Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woodhouse | 6348 | 77.70% | 31 | 45.59% |
Nathan Williams | 1087 | 13.30% | 5 | 7.35% |
Simon Farnsworth | 447 | 5.47% | 2 | 2.94% |
Philip A. Prindeville | 67 | 0.82% | 3 | 4.41% |
Corentin Labbe | 56 | 0.69% | 1 | 1.47% |
Chas Williams | 34 | 0.42% | 1 | 1.47% |
Julia Lawall | 24 | 0.29% | 6 | 8.82% |
Andrew Morton | 23 | 0.28% | 1 | 1.47% |
Dan J Williams | 16 | 0.20% | 1 | 1.47% |
Ben Hutchings | 15 | 0.18% | 1 | 1.47% |
Karl Hiramoto | 12 | 0.15% | 1 | 1.47% |
Jiri Slaby | 10 | 0.12% | 1 | 1.47% |
Chuhong Yuan | 6 | 0.07% | 1 | 1.47% |
Jesper Juhl | 4 | 0.05% | 1 | 1.47% |
Yang Hongyang | 4 | 0.05% | 1 | 1.47% |
David S. Miller | 3 | 0.04% | 1 | 1.47% |
Tejun Heo | 3 | 0.04% | 1 | 1.47% |
Kees Cook | 2 | 0.02% | 1 | 1.47% |
Amitoj Kaur Chawla | 2 | 0.02% | 1 | 1.47% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.47% |
Alexander A. Klimov | 1 | 0.01% | 1 | 1.47% |
Arvind Yadav | 1 | 0.01% | 1 | 1.47% |
Bhumika Goyal | 1 | 0.01% | 1 | 1.47% |
DaeSeok Youn | 1 | 0.01% | 1 | 1.47% |
Dan Carpenter | 1 | 0.01% | 1 | 1.47% |
Johannes Berg | 1 | 0.01% | 1 | 1.47% |
Total | 8170 | 68 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the Solos PCI ADSL2+ card, designed to support Linux by * Traverse Technologies -- https://www.traverse.com.au/ * Xrio Limited -- http://www.xrio.com/ * * Copyright © 2008 Traverse Technologies * Copyright © 2008 Intel Corporation * * Authors: Nathan Williams <nathan@traverse.com.au> * David Woodhouse <dwmw2@infradead.org> * Treker Chen <treker@xrio.com> */ #define DEBUG #define VERBOSE_DEBUG #include <linux/interrupt.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/atm.h> #include <linux/atmdev.h> #include <linux/skbuff.h> #include <linux/sysfs.h> #include <linux/device.h> #include <linux/kobject.h> #include <linux/firmware.h> #include <linux/ctype.h> #include <linux/swab.h> #include <linux/slab.h> #define VERSION "1.04" #define DRIVER_VERSION 0x01 #define PTAG "solos-pci" #define CONFIG_RAM_SIZE 128 #define FLAGS_ADDR 0x7C #define IRQ_EN_ADDR 0x78 #define FPGA_VER 0x74 #define IRQ_CLEAR 0x70 #define WRITE_FLASH 0x6C #define PORTS 0x68 #define FLASH_BLOCK 0x64 #define FLASH_BUSY 0x60 #define FPGA_MODE 0x5C #define FLASH_MODE 0x58 #define GPIO_STATUS 0x54 #define DRIVER_VER 0x50 #define TX_DMA_ADDR(port) (0x40 + (4 * (port))) #define RX_DMA_ADDR(port) (0x30 + (4 * (port))) #define DATA_RAM_SIZE 32768 #define BUF_SIZE 2048 #define OLD_BUF_SIZE 4096 /* For FPGA versions <= 2*/ /* Old boards use ATMEL AD45DB161D flash */ #define ATMEL_FPGA_PAGE 528 /* FPGA flash page size*/ #define ATMEL_SOLOS_PAGE 512 /* Solos flash page size*/ #define ATMEL_FPGA_BLOCK (ATMEL_FPGA_PAGE * 8) /* FPGA block size*/ #define ATMEL_SOLOS_BLOCK (ATMEL_SOLOS_PAGE * 8) /* Solos block size*/ /* Current boards use M25P/M25PE SPI flash */ #define SPI_FLASH_BLOCK (256 * 64) #define RX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2) #define TX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2 + (card->buffer_size)) #define FLASH_BUF ((card->buffers) + 4*(card->buffer_size)*2) #define RX_DMA_SIZE 2048 #define FPGA_VERSION(a,b) (((a) << 8) + (b)) #define LEGACY_BUFFERS 2 #define DMA_SUPPORTED 4 static int reset = 0; static int atmdebug = 0; static int firmware_upgrade = 0; static int fpga_upgrade = 0; static int db_firmware_upgrade = 0; static int db_fpga_upgrade = 0; struct pkt_hdr { __le16 size; __le16 vpi; __le16 vci; __le16 type; }; struct solos_skb_cb { struct atm_vcc *vcc; uint32_t dma_addr; }; #define SKB_CB(skb) ((struct solos_skb_cb *)skb->cb) #define PKT_DATA 0 #define PKT_COMMAND 1 #define PKT_POPEN 3 #define PKT_PCLOSE 4 #define PKT_STATUS 5 struct solos_card { void __iomem *config_regs; void __iomem *buffers; int nr_ports; int tx_mask; struct pci_dev *dev; struct atm_dev *atmdev[4]; struct tasklet_struct tlet; spinlock_t tx_lock; spinlock_t tx_queue_lock; spinlock_t cli_queue_lock; spinlock_t param_queue_lock; struct list_head param_queue; struct sk_buff_head tx_queue[4]; struct sk_buff_head cli_queue[4]; struct sk_buff *tx_skb[4]; struct sk_buff *rx_skb[4]; unsigned char *dma_bounce; wait_queue_head_t param_wq; wait_queue_head_t fw_wq; int using_dma; int dma_alignment; int fpga_version; int buffer_size; int atmel_flash; }; struct solos_param { struct list_head list; pid_t pid; int port; struct sk_buff *response; }; #define SOLOS_CHAN(atmdev) ((int)(unsigned long)(atmdev)->phy_data) MODULE_AUTHOR("Traverse Technologies <support@traverse.com.au>"); MODULE_DESCRIPTION("Solos PCI driver"); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("solos-FPGA.bin"); MODULE_FIRMWARE("solos-Firmware.bin"); MODULE_FIRMWARE("solos-db-FPGA.bin"); MODULE_PARM_DESC(reset, "Reset Solos chips on