Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Robert Moore | 608 | 34.21% | 29 | 52.73% |
Linus Torvalds (pre-git) | 433 | 24.37% | 3 | 5.45% |
Lv Zheng | 343 | 19.30% | 7 | 12.73% |
Andy Grover | 305 | 17.16% | 7 | 12.73% |
Linus Torvalds | 49 | 2.76% | 3 | 5.45% |
Erik Schmauss | 17 | 0.96% | 3 | 5.45% |
Jung-uk Kim | 15 | 0.84% | 1 | 1.82% |
Erik Kaneda | 5 | 0.28% | 1 | 1.82% |
Alexey Y. Starikovskiy | 2 | 0.11% | 1 | 1.82% |
Total | 1777 | 55 |
/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ /****************************************************************************** * * Name: acmacros.h - C macros for the entire subsystem. * * Copyright (C) 2000 - 2022, Intel Corp. * *****************************************************************************/ #ifndef __ACMACROS_H__ #define __ACMACROS_H__ /* * Extract data using a pointer. Any more than a byte and we * get into potential alignment issues -- see the STORE macros below. * Use with care. */ #define ACPI_CAST8(ptr) ACPI_CAST_PTR (u8, (ptr)) #define ACPI_CAST16(ptr) ACPI_CAST_PTR (u16, (ptr)) #define ACPI_CAST32(ptr) ACPI_CAST_PTR (u32, (ptr)) #define ACPI_CAST64(ptr) ACPI_CAST_PTR (u64, (ptr)) #define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr)) #define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr)) #define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr)) #define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr)) #define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (u8) (val)) #define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (u16) (val)) #define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (u32) (val)) #define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (u64) (val)) /* * printf() format helper. This macro is a workaround for the difficulties * with emitting 64-bit integers and 64-bit pointers with the same code * for both 32-bit and 64-bit hosts. */ #define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i) /* * Macros for moving data around to/from buffers that are possibly unaligned. * If the hardware supports the transfer of unaligned data, just do the store. * Otherwise, we have to move one byte at a time. */ #ifdef ACPI_BIG_ENDIAN /* * Macros for big-endian machines */ /* These macros reverse the bytes during the move, converting little-endian to big endian */ /* Big Endian <== Little Endian */ /* Hi...Lo Lo...Hi */ /* 16-bit source, 16/32/64 destination */ #define ACPI_MOVE_16_TO_16(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[0];} #define ACPI_MOVE_16_TO_32(d, s) {(*(u32 *)(void *)(d))=0;\ ((u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[1];\ ((u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[0];} #define ACPI_MOVE_16_TO_64(d, s) {(*(u64 *)(void *)(d))=0;\ ((u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ ((u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} /* 32-bit source, 16/32/64 destination */ #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_32_TO_32(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[3];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[0];} #define ACPI_MOVE_32_TO_64(d, s) {(*(u64 *)(void *)(d))=0;\ ((u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[3];\ ((u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[2];\ ((u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ ((u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} /* 64-bit source, 16/32/64 destination */ #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ #define ACPI_MOVE_64_TO_64(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[7];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[6];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[5];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[4];\ (( u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[3];\ (( u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} #else /* * Macros for little-endian machines */ #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED /* The hardware supports unaligned transfers, just do the little-endian move */ /* 16-bit source, 16/32/64 destination */ #define ACPI_MOVE_16_TO_16(d, s) *(u16 *)(void *)(d) = *(u16 *)(void *)(s) #define ACPI_MOVE_16_TO_32(d, s) *(u32 *)(void *)(d) = *(u16 *)(void *)(s) #define ACPI_MOVE_16_TO_64(d, s) *(u64 *)(void *)(d) = *(u16 *)(void *)(s) /* 32-bit source, 16/32/64 destination */ #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_32_TO_32(d, s) *(u32 *)(void *)(d) = *(u32 *)(void *)(s) #define ACPI_MOVE_32_TO_64(d, s) *(u64 *)(void *)(d) = *(u32 *)(void *)(s) /* 64-bit source, 16/32/64 destination */ #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ #define ACPI_MOVE_64_TO_64(d, s) *(u64 *)(void *)(d) = *(u64 *)(void *)(s) #else /* * The hardware does not support unaligned transfers. We must move the * data one byte at a time. These macros work whether the source or * the destination (or both) is/are unaligned. (Little-endian move) */ /* 16-bit source, 16/32/64 destination */ #define ACPI_MOVE_16_TO_16(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];} #define ACPI_MOVE_16_TO_32(d, s) {(*(u32 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} #define ACPI_MOVE_16_TO_64(d, s) {(*(u64 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} /* 32-bit source, 16/32/64 destination */ #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_32_TO_32(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[3];} #define ACPI_MOVE_32_TO_64(d, s) {(*(u64 *)(void *)(d)) = 0; ACPI_MOVE_32_TO_32(d, s);} /* 64-bit source, 16/32/64 destination */ #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ #define ACPI_MOVE_64_TO_64(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[3];\ (( u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[4];\ (( u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[5];\ (( u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[6];\ (( u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[7];} #endif #endif /* * Fast power-of-two math macros for non-optimized compilers */ #define _ACPI_DIV(value, power_of2) ((u32) ((value) >> (power_of2))) #define _ACPI_MUL(value, power_of2) ((u32) ((value) << (power_of2))) #define _ACPI_MOD(value, divisor) ((u32) ((value) & ((divisor) -1))) #define ACPI_DIV_2(a) _ACPI_DIV(a, 1) #define ACPI_MUL_2(a) _ACPI_MUL(a, 1) #define ACPI_MOD_2(a) _ACPI_MOD(a, 2) #define ACPI_DIV_4(a) _ACPI_DIV(a, 2) #define ACPI_MUL_4(a) _ACPI_MUL(a, 2) #define