == disks - 2)
		return 'P';
	else if (d == disks - 1)
		return 'Q';
	else
		return 'D';
}
/* Recover two failed blocks. */
static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb,
		struct page **ptrs, unsigned int *offs)
{
	struct async_submit_ctl submit;
	struct completion cmp;
	struct dma_async_tx_descriptor *tx = NULL;
	enum sum_check_flags result = ~0;
	if (faila > failb)
		swap(faila, failb);
	if (failb == disks-1) {
		if (faila == disks-2) {
			/* P+Q failure.  Just rebuild the syndrome. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_gen_syndrome(ptrs, offs,
					disks, bytes, &submit);
		} else {
			struct page *blocks[NDISKS];
			struct page *dest;
			int count = 0;
			int i;
			BUG_ON(disks > NDISKS);
			/* data+Q failure.  Reconstruct data from P,
			 * then rebuild syndrome
			 */
			for (i = disks; i-- ; ) {
				if (i == faila || i == failb)
					continue;
				blocks[count++] = ptrs[i];
			}
			dest = ptrs[faila];
			init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
					  NULL, NULL, addr_conv);
			tx = async_xor(dest, blocks, 0, count, bytes, &submit);
			init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv);
			tx = async_gen_syndrome(ptrs, offs,
					disks, bytes, &submit);
		}
	} else {
		if (failb == disks-2) {
			/* data+P failure. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_raid6_datap_recov(disks, bytes,
					faila, ptrs, offs, &submit);
		} else {
			/* data+data failure. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_raid6_2data_recov(disks, bytes,
					faila, failb, ptrs, offs, &submit);
		}
	}
	init_completion(&cmp);
	init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv);
	tx = async_syndrome_val(ptrs, offs,
			disks, bytes, &result, spare, 0, &submit);
	async_tx_issue_pending(tx);
	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0)
		pr("%s: timeout! (faila: %d failb: %d disks: %d)\n",
		   __func__, faila, failb, disks);
	if (result != 0)
		pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n",
		   __func__, faila, failb, result);
}
static int test_disks(int i, int j, int disks)
{
	int erra, errb;
	memset(page_address(recovi), 0xf0, PAGE_SIZE);
	memset(page_address(recovj), 0xba, PAGE_SIZE);
	dataptrs[i] = recovi;
	dataptrs[j] = recovj;
	raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs, dataoffs);
	erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE);
	errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE);
	pr("%s(%d, %d): faila=%3d(%c)  failb=%3d(%c)  %s\n",
	   __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks),
	   (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB");
	dataptrs[i] = data[i];
	dataptrs[j] = data[j];
	return erra || errb;
}
static int test(int disks, int *tests)
{
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct completion cmp;
	int err = 0;
	int i, j;
	recovi = data[disks];
	recovj = data[disks+1];
	spare  = data[disks+2];
	makedata(disks);
	/* Nuke syndromes */
	memset(page_address(data[disks-2]), 0xee, PAGE_SIZE);
	memset(page_address(data[disks-1]), 0xee, PAGE_SIZE);
	/* Generate assumed good syndrome */
	init_completion(&cmp);
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv);
	tx = async_gen_syndrome(dataptrs, dataoffs, disks, PAGE_SIZE, &submit);
	async_tx_issue_pending(tx);
	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) {
		pr("error: initial gen_syndrome(%d) timed out\n", disks);
		return 1;
	}
	pr("testing the %d-disk case...\n", disks);
	for (i = 0; i < disks-1; i++)
		for (j = i+1; j < disks; j++) {
			(*tests)++;
			err += test_disks(i, j, disks);
		}
	return err;
}
static int __init raid6_test(void)
{
	int err = 0;
	int tests = 0;
	int i;
	for (i = 0; i < NDISKS+3; i++) {
		data[i] = alloc_page(GFP_KERNEL);
		if (!data[i]) {
			while (i--)
				put_page(data[i]);
			return -ENOMEM;
		}
	}
	/* the 4-disk and 5-disk cases are special for the recovery code */
	if (NDISKS > 4)
		err += test(4, &tests);
	if (NDISKS > 5)
		err += test(5, &tests);
	/* the 11 and 12 disk cases are special for ioatdma (p-disabled
	 * q-continuation without extended descriptor)
	 */
	if (NDISKS > 12) {
		err += test(11, &tests);
		err += test(12, &tests);
	}
	/* the 24 disk case is special for ioatdma as it is the boundary point
	 * at which it needs to switch from 8-source ops to 16-source
	 * ops for continuation (assumes DMA_HAS_PQ_CONTINUE is not set)
	 */
	if (NDISKS > 24)
		err += test(24, &tests);
	err += test(NDISKS, &tests);
	pr("\n");
	pr("complete (%d tests, %d failure%s)\n",
	   tests, err, err == 1 ? "" : "s");
	for (i = 0; i < NDISKS+3; i++)
		put_page(data[i]);
	return 0;
}
static void __exit raid6_test_exit(void)
{
}
/* when compiled-in wait for drivers to load first (assumes dma drivers
 * are also compiled-in)
 */
late_initcall(raid6_test);
module_exit(raid6_test_exit);
MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests");
MODULE_LICENSE("GPL");