startup"); MODULE_PARM_DESC(atmdebug, "Print ATM data"); MODULE_PARM_DESC(firmware_upgrade, "Initiate Solos firmware upgrade"); MODULE_PARM_DESC(fpga_upgrade, "Initiate FPGA upgrade"); MODULE_PARM_DESC(db_firmware_upgrade, "Initiate daughter board Solos firmware upgrade"); MODULE_PARM_DESC(db_fpga_upgrade, "Initiate daughter board FPGA upgrade"); module_param(reset, int, 0444); module_param(atmdebug, int, 0644); module_param(firmware_upgrade, int, 0444); module_param(fpga_upgrade, int, 0444); module_param(db_firmware_upgrade, int, 0444); module_param(db_fpga_upgrade, int, 0444); static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb, struct atm_vcc *vcc); static uint32_t fpga_tx(struct solos_card *); static irqreturn_t solos_irq(int irq, void *dev_id); static struct atm_vcc* find_vcc(struct atm_dev *dev, short vpi, int vci); static int atm_init(struct solos_card *, struct device *); static void atm_remove(struct solos_card *); static int send_command(struct solos_card *card, int dev, const char *buf, size_t size); static void solos_bh(unsigned long); static int print_buffer(struct sk_buff *buf); static inline void solos_pop(struct atm_vcc *vcc, struct sk_buff *skb) { if (vcc->pop) vcc->pop(vcc, skb); else dev_kfree_skb_any(skb); } static ssize_t solos_param_show(struct device *dev, struct device_attribute *attr, char *buf) { struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev); struct solos_card *card = atmdev->dev_data; struct solos_param prm; struct sk_buff *skb; struct pkt_hdr *header; int buflen; buflen = strlen(attr->attr.name) + 10; skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL); if (!skb) { dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_show()\n"); return -ENOMEM; } header = skb_put(skb, sizeof(*header)); buflen = snprintf((void *)&header[1], buflen - 1, "L%05d\n%s\n", current->pid, attr->attr.name); skb_put(skb, buflen); header->size = cpu_to_le16(buflen); header->vpi = cpu_to_le16(0); header->vci = cpu_to_le16(0); header->type = cpu_to_le16(PKT_COMMAND); prm.pid = current->pid; prm.response = NULL; prm.port = SOLOS_CHAN(atmdev); spin_lock_irq(&card->param_queue_lock); list_add(&prm.list, &card->param_queue); spin_unlock_irq(&card->param_queue_lock); fpga_queue(card, prm.port, skb, NULL); wait_event_timeout(card->param_wq, prm.response, 5 * HZ); spin_lock_irq(&card->param_queue_lock); list_del(&prm.list); spin_unlock_irq(&card->param_queue_lock); if (!prm.response) return -EIO; buflen = prm.response->len; memcpy(buf, prm.response->data, buflen); kfree_skb(prm.response); return buflen; } static ssize_t solos_param_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev); struct solos_card *card = atmdev->dev_data; struct solos_param prm; struct sk_buff *skb; struct pkt_hdr *header; int buflen; ssize_t ret; buflen = strlen(attr->attr.name) + 11 + count; skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL); if (!skb) { dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_store()\n"); return -ENOMEM; } header = skb_put(skb, sizeof(*header)); buflen = snprintf((void *)&header[1], buflen - 1, "L%05d\n%s\n%s\n", current->pid, attr->attr.name, buf); skb_put(skb, buflen); header->size = cpu_to_le16(buflen); header->vpi = cpu_to_le16(0); header->vci = cpu_to_le16(0); header->type = cpu_to_le16(PKT_COMMAND); prm.pid = current->pid; prm.response = NULL; prm.port = SOLOS_CHAN(atmdev); spin_lock_irq(&card->param_queue_lock); list_add(&prm.list, &card->param_queue); spin_unlock_irq(&card->param_queue_lock); fpga_queue(card, prm.port, skb, NULL); wait_event_timeout(card->param_wq, prm.response, 5 * HZ); spin_lock_irq(&card->param_queue_lock); list_del(&prm.list); spin_unlock_irq(&card->param_queue_lock); skb = prm.response; if (!skb) return -EIO; buflen = skb->len; /* Sometimes it has a newline, sometimes it doesn't. */ if (skb->data[buflen - 1] == '\n') buflen--; if (buflen == 2 && !strncmp(skb->data, "OK", 2)) ret = count; else if (buflen == 5 && !strncmp(skb->data, "ERROR", 5)) ret = -EIO; else { /* We know we have enough space allocated for this; we allocated it ourselves */ skb->data[buflen] = 0; dev_warn(&card->dev->dev, "Unexpected parameter response: '%s'\n", skb->data); ret = -EIO; } kfree_skb(skb); return ret; } static char *next_string(struct sk_buff *skb) { int i = 0; char *this = skb->data; for (i = 0; i < skb->len; i++) { if (this[i] == '\n') { this[i] = 0; skb_pull(skb, i + 1); return this; } if (!isprint(this[i])) return NULL; } return NULL; } /* * Status packet has fields separated by \n, starting with a version number * for the information therein. Fields are.... * * packet version * RxBitRate (version >= 1) * TxBitRate (version >= 1) * State (version >= 1) * LocalSNRMargin (version >= 1) * LocalLineAttn (version >= 1) */ static int process_status(struct solos_card *card, int port, struct sk_buff *skb) { char *str, *state_str, *snr, *attn; int ver, rate_up, rate_down, err; if (!card->atmdev[port]) return -ENODEV; str = next_string(skb); if (!str) return -EIO; err = kstrtoint(str, 10, &ver); if (err) { dev_warn(&card->dev->dev, "Unexpected status interrupt version\n"); return err; } if (ver < 1) { dev_warn(&card->dev->dev, "Unexpected status interrupt version %d\n", ver); return -EIO; } str = next_string(skb); if (!str) return -EIO; if (!strcmp(str, "ERROR")) { dev_dbg(&card->dev->dev, "Status packet indicated Solos error on port %d (starting up?)