ACPI_MOD_4(a) _ACPI_MOD(a, 4) #define ACPI_DIV_8(a) _ACPI_DIV(a, 3) #define ACPI_MUL_8(a) _ACPI_MUL(a, 3) #define ACPI_MOD_8(a) _ACPI_MOD(a, 8) #define ACPI_DIV_16(a) _ACPI_DIV(a, 4) #define ACPI_MUL_16(a) _ACPI_MUL(a, 4) #define ACPI_MOD_16(a) _ACPI_MOD(a, 16) #define ACPI_DIV_32(a) _ACPI_DIV(a, 5) #define ACPI_MUL_32(a) _ACPI_MUL(a, 5) #define ACPI_MOD_32(a) _ACPI_MOD(a, 32) /* Test for ASCII character */ #define ACPI_IS_ASCII(c) ((c) < 0x80) /* Signed integers */ #define ACPI_SIGN_POSITIVE 0 #define ACPI_SIGN_NEGATIVE 1 /* * Rounding macros (Power of two boundaries only) */ #define ACPI_ROUND_DOWN(value, boundary) (((acpi_size)(value)) & \ (~(((acpi_size) boundary)-1))) #define ACPI_ROUND_UP(value, boundary) ((((acpi_size)(value)) + \ (((acpi_size) boundary)-1)) & \ (~(((acpi_size) boundary)-1))) /* Note: sizeof(acpi_size) evaluates to either 4 or 8 (32- vs 64-bit mode) */ #define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4) #define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8) #define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(acpi_size)) #define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4) #define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8) #define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(acpi_size)) #define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7) #define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a)) #define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10) /* Generic (non-power-of-two) rounding */ #define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (boundary)) #define ACPI_IS_MISALIGNED(value) (((acpi_size) value) & (sizeof(acpi_size)-1)) /* Generic bit manipulation */ #ifndef ACPI_USE_NATIVE_BIT_FINDER #define __ACPI_FIND_LAST_BIT_2(a, r) ((((u8) (a)) & 0x02) ? (r)+1 : (r)) #define __ACPI_FIND_LAST_BIT_4(a, r) ((((u8) (a)) & 0x0C) ? \ __ACPI_FIND_LAST_BIT_2 ((a)>>2, (r)+2) : \ __ACPI_FIND_LAST_BIT_2 ((a), (r))) #define __ACPI_FIND_LAST_BIT_8(a, r) ((((u8) (a)) & 0xF0) ? \ __ACPI_FIND_LAST_BIT_4 ((a)>>4, (r)+4) : \ __ACPI_FIND_LAST_BIT_4 ((a), (r))) #define __ACPI_FIND_LAST_BIT_16(a, r) ((((u16) (a)) & 0xFF00) ? \ __ACPI_FIND_LAST_BIT_8 ((a)>>8, (r)+8) : \ __ACPI_FIND_LAST_BIT_8 ((a), (r))) #define __ACPI_FIND_LAST_BIT_32(a, r) ((((u32) (a)) & 0xFFFF0000) ? \ __ACPI_FIND_LAST_BIT_16 ((a)>>16, (r)+16) : \ __ACPI_FIND_LAST_BIT_16 ((a), (r))) #define __ACPI_FIND_LAST_BIT_64(a, r) ((((u64) (a)) & 0xFFFFFFFF00000000) ? \ __ACPI_FIND_LAST_BIT_32 ((a)>>32, (r)+32) : \ __ACPI_FIND_LAST_BIT_32 ((a), (r))) #define ACPI_FIND_LAST_BIT_8(a) ((a) ? __ACPI_FIND_LAST_BIT_8 (a, 1) : 0) #define ACPI_FIND_LAST_BIT_16(a) ((a) ? __ACPI_FIND_LAST_BIT_16 (a, 1) : 0) #define ACPI_FIND_LAST_BIT_32(a) ((a) ? __ACPI_FIND_LAST_BIT_32 (a, 1) : 0) #define ACPI_FIND_LAST_BIT_64(a) ((a) ? __ACPI_FIND_LAST_BIT_64 (a, 1) : 0) #define __ACPI_FIND_FIRST_BIT_2(a, r) ((((u8) (a)) & 0x01) ? (r) : (r)+1) #define __ACPI_FIND_FIRST_BIT_4(a, r) ((((u8) (a)) & 0x03) ? \ __ACPI_FIND_FIRST_BIT_2 ((a), (r)) : \ __ACPI_FIND_FIRST_BIT_2 ((a)>>2, (r)+2)) #define __ACPI_FIND_FIRST_BIT_8(a, r) ((((u8) (a)) & 0x0F) ? \ __ACPI_FIND_FIRST_BIT_4 ((a), (r)) : \ __ACPI_FIND_FIRST_BIT_4 ((a)>>4, (r)+4)) #define __ACPI_FIND_FIRST_BIT_16(a, r) ((((u16) (a)) & 0x00FF) ? \ __ACPI_FIND_FIRST_BIT_8 ((a), (r)) : \ __ACPI_FIND_FIRST_BIT_8 ((a)>>8, (r)+8)) #define __ACPI_FIND_FIRST_BIT_32(a, r) ((((u32) (a)) & 0x0000FFFF) ? \ __ACPI_FIND_FIRST_BIT_16 ((a), (r)) : \ __ACPI_FIND_FIRST_BIT_16 ((a)>>16, (r)+16)) #define __ACPI_FIND_FIRST_BIT_64(a, r) ((((u64) (a)) & 0x00000000FFFFFFFF) ? \ __ACPI_FIND_FIRST_BIT_32 ((a), (r)) : \ __ACPI_FIND_FIRST_BIT_32 ((a)>>32, (r)+32)) #define ACPI_FIND_FIRST_BIT_8(a) ((a) ? __ACPI_FIND_FIRST_BIT_8 (a, 1) : 0) #define ACPI_FIND_FIRST_BIT_16(a) ((a) ? __ACPI_FIND_FIRST_BIT_16 (a, 1) : 0) #define ACPI_FIND_FIRST_BIT_32(a) ((a) ? __ACPI_FIND_FIRST_BIT_32 (a, 1) : 0) #define ACPI_FIND_FIRST_BIT_64(a) ((a) ? __ACPI_FIND_FIRST_BIT_64 (a, 1) : 0) #endif /* ACPI_USE_NATIVE_BIT_FINDER */ /* Generic (power-of-two) rounding */ #define ACPI_ROUND_UP_POWER_OF_TWO_8(a) ((u8) \ (((u16) 1) << ACPI_FIND_LAST_BIT_8 ((a) - 1))) #define ACPI_ROUND_DOWN_POWER_OF_TWO_8(a) ((u8) \ (((u16) 1) << (ACPI_FIND_LAST_BIT_8 ((a)) - 1))) #define ACPI_ROUND_UP_POWER_OF_TWO_16(a) ((u16) \ (((u32) 1) << ACPI_FIND_LAST_BIT_16 ((a) - 1))) #define ACPI_ROUND_DOWN_POWER_OF_TWO_16(a) ((u16) \ (((u32) 1) << (ACPI_FIND_LAST_BIT_16 ((a)) - 1))) #define ACPI_ROUND_UP_POWER_OF_TWO_32(a) ((u32) \ (((u64) 1) << ACPI_FIND_LAST_BIT_32 ((a) - 1))) #define ACPI_ROUND_DOWN_POWER_OF_TWO_32(a) ((u32) \ (((u64) 1) << (ACPI_FIND_LAST_BIT_32 ((a)) - 1))) #define ACPI_IS_ALIGNED(a, s) (((a) & ((s) - 1)) == 0) #define ACPI_IS_POWER_OF_TWO(a) ACPI_IS_ALIGNED(a, a) /* * Bitmask creation * Bit positions start at zero. * MASK_BITS_ABOVE creates a mask starting AT the position and above * MASK_BITS_BELOW creates a mask starting one bit BELOW the position * MASK_BITS_ABOVE/BELOW accepts a bit offset to create a mask * MASK_BITS_ABOVE/BELOW_32/64 accepts a bit width to create a mask * Note: The ACPI_INTEGER_BIT_SIZE check is used to bypass compiler * differences with the shift operator */ #define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((u32) (position)))) #define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((u32) (position))) #define ACPI_MASK_BITS_ABOVE_32(width) ((u32) ACPI_MASK_BITS_ABOVE(width)) #define ACPI_MASK_BITS_BELOW_32(width) ((u32) ACPI_MASK_BITS_BELOW(width)) #define ACPI_MASK_BITS_ABOVE_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \ ACPI_UINT64_MAX : \ ACPI_MASK_BITS_ABOVE(width)) #define ACPI_MASK_BITS_BELOW_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \ (u64) 0 : \ ACPI_MASK_BITS_BELOW(width)) /* Bitfields within ACPI registers */ #define ACPI_REGISTER_PREPARE_BITS(val, pos, mask) \ ((val << pos) & mask) #define ACPI_REGISTER_INSERT_VALUE(reg, pos, mask, val) \ reg = (reg & (~(mask))) | ACPI_REGISTER_PREPARE_BITS(val, pos, mask) #define ACPI_INSERT_BITS(target, mask, source) \ target = ((target & (~(mask))) | (source & mask)) /* Generic bitfield macros and masks */ #define ACPI_GET_BITS(source_ptr, position, mask) \ ((*(source_ptr) >> (position)) & (mask)) #define ACPI_SET_BITS(target_ptr, position, mask, value) \ (*(target_ptr) |= (((value) & (mask)) << (position))) #define ACPI_1BIT_MASK 0x00000001 #define ACPI_2BIT_MASK 0x00000003 #define ACPI_3BIT_MASK 0x00000007 #define ACPI_4BIT_MASK 0x0000000F #define ACPI_5BIT_MASK 0x0000001F #define ACPI_6BIT_MASK 0x0000003F #define ACPI_7BIT_MASK 0x0000007F #define ACPI_8BIT_MASK 0x000000FF #define ACPI_16BIT_MASK 0x0000FFFF #define ACPI_24BIT_MASK 0x00FFFFFF /* Macros to extract flag bits from position zero */ #define ACPI_GET_1BIT_FLAG(value) ((value) & ACPI_1BIT_MASK) #define ACPI_GET_2BIT_FLAG(value) ((value) & ACPI_2BIT_MASK) #define ACPI_GET_3BIT_FLAG(value) ((value) & ACPI_3BIT_MASK) #define ACPI_GET_4BIT_FLAG(value) ((value) & ACPI_4BIT_MASK) /* Macros to extract flag bits from position one and above */ #define ACPI_EXTRACT_1BIT_FLAG(field, position) (ACPI_GET_1BIT_FLAG ((field) >> position)) #define ACPI_EXTRACT_2BIT_FLAG(field, position) (ACPI_GET_2BIT_FLAG ((field) >> position)) #define ACPI_EXTRACT_3BIT_FLAG(field, position) (ACPI_GET_3BIT_FLAG ((field) >> position)) #define ACPI_EXTRACT_4BIT_FLAG(field, position) (ACPI_GET_4BIT_FLAG ((field) >> position)) /* ACPI Pathname helpers */ #define ACPI_IS_ROOT_PREFIX(c) ((c) == (u8) 0x5C) /* Backslash */ #define ACPI_IS_PARENT_PREFIX(c) ((c) == (u8) 0x5E) /* Carat */ #define ACPI_IS_PATH_SEPARATOR(c) ((c) == (u8) 0x2E) /* Period (dot) */ /* * An object of type struct acpi_namespace_node can appear in some contexts * where a pointer to an object of type union acpi_operand_object can also * appear. This macro is used to distinguish them. * * The "DescriptorType" field is the second field in both structures. */ #define ACPI_GET_DESCRIPTOR_PTR(d) (((union acpi_descriptor *)(void *)(d))->common.common_pointer) #define ACPI_SET_DESCRIPTOR_PTR(d, p) (((union acpi_descriptor *)(void *)(d))->common.common_pointer = (p)) #define ACPI_GET_DESCRIPTOR_TYPE(d) (((union acpi_descriptor *)(void *)(d))->common.descriptor_type) #define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((union acpi_descriptor *)(void *)(d))->common.descriptor_type = (t)) /* * Macros for the master AML opcode table */ #if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT) #define ACPI_OP(name, Pargs, Iargs, obj_type, class, type, flags) \ {name, (u32)(Pargs), (u32)(Iargs), (u32)(flags), obj_type, class, type} #else #define ACPI_OP(name, Pargs, Iargs, obj_type, class, type, flags) \ {(u32)(Pargs), (u32)(Iargs), (u32)(flags), obj_type, class, type} #endif #define ARG_TYPE_WIDTH 5 #define ARG_1(x) ((u32)(x)) #define ARG_2(x) ((u32)(x) << (1 * ARG_TYPE_WIDTH)) #define ARG_3(x) ((u32)(x) << (2 * ARG_TYPE_WIDTH)) #define ARG_4(x) ((u32)(x) << (3 * ARG_TYPE_WIDTH)) #define ARG_5(x) ((u32)(x) << (4 * ARG_TYPE_WIDTH)) #define ARG_6(x) ((u32)(x) << (5 * ARG_TYPE_WIDTH)) #define ARGI_LIST1(a) (ARG_1(a)) #define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a)) #define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a)) #define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a)) #define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG_5(a)) #define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG_5(b)|ARG_6(a)) #define ARGP_LIST1(a) (ARG_1(a)) #define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b)) #define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c)) #define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)) #define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)) #define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)|ARG_6(f)) #define