Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 778 | 57.93% | 1 | 5.26% |
Lv Zheng | 458 | 34.10% | 2 | 10.53% |
Robert Moore | 69 | 5.14% | 9 | 47.37% |
Andy Grover | 23 | 1.71% | 3 | 15.79% |
Len Brown | 12 | 0.89% | 2 | 10.53% |
Erik Schmauss | 2 | 0.15% | 1 | 5.26% |
Patrick Mochel | 1 | 0.07% | 1 | 5.26% |
Total | 1343 | 19 |
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /******************************************************************************* * * Module Name: utmath - Integer math support routines * ******************************************************************************/ #include <acpi/acpi.h> #include "accommon.h" #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME("utmath") /* Structures used only for 64-bit divide */ typedef struct uint64_struct { u32 lo; u32 hi; } uint64_struct; typedef union uint64_overlay { u64 full; struct uint64_struct part; } uint64_overlay; /* * Optional support for 64-bit double-precision integer multiply and shift. * This code is configurable and is implemented in order to support 32-bit * kernel environments where a 64-bit double-precision math library is not * available. */ #ifndef ACPI_USE_NATIVE_MATH64 /******************************************************************************* * * FUNCTION: acpi_ut_short_multiply * * PARAMETERS: multiplicand - 64-bit multiplicand * multiplier - 32-bit multiplier * out_product - Pointer to where the product is returned * * DESCRIPTION: Perform a short multiply. * ******************************************************************************/ acpi_status acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product) { union uint64_overlay multiplicand_ovl; union uint64_overlay product; u32 carry32; ACPI_FUNCTION_TRACE(ut_short_multiply); multiplicand_ovl.full = multiplicand; /* * The Product is 64 bits, the carry is always 32 bits, * and is generated by the second multiply. */ ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.hi, multiplier, product.part.hi, carry32); ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.lo, multiplier, product.part.lo, carry32); product.part.hi += carry32; /* Return only what was requested */ if (out_product) { *out_product = product.full; } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ut_short_shift_left * * PARAMETERS: operand - 64-bit shift operand * count - 32-bit shift count * out_result - Pointer to where the result is returned * * DESCRIPTION: Perform a short left shift. * ******************************************************************************/ acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result) { union uint64_overlay operand_ovl; ACPI_FUNCTION_TRACE(ut_short_shift_left); operand_ovl.full = operand; if ((count & 63) >= 32) { operand_ovl.part.hi = operand_ovl.part.lo; operand_ovl.part.lo = 0; count = (count & 63) - 32; } ACPI_SHIFT_LEFT_64_BY_32(operand_ovl.part.hi, operand_ovl.part.lo, count); /* Return only what was requested */ if (out_result) { *out_result = operand_ovl.full; } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ut_short_shift_right * * PARAMETERS: operand - 64-bit shift operand * count - 32-bit shift count * out_result - Pointer to where the result is returned * * DESCRIPTION: Perform a short right shift. * ******************************************************************************/ acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result) { union uint64_overlay operand_ovl; ACPI_FUNCTION_TRACE(ut_short_shift_right); operand_ovl.full = operand; if ((count & 63) >= 32) { operand_ovl.part.lo = operand_ovl.part.hi; operand_ovl.part.hi = 0; count = (count & 63) - 32; } ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl.part.hi, operand_ovl.part.lo, count); /* Return only what was requested */ if (out_result) { *out_result = operand_ovl.full; } return_ACPI_STATUS(AE_OK); } #else /******************************************************************************* * * FUNCTION: acpi_ut_short_multiply * * PARAMETERS: See function headers above * * DESCRIPTION: Native version of the ut_short_multiply function. * ******************************************************************************/ acpi_status acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product) { ACPI_FUNCTION_TRACE(ut_short_multiply); /* Return only what was requested */ if (out_product) { *out_product = multiplicand * multiplier; } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ut_short_shift_left * * PARAMETERS: See function headers above * * DESCRIPTION: Native version of the ut_short_shift_left function. * ******************************************************************************/ acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result) { ACPI_FUNCTION_TRACE(ut_short_shift_left); /* Return only what was requested */ if (out_result) { *out_result = operand << count; } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ut_short_shift_right * * PARAMETERS: See function headers above * * DESCRIPTION: Native version of the ut_short_shift_right function. * ******************************************************************************/ acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result) { ACPI_FUNCTION_TRACE(ut_short_shift_right); /* Return only what was requested */ if (out_result) { *out_result = operand >> count; } return_ACPI_STATUS(AE_OK); } #endif /* * Optional support for 64-bit double-precision integer divide. This code * is configurable and is implemented in order to support 32-bit kernel * environments where a 64-bit double-precision math library is not available. * * Support for a more normal 64-bit divide/modulo (with check for a divide- * by-zero) appears after this optional section of code. */ #ifndef ACPI_USE_NATIVE_DIVIDE /******************************************************************************* * * FUNCTION: acpi_ut_short_divide * * PARAMETERS: dividend - 64-bit dividend * divisor - 32-bit divisor * out_quotient - Pointer to where the quotient is returned * out_remainder - Pointer to where the remainder is returned * * RETURN: Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits) * divide and modulo. The result is a 64-bit quotient and a * 32-bit remainder. * ******************************************************************************/ acpi_status acpi_ut_short_divide(u64 dividend, u32 divisor, u64 *out_quotient, u32 *out_remainder) { union uint64_overlay dividend_ovl; union uint64_overlay quotient; u32 remainder32; ACPI_FUNCTION_TRACE(ut_short_divide); /* Always check for a zero divisor */ if (divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } dividend_ovl.full = dividend; /* * The quotient is 64 bits, the remainder is always 32 bits, * and is generated by the second divide. */ ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor, quotient.part.hi, remainder32); ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor, quotient.part.lo, remainder32); /* Return only what was requested */ if (out_quotient) { *out_quotient = quotient.full; } if (out_remainder) { *out_remainder = remainder32; } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ut_divide * * PARAMETERS: in_dividend - Dividend * in_divisor - Divisor * out_quotient - Pointer to where the quotient is returned * out_remainder - Pointer to where the remainder is returned * * RETURN: Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a divide and modulo. * ******************************************************************************/ acpi_status acpi_ut_divide(u64 in_dividend, u64 in_divisor, u64 *out_quotient, u64 *out_remainder) { union uint64_overlay dividend; union uint64_overlay divisor; union uint64_overlay quotient; union uint64_overlay remainder; union uint64_overlay normalized_dividend; union uint64_overlay normalized_divisor; u32 partial1; union uint64_overlay partial2; union uint64_overlay partial3; ACPI_FUNCTION_TRACE(ut_divide); /* Always check for a zero divisor */ if (in_divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } divisor.full = in_divisor; dividend.full = in_dividend; if (divisor.part.hi == 0) { /* * 1) Simplest case is where the divisor is 32 bits, we can * just do two divides */ remainder.part.hi = 0; /* * The quotient is 64 bits, the remainder is always 32 bits, * and is generated by the second divide. */ ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo, quotient.part.hi, partial1); ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo, quotient.part.lo, remainder.part.lo); } else { /* * 2) The general case where the divisor is a full 64 bits * is more difficult */ quotient.part.hi = 0; normalized_dividend = dividend; normalized_divisor = divisor; /* Normalize the operands (shift until the divisor is < 32 bits) */ do { ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi, normalized_divisor.part.lo); ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi, normalized_dividend.part.lo); } while (normalized_divisor.part.hi != 0); /* Partial divide */ ACPI_DIV_64_BY_32(normalized_dividend.part.hi, normalized_dividend.part.lo, normalized_divisor.part.lo, quotient.part.lo, partial1); /* * The quotient is always 32 bits, and simply requires * adjustment. The 64-bit remainder must be generated. */ partial1 = quotient.part.lo * divisor.part.hi; partial2.full = (u64) quotient.part.lo * divisor.part.lo; partial3.full = (u64) partial2.part.hi + partial1; remainder.part.hi = partial3.part.lo; remainder.part.lo = partial2.part.lo; if (partial3.part.hi == 0) { if (partial3.part.lo >= dividend.part.hi) { if (partial3.part.lo == dividend.part.hi) { if (partial2.part.lo > dividend.part.lo) { quotient.part.lo--; remainder.full -= divisor.full; } } else { quotient.part.lo--; remainder.full -= divisor.full; } } remainder.full = remainder.full - dividend.full; remainder.part.hi = (u32)-((s32)remainder.part.hi); remainder.part.lo = (u32)-((s32)remainder.part.lo); if (remainder.part.lo) { remainder.part.hi--; } } } /* Return only what was requested */ if (out_quotient) { *out_quotient = quotient.full; } if (out_remainder) { *out_remainder = remainder.full; } return_ACPI_STATUS(AE_OK); } #else /******************************************************************************* * * FUNCTION: acpi_ut_short_divide, acpi_ut_divide * * PARAMETERS: See function headers above * * DESCRIPTION: Native versions of the ut_divide functions. Use these if either * 1) The target is a 64-bit platform and therefore 64-bit * integer math is supported directly by the machine. * 2) The target is a 32-bit or 16-bit platform, and the * double-precision integer math library is available to * perform the divide. * ******************************************************************************/ acpi_status acpi_ut_short_divide(u64 in_dividend, u32 divisor, u64 *out_quotient, u32 *out_remainder) { ACPI_FUNCTION_TRACE(ut_short_divide); /* Always check for a zero divisor */ if (divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } /* Return only what was requested */ if (out_quotient) { *out_quotient = in_dividend / divisor; } if (out_remainder) { *out_remainder = (u32) (in_dividend % divisor); } return_ACPI_STATUS(AE_OK); } acpi_status acpi_ut_divide(u64 in_dividend, u64 in_divisor, u64 *out_quotient, u64 *out_remainder) { ACPI_FUNCTION_TRACE(ut_divide); /* Always check for a zero divisor */ if (in_divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } /* Return only what was requested */ if (out_quotient) { *out_quotient = in_dividend / in_divisor; } if (out_remainder) { *out_remainder = in_dividend % in_divisor; } return_ACPI_STATUS(AE_OK); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1