\n", port); return 0; } err = kstrtoint(str, 10, &rate_down); if (err) return err; str = next_string(skb); if (!str) return -EIO; err = kstrtoint(str, 10, &rate_up); if (err) return err; state_str = next_string(skb); if (!state_str) return -EIO; /* Anything but 'Showtime' is down */ if (strcmp(state_str, "Showtime")) { atm_dev_signal_change(card->atmdev[port], ATM_PHY_SIG_LOST); dev_info(&card->dev->dev, "Port %d: %s\n", port, state_str); return 0; } snr = next_string(skb); if (!snr) return -EIO; attn = next_string(skb); if (!attn) return -EIO; dev_info(&card->dev->dev, "Port %d: %s @%d/%d kb/s%s%s%s%s\n", port, state_str, rate_down/1000, rate_up/1000, snr[0]?", SNR ":"", snr, attn[0]?", Attn ":"", attn); card->atmdev[port]->link_rate = rate_down / 424; atm_dev_signal_change(card->atmdev[port], ATM_PHY_SIG_FOUND); return 0; } static int process_command(struct solos_card *card, int port, struct sk_buff *skb) { struct solos_param *prm; unsigned long flags; int cmdpid; int found = 0, err; if (skb->len < 7) return 0; if (skb->data[0] != 'L' || !isdigit(skb->data[1]) || !isdigit(skb->data[2]) || !isdigit(skb->data[3]) || !isdigit(skb->data[4]) || !isdigit(skb->data[5]) || skb->data[6] != '\n') return 0; err = kstrtoint(&skb->data[1], 10, &cmdpid); if (err) return err; spin_lock_irqsave(&card->param_queue_lock, flags); list_for_each_entry(prm, &card->param_queue, list) { if (prm->port == port && prm->pid == cmdpid) { prm->response = skb; skb_pull(skb, 7); wake_up(&card->param_wq); found = 1; break; } } spin_unlock_irqrestore(&card->param_queue_lock, flags); return found; } static ssize_t console_show(struct device *dev, struct device_attribute *attr, char *buf) { struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev); struct solos_card *card = atmdev->dev_data; struct sk_buff *skb; unsigned int len; spin_lock(&card->cli_queue_lock); skb = skb_dequeue(&card->cli_queue[SOLOS_CHAN(atmdev)]); spin_unlock(&card->cli_queue_lock); if(skb == NULL) return sprintf(buf, "No data.\n"); len = skb->len; memcpy(buf, skb->data, len); kfree_skb(skb); return len; } static int send_command(struct solos_card *card, int dev, const char *buf, size_t size) { struct sk_buff *skb; struct pkt_hdr *header; if (size > (BUF_SIZE - sizeof(*header))) { dev_dbg(&card->dev->dev, "Command is too big. Dropping request\n"); return 0; } skb = alloc_skb(size + sizeof(*header), GFP_ATOMIC); if (!skb) { dev_warn(&card->dev->dev, "Failed to allocate sk_buff in send_command()\n"); return 0; } header = skb_put(skb, sizeof(*header)); header->size = cpu_to_le16(size); header->vpi = cpu_to_le16(0); header->vci = cpu_to_le16(0); header->type = cpu_to_le16(PKT_COMMAND); skb_put_data(skb, buf, size); fpga_queue(card, dev, skb, NULL); return 0; } static ssize_t console_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev); struct solos_card *card = atmdev->dev_data; int err; err = send_command(card, SOLOS_CHAN(atmdev), buf, count); return err?:count; } struct geos_gpio_attr { struct device_attribute attr; int offset; }; #define SOLOS_GPIO_ATTR(_name, _mode, _show, _store, _offset) \ struct geos_gpio_attr gpio_attr_##_name = { \ .attr = __ATTR(_name, _mode, _show, _store), \ .offset = _offset } static ssize_t geos_gpio_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct geos_gpio_attr *gattr = container_of(attr, struct geos_gpio_attr, attr); struct solos_card *card = dev_get_drvdata(dev); uint32_t data32; if (count != 1 && (count != 2 || buf[1] != '\n')) return -EINVAL; spin_lock_irq(&card->param_queue_lock); data32 = ioread32(card->config_regs + GPIO_STATUS); if (buf[0] == '1') { data32 |= 1 << gattr->offset; iowrite32(data32, card->config_regs + GPIO_STATUS); } else if (buf[0] == '0') { data32 &= ~(1 << gattr->offset); iowrite32(data32, card->config_regs + GPIO_STATUS); } else { count = -EINVAL; } spin_unlock_irq(&card->param_queue_lock); return count; } static ssize_t geos_gpio_show(struct device *dev, struct device_attribute *attr, char *buf) { struct geos_gpio_attr *gattr = container_of(attr, struct geos_gpio_attr, attr); struct solos_card *card = dev_get_drvdata(dev); uint32_t