GET_CURRENT_ARG_TYPE(list) (list & ((u32) 0x1F)) #define INCREMENT_ARG_LIST(list) (list >>= ((u32) ARG_TYPE_WIDTH)) /* * Ascii error messages can be configured out */ #ifndef ACPI_NO_ERROR_MESSAGES /* * Error reporting. The callers module and line number are inserted by AE_INFO, * the plist contains a set of parens to allow variable-length lists. * These macros are used for both the debug and non-debug versions of the code. */ #define ACPI_ERROR_NAMESPACE(s, p, e) acpi_ut_prefixed_namespace_error (AE_INFO, s, p, e); #define ACPI_ERROR_METHOD(s, n, p, e) acpi_ut_method_error (AE_INFO, s, n, p, e); #define ACPI_WARN_PREDEFINED(plist) acpi_ut_predefined_warning plist #define ACPI_INFO_PREDEFINED(plist) acpi_ut_predefined_info plist #define ACPI_BIOS_ERROR_PREDEFINED(plist) acpi_ut_predefined_bios_error plist #define ACPI_ERROR_ONLY(s) s #else /* No error messages */ #define ACPI_ERROR_NAMESPACE(s, p, e) #define ACPI_ERROR_METHOD(s, n, p, e) #define ACPI_WARN_PREDEFINED(plist) #define ACPI_INFO_PREDEFINED(plist) #define ACPI_BIOS_ERROR_PREDEFINED(plist) #define ACPI_ERROR_ONLY(s) #endif /* ACPI_NO_ERROR_MESSAGES */ #if (!ACPI_REDUCED_HARDWARE) #define ACPI_HW_OPTIONAL_FUNCTION(addr) addr #else #define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL #endif /* * Macros used for ACPICA utilities only */ /* Generate a UUID */ #define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ (a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \ (b) & 0xFF, ((b) >> 8) & 0xFF, \ (c) & 0xFF, ((c) >> 8) & 0xFF, \ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) #define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= '0') && ((char)(d) <= '7')) /* * Macros used for the ASL-/ASL+ converter utility */ #ifdef ACPI_ASL_COMPILER #define ASL_CV_LABEL_FILENODE(a) cv_label_file_node(a); #define ASL_CV_CAPTURE_COMMENTS_ONLY(a) cv_capture_comments_only (a); #define ASL_CV_CAPTURE_COMMENTS(a) cv_capture_comments (a); #define ASL_CV_TRANSFER_COMMENTS(a) cv_transfer_comments (a); #define ASL_CV_CLOSE_PAREN(a,b) cv_close_paren_write_comment(a,b); #define ASL_CV_CLOSE_BRACE(a,b) cv_close_brace_write_comment(a,b); #define ASL_CV_SWITCH_FILES(a,b) cv_switch_files(a,b); #define ASL_CV_CLEAR_OP_COMMENTS(a) cv_clear_op_comments(a); #define ASL_CV_PRINT_ONE_COMMENT(a,b,c,d) cv_print_one_comment_type (a,b,c,d); #define ASL_CV_PRINT_ONE_COMMENT_LIST(a,b) cv_print_one_comment_list (a,b); #define ASL_CV_FILE_HAS_SWITCHED(a) cv_file_has_switched(a) #define ASL_CV_INIT_FILETREE(a,b) cv_init_file_tree(a,b); #else #define ASL_CV_LABEL_FILENODE(a) #define ASL_CV_CAPTURE_COMMENTS_ONLY(a) #define ASL_CV_CAPTURE_COMMENTS(a) #define ASL_CV_TRANSFER_COMMENTS(a) #define ASL_CV_CLOSE_PAREN(a,b) acpi_os_printf (")"); #define ASL_CV_CLOSE_BRACE(a,b) acpi_os_printf ("}"); #define ASL_CV_SWITCH_FILES(a,b) #define ASL_CV_CLEAR_OP_COMMENTS(a) #define ASL_CV_PRINT_ONE_COMMENT(a,b,c,d) #define ASL_CV_PRINT_ONE_COMMENT_LIST(a,b) #define ASL_CV_FILE_HAS_SWITCHED(a) 0 #define ASL_CV_INIT_FILETREE(a,b) #endif #endif /* ACMACROS_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1