data32; data32 = ioread32(card->config_regs + GPIO_STATUS); data32 = (data32 >> gattr->offset) & 1; return sprintf(buf, "%d\n", data32); } static ssize_t hardware_show(struct device *dev, struct device_attribute *attr, char *buf) { struct geos_gpio_attr *gattr = container_of(attr, struct geos_gpio_attr, attr); struct solos_card *card = dev_get_drvdata(dev); uint32_t data32; data32 = ioread32(card->config_regs + GPIO_STATUS); switch (gattr->offset) { case 0: /* HardwareVersion */ data32 = data32 & 0x1F; break; case 1: /* HardwareVariant */ data32 = (data32 >> 5) & 0x0F; break; } return sprintf(buf, "%d\n", data32); } static DEVICE_ATTR_RW(console); #define SOLOS_ATTR_RO(x) static DEVICE_ATTR(x, 0444, solos_param_show, NULL); #define SOLOS_ATTR_RW(x) static DEVICE_ATTR(x, 0644, solos_param_show, solos_param_store); #include "solos-attrlist.c" static SOLOS_GPIO_ATTR(GPIO1, 0644, geos_gpio_show, geos_gpio_store, 9); static SOLOS_GPIO_ATTR(GPIO2, 0644, geos_gpio_show, geos_gpio_store, 10); static SOLOS_GPIO_ATTR(GPIO3, 0644, geos_gpio_show, geos_gpio_store, 11); static SOLOS_GPIO_ATTR(GPIO4, 0644, geos_gpio_show, geos_gpio_store, 12); static SOLOS_GPIO_ATTR(GPIO5, 0644, geos_gpio_show, geos_gpio_store, 13); static SOLOS_GPIO_ATTR(PushButton, 0444, geos_gpio_show, NULL, 14); static SOLOS_GPIO_ATTR(HardwareVersion, 0444, hardware_show, NULL, 0); static SOLOS_GPIO_ATTR(HardwareVariant, 0444, hardware_show, NULL, 1); #undef SOLOS_ATTR_RO #undef SOLOS_ATTR_RW #define SOLOS_ATTR_RO(x) &dev_attr_##x.attr, #define SOLOS_ATTR_RW(x) &dev_attr_##x.attr, static struct attribute *solos_attrs[] = { #include "solos-attrlist.c" NULL }; static const struct attribute_group solos_attr_group = { .attrs = solos_attrs, .name = "parameters", }; static struct attribute *gpio_attrs[] = { &gpio_attr_GPIO1.attr.attr, &gpio_attr_GPIO2.attr.attr, &gpio_attr_GPIO3.attr.attr, &gpio_attr_GPIO4.attr.attr, &gpio_attr_GPIO5.attr.attr, &gpio_attr_PushButton.attr.attr, &gpio_attr_HardwareVersion.attr.attr, &gpio_attr_HardwareVariant.attr.attr, NULL }; static const struct attribute_group gpio_attr_group = { .attrs = gpio_attrs, .name = "gpio", }; static int flash_upgrade(struct solos_card *card, int chip) { const struct firmware *fw; const char *fw_name; int blocksize = 0; int numblocks = 0; int offset; switch (chip) { case 0: fw_name = "solos-FPGA.bin"; if (card->atmel_flash) blocksize = ATMEL_FPGA_BLOCK; else blocksize = SPI_FLASH_BLOCK; break; case 1: fw_name = "solos-Firmware.bin"; if (card->atmel_flash) blocksize = ATMEL_SOLOS_BLOCK; else blocksize = SPI_FLASH_BLOCK; break; case 2: if (card->fpga_version > LEGACY_BUFFERS){ fw_name = "solos-db-FPGA.bin"; if (card->atmel_flash) blocksize = ATMEL_FPGA_BLOCK; else blocksize = SPI_FLASH_BLOCK; } else { dev_info(&card->dev->dev, "FPGA version doesn't support" " daughter board upgrades\n"); return -EPERM; } break; case 3: if (card->fpga_version > LEGACY_BUFFERS){ fw_name = "solos-Firmware.bin"; if (card->atmel_flash) blocksize = ATMEL_SOLOS_BLOCK; else blocksize = SPI_FLASH_BLOCK; } else { dev_info(&card->dev->dev, "FPGA version doesn't support" " daughter board upgrades\n"); return -EPERM; } break; default: return -ENODEV; } if (request_firmware(&fw, fw_name, &card->dev->dev)) return -ENOENT; dev_info(&card->dev->dev, "Flash upgrade starting\n"); /* New FPGAs require driver version before permitting flash upgrades */ iowrite32(DRIVER_VERSION, card->config_regs + DRIVER_VER); numblocks = fw->size / blocksize; dev_info(&card->dev->dev, "Firmware size: %zd\n", fw->size); dev_info(&card->dev->dev, "Number of blocks: %d\n", numblocks); dev_info(&card->dev->dev, "Changing FPGA to Update mode\n"); iowrite32(1, card->config_regs + FPGA_MODE); (void) ioread32(card->config_regs + FPGA_MODE); /* Set mode to Chip Erase */ if(chip == 0 || chip == 2) dev_info(&card->dev->dev, "Set FPGA Flash mode to FPGA Chip Erase\n"); if(chip == 1 || chip == 3) dev_info(&card->dev->dev, "Set FPGA Flash mode to Solos Chip Erase\n"); iowrite32((chip * 2), card->config_regs + FLASH_MODE); iowrite32(1, card->config_regs + WRITE_FLASH); wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY)); for (offset = 0; offset < fw->size; offset += blocksize) { int i; /* Clear write flag */ iowrite32(0, card->config_regs + WRITE_FLASH); /* Set mode to Block Write */ /* dev_info(&card->dev->dev, "Set FPGA Flash mode to Block Write\n"); */ iowrite32(((chip * 2) + 1), card->config_regs + FLASH_MODE); /* Copy block to buffer, swapping each 16 bits for Atmel flash */ for(i = 0; i < blocksize; i += 4) { uint32_t word; if (card->atmel_flash) word = swahb32p((uint32_t *)(fw->data + offset + i)); else word = *(uint32_t *)(fw->data + offset + i); if(card->fpga_version > LEGACY_BUFFERS) iowrite32(word, FLASH_BUF + i); else iowrite32(word, RX_BUF(card, 3) + i); } /* Specify block number and then trigger flash write */ iowrite32(offset / blocksize, card->config_regs + FLASH_BLOCK); iowrite32(1, card->config_regs + WRITE_FLASH); wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY)); } release_firmware(fw); iowrite32(0, card->config_regs + WRITE_FLASH); iowrite32(0, card->config_regs + FPGA_MODE); iowrite32(0, card->config_regs + FLASH_MODE); dev_info(&card->dev->dev, "Returning FPGA to Data mode\n"); return 0; } static irqreturn_t solos_irq(int irq, void *dev_id) { struct solos_card *card = dev_id; int handled = 1; iowrite32(0, card->config_regs + IRQ_CLEAR); /* If we're up and running, just kick the tasklet to process TX/RX */ if (card->atmdev[0]) tasklet_schedule(&card->tlet); else wake_up(&card->fw_wq); return IRQ_RETVAL(handled); } static void solos_bh(unsigned long card_arg) { struct solos_card *card = (void *)card_arg; uint32_t card_flags; uint32_t rx_done = 0; int port; /* * Since fpga_tx() is going to need to read the flags under its lock, * it can return them to us so that we don't have to hit PCI MMIO * again for the same information */ card_flags = fpga_tx(card); for (port = 0; port < card->nr_ports; port++) { if (card_flags & (0x10 << port)) { struct pkt_hdr _hdr, *header; struct sk_buff *skb; struct atm_vcc *vcc; int size; if (card->using_dma) { skb = card->rx_skb[port]; card->rx_skb[port] = NULL; dma_unmap_single(&card->dev->dev, SKB_CB(skb)->dma_addr, RX_DMA_SIZE, DMA_FROM_DEVICE); header = (void *)skb->data; size = le16_to_cpu(header->size); skb_put(skb, size + sizeof(*header)); skb_pull(skb, sizeof(*header)); } else { header = &_hdr; rx_done |= 0x10 << port; memcpy_fromio(header, RX_BUF(card, port), sizeof(*header)); size = le16_to_cpu(header->size); if (size > (card->buffer_size - sizeof(*header))){ dev_warn(&card->dev->dev, "Invalid buffer size\n"); continue; } /* Use netdev_alloc_skb() because it adds NET_SKB_PAD of * headroom, and ensures we can route packets back out an * Ethernet interface (for example) without having to * reallocate. Adding NET_IP_ALIGN also ensures that both * PPPoATM and PPPoEoBR2684 packets end up aligned. */ skb = netdev_alloc_skb_ip_align(NULL, size + 1); if (!skb) { if (net_ratelimit()) dev_warn(&card->dev->dev, "Failed to allocate sk_buff for RX\n"); continue; } memcpy_fromio(skb_put(skb, size), RX_BUF(card, port) + sizeof(*header), size); } if (atmdebug) { dev_info(&card->dev->dev, "Received: port %d\n", port); dev_info(&card->dev->dev, "size: %d VPI: %d VCI: %d\n", size, le16_to_cpu(header->vpi), le16_to_cpu(header->vci)); print_buffer(skb); } switch (le16_to_cpu(header->type)) { case PKT_DATA: vcc = find_vcc(card->atmdev[port], le16_to_cpu(header->vpi), le16_to_cpu(header->vci)); if (!vcc) { if (net_ratelimit()) dev_warn(&card->dev->dev, "Received packet for unknown VPI.VCI %d.%d on port %d\n", le16_to_cpu(header->vpi), le16_to_cpu(header->vci), port); dev_kfree_skb_any(skb); break; } atm_charge(vcc, skb->truesize); vcc->push(vcc, skb); atomic_inc(&vcc->stats->rx); break; case PKT_STATUS: if (process_status(card, port, skb) && net_ratelimit()) { dev_warn(&card->dev->dev, "Bad status packet of %d bytes on port %d:\n", skb->len, port); print_buffer(skb); } dev_kfree_skb_any(skb); break; case PKT_COMMAND: default: /* FIXME: Not really, surely? */ if (process_command(card, port, skb)) break; spin_lock(&card->cli_queue_lock); if (skb_queue_len(&card->cli_queue[port]) > 10) { if (net_ratelimit()) dev_warn(&card->dev->dev, "Dropping console response on port %d\n", port); dev_kfree_skb_any(skb); } else skb_queue_tail(&card->cli_queue[port], skb); spin_unlock(&card->cli_queue_lock); break; } } /* Allocate RX skbs for any ports which need them */ if (card->using_dma && card->atmdev[port] && !card->rx_skb[port]) { /* Unlike the MMIO case (qv) we can't add NET_IP_ALIGN * here; the FPGA can only DMA to addresses which are * aligned to 4 bytes. */ struct sk_buff *skb = dev_alloc_skb(RX_DMA_SIZE); if (skb) { SKB_CB(skb)->dma_addr = dma_map_single(&card->dev->dev, skb->data, RX_DMA_SIZE, DMA_FROM_DEVICE); iowrite32(SKB_CB(skb)->dma_addr, card->config_regs + RX_DMA_ADDR(port)); card->rx_skb[port] = skb; } else { if (net_ratelimit()) dev_warn(&card->dev->dev, "Failed to allocate RX skb"); /* We'll have to try again later */ tasklet_schedule(&card->tlet); } } } if (rx_done) iowrite32(rx_done, card->config_regs + FLAGS_ADDR); return; } static struct atm_vcc *find_vcc(struct atm_dev *dev, short vpi, int vci) { struct hlist_head *head; struct atm_vcc *vcc = NULL; struct sock *s; read_lock(&vcc_sklist_lock); head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)]; sk_for_each(s, head) { vcc = atm_sk(s); if (vcc->dev == dev && vcc->vci == vci && vcc->vpi == vpi && vcc->qos.rxtp.traffic_class != ATM_NONE && test_bit(ATM_VF_READY, &vcc->flags)) goto out; } vcc = NULL; out: read_unlock(&vcc_sklist_lock); return vcc; } static int popen(struct atm_vcc *vcc) { struct solos_card *card = vcc->dev->dev_data; struct sk_buff *skb; struct pkt_hdr *header; if (vcc->qos.aal != ATM_AAL5) { dev_warn(&card->dev->dev, "Unsupported ATM type %d\n", vcc->qos.aal); return -EINVAL; } skb = alloc_skb(sizeof(*header), GFP_KERNEL); if (!skb) { if (net_ratelimit()) dev_warn(&card->dev->dev, "Failed to allocate sk_buff in popen()\n"); return -ENOMEM; } header = skb_put(skb, sizeof(*header)); header->size = cpu_to_le16(0); header->vpi = cpu_to_le16(vcc->vpi); header->vci = cpu_to_le16(vcc->vci); header->type = cpu_to_le16(PKT_POPEN); fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, NULL); set_bit(ATM_VF_ADDR, &vcc->flags); set_bit(ATM_VF_READY, &vcc->flags); return 0; } static void pclose(struct atm_vcc *vcc) { struct solos_card *card = vcc->dev->dev_data; unsigned char port = SOLOS_CHAN(vcc->dev); struct sk_buff *skb, *tmpskb; struct pkt_hdr *header; /* Remove any yet-to-be-transmitted packets from the pending queue */ spin_lock(&card->tx_queue_lock); skb_queue_walk_safe(&card->tx_queue[port], skb, tmpskb) { if (SKB_CB(skb)->vcc == vcc) { skb_unlink(skb, &card->tx_queue[port]); solos_pop(vcc, skb); } } spin_unlock(&card->tx_queue_lock); skb = alloc_skb(sizeof(*header), GFP_KERNEL); if (!skb) { dev_warn(&card->dev->dev, "Failed to allocate sk_buff in pclose()\n"); return; } header = skb_put(skb, sizeof(*header)); header->size = cpu_to_le16(0); header->vpi = cpu_to_le16(vcc->vpi); header->vci = cpu_to_le16(vcc->vci); header->type = cpu_to_le16(PKT_PCLOSE); skb_get(skb); fpga_queue(card, port, skb, NULL); if (!wait_event_timeout(card->param_wq, !skb_shared(skb), 5 * HZ)) dev_warn(&card->dev->dev, "Timeout waiting for VCC close on port %d\n", port); dev_kfree_skb(skb); /* Hold up vcc_destroy_socket() (our caller) until solos_bh() in the tasklet has finished processing any incoming packets (and, more to the point, using the vcc pointer). */ tasklet_unlock_wait(&card->tlet); clear_bit(ATM_VF_ADDR, &vcc->flags); return; } static int print_buffer(struct sk_buff *buf) { int len,i; char msg[500]; char item[10]; len = buf->len; for (i = 0; i < len; i++){ if(i % 8 == 0) sprintf(msg, "%02X: ", i); sprintf(item,"%02X ",*(buf->data + i)); strcat(msg, item); if(i % 8 == 7) { sprintf(item, "\n"); strcat(msg, item); printk(KERN_DEBUG "%s", msg); } } if (i % 8 != 0) { sprintf(item, "\n"); strcat(msg, item); printk(KERN_DEBUG "%s", msg); } printk(KERN_DEBUG "\n"); return 0; } static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb, struct atm_vcc *vcc) { int old_len; unsigned long flags; SKB_CB(skb)->vcc = vcc; spin_lock_irqsave(&card->tx_queue_lock, flags); old_len = skb_queue_len(&card->tx_queue[port]); skb_queue_tail(&card->tx_queue[port], skb); if (!old_len) card->tx_mask |= (1 << port); spin_unlock_irqrestore(&card->tx_queue_lock, flags); /* Theoretically we could just schedule the tasklet here, but that introduces latency we don't want -- it's noticeable */ if (!old_len) fpga_tx(card); } static uint32_t fpga_tx(struct solos_card *card) { uint32_t tx_pending, card_flags; uint32_t tx_started = 0; struct sk_buff *skb; struct atm_vcc *vcc; unsigned char port; unsigned long flags; spin_lock_irqsave(&card->tx_lock, flags); card_flags = ioread32(card->config_regs + FLAGS_ADDR); /* * The queue lock is required for _writing_ to tx_mask, but we're * OK to read it here without locking. The only potential update * that we could race with is in fpga_queue() where it sets a bit * for a new port... but it's going to call this function again if * it's doing that, anyway. */ tx_pending = card->tx_mask & ~card_flags; for (port = 0; tx_pending; tx_pending >>= 1, port++) { if (tx_pending & 1) { struct sk_buff *oldskb = card->tx_skb[port]; if (oldskb) { dma_unmap_single(&card->dev->dev, SKB_CB(oldskb)->dma_addr, oldskb->len, DMA_TO_DEVICE); card->tx_skb[port] = NULL; } spin_lock(&card->tx_queue_lock); skb = skb_dequeue(&card->tx_queue[port]); if (!skb) card->tx_mask &= ~(1 << port); spin_unlock(&card->tx_queue_lock); if (skb && !card->using_dma) { memcpy_toio(TX_BUF(card, port), skb->data, skb->len); tx_started |= 1 << port; oldskb = skb; /* We're done with this skb already */ } else if (skb && card->using_dma) { unsigned char *data = skb->data; if ((unsigned long)data & card->dma_alignment) { data = card->dma_bounce + (BUF_SIZE * port); memcpy(data, skb->data, skb->len); } SKB_CB(skb)->dma_addr = dma_map_single(&card->dev->dev, data, skb->len, DMA_TO_DEVICE); card->tx_skb[port] = skb; iowrite32(SKB_CB(skb)->dma_addr, card->config_regs + TX_DMA_ADDR(port)); } if (!oldskb) continue; /* Clean up and free oldskb now it's gone */ if (atmdebug) { struct pkt_hdr *header = (void *)oldskb->data; int size = le16_to_cpu(header->size); skb_pull(oldskb, sizeof(*header)); dev_info(&card->dev->dev, "Transmitted: port %d\n", port); dev_info(&card->dev->dev, "size: %d VPI: %d VCI: %d\n", size, le16_to_cpu(header->vpi), le16_to_cpu(header->vci)); print_buffer(oldskb); } vcc = SKB_CB(oldskb)->vcc; if (vcc) { atomic_inc(&vcc->stats->tx); solos_pop(vcc, oldskb); } else { dev_kfree_skb_irq(oldskb); wake_up(&card->param_wq); } } } /* For non-DMA TX, write the 'TX start' bit for all four ports simultaneously */ if (tx_started) iowrite32(tx_started, card->config_regs + FLAGS_ADDR); spin_unlock_irqrestore(&card->tx_lock, flags); return card_flags; } static int psend(struct atm_vcc *vcc, struct sk_buff *skb) { struct solos_card *card = vcc->dev->dev_data; struct pkt_hdr *header; int pktlen; pktlen = skb->len; if (pktlen > (BUF_SIZE - sizeof(*header))) { dev_warn(&card->dev->dev, "Length of PDU is too large. Dropping PDU.\n"); solos_pop(vcc, skb); return 0; } if (!skb_clone_writable(skb, sizeof(*header))) { int expand_by = 0; int ret; if (skb_headroom(skb) < sizeof(*header)) expand_by = sizeof(*header) - skb_headroom(skb); ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC); if (ret) { dev_warn(&card->dev->dev, "pskb_expand_head failed.\n"); solos_pop(vcc, skb); return ret; } } header = skb_push(skb, sizeof(*header)); /* This does _not_ include the size of the header */ header->size = cpu_to_le16(pktlen); header->vpi = cpu_to_le16(vcc->vpi); header->vci = cpu_to_le16(vcc->vci); header->type = cpu_to_le16(PKT_DATA); fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, vcc); return 0; } static const struct atmdev_ops fpga_ops = { .open = popen, .close = pclose, .ioctl = NULL, .send = psend, .send_oam = NULL, .phy_put = NULL, .phy_get = NULL, .change_qos = NULL, .proc_read = NULL, .owner = THIS_MODULE }; static int fpga_probe(struct pci_dev *dev, const struct pci_device_id *id) { int err; uint16_t fpga_ver; uint8_t major_ver, minor_ver; uint32_t data32; struct solos_card *card; card = kzalloc(sizeof(*card), GFP_KERNEL); if (!card) return -ENOMEM; card->dev = dev; init_waitqueue_head(&card->fw_wq); init_waitqueue_head(&card->param_wq); err = pci_enable_device(dev); if (err) { dev_warn(&dev->dev, "Failed to enable PCI device\n"); goto out; } err = dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)); if (err) { dev_warn(&dev->dev, "Failed to set 32-bit DMA mask\n"); goto out; } err = pci_request_regions(dev, "solos"); if (err) { dev_warn(&dev->dev, "Failed to request regions\n"); goto out; } card->config_regs = pci_iomap(dev, 0, CONFIG_RAM_SIZE); if (!card->config_regs) { dev_warn(&dev->dev, "Failed to ioremap config registers\n"); err = -ENOMEM; goto out_release_regions; } card->buffers = pci_iomap(dev, 1, DATA_RAM_SIZE); if (!card->buffers) { dev_warn(&dev->dev, "Failed to ioremap data buffers\n"); err = -ENOMEM; goto out_unmap_config; } if (reset) { iowrite32(1, card->config_regs + FPGA_MODE); ioread32(card->config_regs + FPGA_MODE); iowrite32(0, card->config_regs + FPGA_MODE); ioread32(card->config_regs + FPGA_MODE); } data32 = ioread32(card->config_regs + FPGA_VER); fpga_ver = (data32 & 0x0000FFFF); major_ver = ((data32 & 0xFF000000) >> 24); minor_ver = ((data32 & 0x00FF0000) >> 16); card->fpga_version = FPGA_VERSION(major_ver,minor_ver); if (card->fpga_version > LEGACY_BUFFERS) card->buffer_size = BUF_SIZE; else card->buffer_size = OLD_BUF_SIZE; dev_info(&dev->dev, "Solos FPGA Version %d.%02d svn-%d\n", major_ver, minor_ver, fpga_ver); if (fpga_ver < 37 && (fpga_upgrade || firmware_upgrade || db_fpga_upgrade || db_firmware_upgrade)) { dev_warn(&dev->dev, "FPGA too old; cannot upgrade flash. Use JTAG.\n"); fpga_upgrade = firmware_upgrade = 0; db_fpga_upgrade = db_firmware_upgrade = 0; } /* Stopped using Atmel flash after 0.03-38 */ if (fpga_ver < 39) card->atmel_flash = 1; else card->atmel_flash = 0; data32 = ioread32(card->config_regs + PORTS); card->nr_ports = (data32 & 0x000000FF); if (card->fpga_version >= DMA_SUPPORTED) { pci_set_master(dev); card->using_dma = 1; if (1) { /* All known FPGA versions so far */ card->dma_alignment = 3; card->dma_bounce = kmalloc_array(card->nr_ports, BUF_SIZE, GFP_KERNEL); if (!card->dma_bounce) { dev_warn(&card->dev->dev, "Failed to allocate DMA bounce buffers\n"); err = -ENOMEM; /* Fallback to MMIO doesn't work */ goto out_unmap_both; } } } else { card->using_dma = 0; /* Set RX empty flag for all ports */ iowrite32(0xF0, card->config_regs + FLAGS_ADDR); } pci_set_drvdata(dev, card); tasklet_init(&card->tlet, solos_bh, (unsigned long)card); spin_lock_init(&card->tx_lock); spin_lock_init(&card->tx_queue_lock); spin_lock_init(&card->cli_queue_lock); spin_lock_init(&card->param_queue_lock); INIT_LIST_HEAD(&card->param_queue); err = request_irq(dev->irq, solos_irq, IRQF_SHARED, "solos-pci", card); if (err) { dev_dbg(&card->dev->dev, "Failed to request interrupt IRQ: %d\n", dev->irq); goto out_unmap_both; } iowrite32(1, card->config_regs + IRQ_EN_ADDR); if (fpga_upgrade) flash_upgrade(card, 0); if (firmware_upgrade) flash_upgrade(card, 1); if (db_fpga_upgrade) flash_upgrade(card, 2); if (db_firmware_upgrade) flash_upgrade(card, 3); err = atm_init(card, &dev->dev); if (err) goto out_free_irq; if (card->fpga_version >= DMA_SUPPORTED && sysfs_create_group(&card->dev->dev.kobj, &gpio_attr_group)) dev_err(&card->dev->dev, "Could not register parameter group for GPIOs\n"); return 0; out_free_irq: iowrite32(0, card->config_regs + IRQ_EN_ADDR); free_irq(dev->irq, card); tasklet_kill(&card->tlet); out_unmap_both: kfree(card->dma_bounce); pci_iounmap(dev, card->buffers); out_unmap_config: pci_iounmap(dev, card->config_regs); out_release_regions: pci_release_regions(dev); out: kfree(card); return err; } static int atm_init(struct solos_card *card, struct device *parent) { int i; for (i = 0; i < card->nr_ports; i++) { struct sk_buff *skb; struct pkt_hdr *header; skb_queue_head_init(&card->tx_queue[i]); skb_queue_head_init(&card->cli_queue[i]); card->atmdev[i] = atm_dev_register("solos-pci", parent, &fpga_ops, -1, NULL); if (!card->atmdev[i]) { dev_err(&card->dev->dev, "Could not register ATM device %d\n", i); atm_remove(card); return -ENODEV; } if (device_create_file(&card->atmdev[i]->class_dev, &dev_attr_console)) dev_err(&card->dev->dev, "Could not register console for ATM device %d\n", i); if (sysfs_create_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group)) dev_err(&card->dev->dev, "Could not register parameter group for ATM device %d\n", i); dev_info(&card->dev->dev, "Registered ATM device %d\n", card->atmdev[i]->number); card->atmdev[i]->ci_range.vpi_bits = 8; card->atmdev[i]->ci_range.vci_bits = 16; card->atmdev[i]->dev_data = card; card->atmdev[i]->phy_data = (void *)(unsigned long)i; atm_dev_signal_change(card->atmdev[i], ATM_PHY_SIG_FOUND); skb = alloc_skb(sizeof(*header), GFP_KERNEL); if (!skb) { dev_warn(&card->dev->dev, "Failed to allocate sk_buff in atm_init()\n"); continue; } header = skb_put(skb, sizeof(*header)); header->size = cpu_to_le16(0); header->vpi = cpu_to_le16(0); header->vci = cpu_to_le16(0); header->type = cpu_to_le16(PKT_STATUS); fpga_queue(card, i, skb, NULL); } return 0; } static void atm_remove(struct solos_card *card) { int i; for (i = 0; i < card->nr_ports; i++) { if (card->atmdev[i]) { struct sk_buff *skb; dev_info(&card->dev->dev, "Unregistering ATM device %d\n", card->atmdev[i]->number); sysfs_remove_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group); atm_dev_deregister(card->atmdev[i]); skb = card->rx_skb[i]; if (skb) { dma_unmap_single(&card->dev->dev, SKB_CB(skb)->dma_addr, RX_DMA_SIZE, DMA_FROM_DEVICE); dev_kfree_skb(skb); } skb = card->tx_skb[i]; if (skb) { dma_unmap_single(&card->dev->dev, SKB_CB(skb)->dma_addr, skb->len, DMA_TO_DEVICE); dev_kfree_skb(skb); } while ((skb = skb_dequeue(&card->tx_queue[i]))) dev_kfree_skb(skb); } } } static void fpga_remove(struct pci_dev *dev) { struct solos_card *card = pci_get_drvdata(dev); /* Disable IRQs */ iowrite32(0, card->config_regs + IRQ_EN_ADDR); /* Reset FPGA */ iowrite32(1, card->config_regs + FPGA_MODE); (void)ioread32(card->config_regs + FPGA_MODE); if (card->fpga_version >= DMA_SUPPORTED) sysfs_remove_group(&card->dev->dev.kobj, &gpio_attr_group); atm_remove(card); free_irq(dev->irq, card); tasklet_kill(&card->tlet); kfree(card->dma_bounce); /* Release device from reset */ iowrite32(0, card->config_regs + FPGA_MODE); (void)ioread32(card->config_regs + FPGA_MODE); pci_iounmap(dev, card->buffers); pci_iounmap(dev, card->config_regs); pci_release_regions(dev); pci_disable_device(dev); kfree(card); } static const struct pci_device_id fpga_pci_tbl[] = { { 0x10ee, 0x0300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { 0, } }; MODULE_DEVICE_TABLE(pci,fpga_pci_tbl); static struct pci_driver fpga_driver = { .name = "solos", .id_table = fpga_pci_tbl, .probe = fpga_probe, .remove = fpga_remove, }; static int __init solos_pci_init(void) { BUILD_BUG_ON(sizeof(struct solos_skb_cb) > sizeof(((struct sk_buff *)0)->cb)); printk(KERN_INFO "Solos PCI Driver Version %s\n", VERSION); return pci_register_driver(&fpga_driver); } static void __exit solos_pci_exit(void) { pci_unregister_driver(&fpga_driver); printk(KERN_INFO "Solos PCI Driver %s Unloaded\n", VERSION); } module_init(solos_pci_init); module_exit(solos_pci_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1