Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Hildenbrand | 1724 | 42.17% | 36 | 30.00% |
Dave Hansen | 512 | 12.52% | 3 | 2.50% |
Nathan Fontenot | 342 | 8.37% | 7 | 5.83% |
Oscar Salvador | 252 | 6.16% | 2 | 1.67% |
Andi Kleen | 187 | 4.57% | 4 | 3.33% |
Rafael J. Wysocki | 143 | 3.50% | 2 | 1.67% |
Michal Hocko | 108 | 2.64% | 3 | 2.50% |
Zhang Zhen | 93 | 2.27% | 2 | 1.67% |
Scott Cheloha | 92 | 2.25% | 1 | 0.83% |
Seth Jennings | 86 | 2.10% | 5 | 4.17% |
Joe Perches | 80 | 1.96% | 2 | 1.67% |
Vitaly Kuznetsov | 72 | 1.76% | 1 | 0.83% |
Kay Sievers | 38 | 0.93% | 2 | 1.67% |
Reza Arbab | 31 | 0.76% | 2 | 1.67% |
Anton Blanchard | 27 | 0.66% | 2 | 1.67% |
Yasuaki Ishimatsu | 26 | 0.64% | 2 | 1.67% |
Badari Pulavarty | 26 | 0.64% | 1 | 0.83% |
Mel Gorman | 24 | 0.59% | 1 | 0.83% |
Linus Torvalds | 20 | 0.49% | 4 | 3.33% |
Heiko Carstens | 16 | 0.39% | 1 | 0.83% |
Gu Zheng | 15 | 0.37% | 1 | 0.83% |
Andrew Morton | 15 | 0.37% | 1 | 0.83% |
Arvind Yadav | 12 | 0.29% | 1 | 0.83% |
luofei | 11 | 0.27% | 1 | 0.83% |
Hannes Hering | 10 | 0.24% | 1 | 0.83% |
Mikhail Zaslonko | 10 | 0.24% | 1 | 0.83% |
Yasunori Goto | 10 | 0.24% | 1 | 0.83% |
Yinghai Lu | 9 | 0.22% | 1 | 0.83% |
Fengguang Wu | 8 | 0.20% | 1 | 0.83% |
Lai Jiangshan | 8 | 0.20% | 1 | 0.83% |
David Rientjes | 7 | 0.17% | 1 | 0.83% |
Nikanth Karthikesan | 7 | 0.17% | 1 | 0.83% |
Alan Stern | 7 | 0.17% | 1 | 0.83% |
Wei Yang | 6 | 0.15% | 2 | 1.67% |
Anshuman Khandual | 5 | 0.12% | 1 | 0.83% |
Stephen Rothwell | 4 | 0.10% | 1 | 0.83% |
권오훈 | 4 | 0.10% | 1 | 0.83% |
Tejun Heo | 3 | 0.07% | 1 | 0.83% |
Wen Congyang | 3 | 0.07% | 1 | 0.83% |
Arjan van de Ven | 3 | 0.07% | 1 | 0.83% |
zhong jiang | 3 | 0.07% | 1 | 0.83% |
Toshi Kani | 3 | 0.07% | 1 | 0.83% |
John Allen | 3 | 0.07% | 1 | 0.83% |
Tang Chen | 3 | 0.07% | 1 | 0.83% |
Shaohua Li | 3 | 0.07% | 1 | 0.83% |
Robert Jennings | 2 | 0.05% | 1 | 0.83% |
Jingoo Han | 2 | 0.05% | 1 | 0.83% |
Randy Dunlap | 2 | 0.05% | 1 | 0.83% |
Harvey Harrison | 2 | 0.05% | 1 | 0.83% |
Baoquan He | 2 | 0.05% | 1 | 0.83% |
Rikard Falkeborn | 2 | 0.05% | 1 | 0.83% |
Tony Luck | 1 | 0.02% | 1 | 0.83% |
Michael Holzheu | 1 | 0.02% | 1 | 0.83% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.83% |
Arun Sharma | 1 | 0.02% | 1 | 0.83% |
zhenwei.pi | 1 | 0.02% | 1 | 0.83% |
Total | 4088 | 120 |
// SPDX-License-Identifier: GPL-2.0 /* * Memory subsystem support * * Written by Matt Tolentino <matthew.e.tolentino@intel.com> * Dave Hansen <haveblue@us.ibm.com> * * This file provides the necessary infrastructure to represent * a SPARSEMEM-memory-model system's physical memory in /sysfs. * All arch-independent code that assumes MEMORY_HOTPLUG requires * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. */ #include <linux/module.h> #include <linux/init.h> #include <linux/topology.h> #include <linux/capability.h> #include <linux/device.h> #include <linux/memory.h> #include <linux/memory_hotplug.h> #include <linux/mm.h> #include <linux/stat.h> #include <linux/slab.h> #include <linux/xarray.h> #include <linux/atomic.h> #include <linux/uaccess.h> #define MEMORY_CLASS_NAME "memory" static const char *const online_type_to_str[] = { [MMOP_OFFLINE] = "offline", [MMOP_ONLINE] = "online", [MMOP_ONLINE_KERNEL] = "online_kernel", [MMOP_ONLINE_MOVABLE] = "online_movable", }; int mhp_online_type_from_str(const char *str) { int i; for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) { if (sysfs_streq(str, online_type_to_str[i])) return i; } return -EINVAL; } #define to_memory_block(dev) container_of(dev, struct memory_block, dev) static int sections_per_block; static inline unsigned long memory_block_id(unsigned long section_nr) { return section_nr / sections_per_block; } static inline unsigned long pfn_to_block_id(unsigned long pfn) { return memory_block_id(pfn_to_section_nr(pfn)); } static inline unsigned long phys_to_block_id(unsigned long phys) { return pfn_to_block_id(PFN_DOWN(phys)); } static int memory_subsys_online(struct device *dev); static int memory_subsys_offline(struct device *dev); static struct bus_type memory_subsys = { .name = MEMORY_CLASS_NAME, .dev_name = MEMORY_CLASS_NAME, .online = memory_subsys_online, .offline = memory_subsys_offline, }; /* * Memory blocks are cached in a local radix tree to avoid * a costly linear search for the corresponding device on * the subsystem bus. */ static DEFINE_XARRAY(memory_blocks); /* * Memory groups, indexed by memory group id (mgid). */ static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC); #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1 static BLOCKING_NOTIFIER_HEAD(memory_chain); int register_memory_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&memory_chain, nb); } EXPORT_SYMBOL(register_memory_notifier); void unregister_memory_notifier(struct notifier_block *nb) { blocking_notifier_chain_unregister(&memory_chain, nb); } EXPORT_SYMBOL(unregister_memory_notifier); static void memory_block_release(struct device *dev) { struct memory_block *mem = to_memory_block(dev); kfree(mem); } unsigned long __weak memory_block_size_bytes(void) { return MIN_MEMORY_BLOCK_SIZE; } EXPORT_SYMBOL_GPL(memory_block_size_bytes); /* * Show the first physical section index (number) of this memory block. */ static ssize_t phys_index_show(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = to_memory_block(dev); unsigned long phys_index; phys_index = mem->start_section_nr / sections_per_block; return sysfs_emit(buf, "%08lx\n", phys_index); } /* * Legacy interface that we cannot remove. Always indicate "removable" * with CONFIG_MEMORY_HOTREMOVE - bad heuristic. */ static ssize_t removable_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)); } /* * online, offline, going offline, etc. */ static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = to_memory_block(dev); const char *output; /* * We can probably put these states in a nice little array * so that they're not open-coded */ switch (mem->state) { case MEM_ONLINE: output = "online"; break; case MEM_OFFLINE: output = "offline"; break; case MEM_GOING_OFFLINE: output = "going-offline"; break; default: WARN_ON(1); return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state); } return sysfs_emit(buf, "%s\n", output); } int memory_notify(unsigned long val, void *v) { return blocking_notifier_call_chain(&memory_chain, val, v); } static int memory_block_online(struct memory_block *mem) { unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages; struct zone *zone; int ret; zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group, start_pfn, nr_pages); /* * Although vmemmap pages have a different lifecycle than the pages * they describe (they remain until the memory is unplugged), doing * their initialization and accounting at memory onlining/offlining * stage helps to keep accounting easier to follow - e.g vmemmaps * belong to the same zone as the memory they backed. */ if (nr_vmemmap_pages) { ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone); if (ret) return ret; } ret = online_pages(start_pfn + nr_vmemmap_pages, nr_pages - nr_vmemmap_pages, zone, mem->group); if (ret) { if (nr_vmemmap_pages) mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); return ret; } /* * Account once onlining succeeded. If the zone was unpopulated, it is * now already properly populated. */ if (nr_vmemmap_pages) adjust_present_page_count(pfn_to_page(start_pfn), mem->group, nr_vmemmap_pages); mem->zone = zone; return ret; } static int memory_block_offline(struct memory_block *mem) { unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages; int ret; if (!mem->zone) return -EINVAL; /* * Unaccount before offlining, such that unpopulated zone and kthreads * can properly be torn down in offline_pages(). */ if (nr_vmemmap_pages) adjust_present_page_count(pfn_to_page(start_pfn), mem->group, -nr_vmemmap_pages); ret = offline_pages(start_pfn + nr_vmemmap_pages, nr_pages - nr_vmemmap_pages, mem->zone, mem->group); if (ret) { /* offline_pages() failed. Account back. */ if (nr_vmemmap_pages) adjust_present_page_count(pfn_to_page(start_pfn), mem->group, nr_vmemmap_pages); return ret; } if (nr_vmemmap_pages) mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); mem->zone = NULL; return ret; } /* * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is * OK to have direct references to sparsemem variables in here. */ static int memory_block_action(struct memory_block *mem, unsigned long action) { int ret; switch (action) { case MEM_ONLINE: ret = memory_block_online(mem); break; case MEM_OFFLINE: ret = memory_block_offline(mem); break; default: WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " "%ld\n", __func__, mem->start_section_nr, action, action); ret = -EINVAL; } return ret; } static int memory_block_change_state(struct memory_block *mem, unsigned long to_state, unsigned long from_state_req) { int ret = 0; if (mem->state != from_state_req) return -EINVAL; if (to_state == MEM_OFFLINE) mem->state = MEM_GOING_OFFLINE; ret = memory_block_action(mem, to_state); mem->state = ret ? from_state_req : to_state; return ret; } /* The device lock serializes operations on memory_subsys_[online|offline] */ static int memory_subsys_online(struct device *dev) { struct memory_block *mem = to_memory_block(dev); int ret; if (mem->state == MEM_ONLINE) return 0; /* * When called via device_online() without configuring the online_type, * we want to default to MMOP_ONLINE. */ if (mem->online_type == MMOP_OFFLINE) mem->online_type = MMOP_ONLINE; ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); mem->online_type = MMOP_OFFLINE; return ret; } static int memory_subsys_offline(struct device *dev) { struct memory_block *mem = to_memory_block(dev); if (mem->state == MEM_OFFLINE) return 0; return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); } static ssize_t state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { const int online_type = mhp_online_type_from_str(buf); struct memory_block *mem = to_memory_block(dev); int ret; if (online_type < 0) return -EINVAL; ret = lock_device_hotplug_sysfs(); if (ret) return ret; switch (online_type) { case MMOP_ONLINE_KERNEL: case MMOP_ONLINE_MOVABLE: case MMOP_ONLINE: /* mem->online_type is protected by device_hotplug_lock */ mem->online_type = online_type; ret = device_online(&mem->dev); break; case MMOP_OFFLINE: ret = device_offline(&mem->dev); break; default: ret = -EINVAL; /* should never happen */ } unlock_device_hotplug(); if (ret < 0) return ret; if (ret) return -EINVAL; return count; } /* * Legacy interface that we cannot remove: s390x exposes the storage increment * covered by a memory block, allowing for identifying which memory blocks * comprise a storage increment. Since a memory block spans complete * storage increments nowadays, this interface is basically unused. Other * archs never exposed != 0. */ static ssize_t phys_device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = to_memory_block(dev); unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); return sysfs_emit(buf, "%d\n", arch_get_memory_phys_device(start_pfn)); } #ifdef CONFIG_MEMORY_HOTREMOVE static int print_allowed_zone(char *buf, int len, int nid, struct memory_group *group, unsigned long start_pfn, unsigned long nr_pages, int online_type, struct zone *default_zone) { struct zone *zone; zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages); if (zone == default_zone) return 0; return sysfs_emit_at(buf, len, " %s", zone->name); } static ssize_t valid_zones_show(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = to_memory_block(dev); unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; struct memory_group *group = mem->group; struct zone *default_zone; int nid = mem->nid; int len = 0; /* * Check the existing zone. Make sure that we do that only on the * online nodes otherwise the page_zone is not reliable */ if (mem->state == MEM_ONLINE) { /* * If !mem->zone, the memory block spans multiple zones and * cannot get offlined. */ default_zone = mem->zone; if (!default_zone) return sysfs_emit(buf, "%s\n", "none"); len += sysfs_emit_at(buf, len, "%s", default_zone->name); goto out; } default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group, start_pfn, nr_pages); len += sysfs_emit_at(buf, len, "%s", default_zone->name); len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, MMOP_ONLINE_KERNEL, default_zone); len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE, default_zone); out: len += sysfs_emit_at(buf, len, "\n"); return len; } static DEVICE_ATTR_RO(valid_zones); #endif static DEVICE_ATTR_RO(phys_index); static DEVICE_ATTR_RW(state); static DEVICE_ATTR_RO(phys_device); static DEVICE_ATTR_RO(removable); /* * Show the memory block size (shared by all memory blocks). */ static ssize_t block_size_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%lx\n", memory_block_size_bytes()); } static DEVICE_ATTR_RO(block_size_bytes); /* * Memory auto online policy. */ static ssize_t auto_online_blocks_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", online_type_to_str[mhp_default_online_type]); } static ssize_t auto_online_blocks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { const int online_type = mhp_online_type_from_str(buf); if (online_type < 0) return -EINVAL; mhp_default_online_type = online_type; return count; } static DEVICE_ATTR_RW(auto_online_blocks); /* * Some architectures will have custom drivers to do this, and * will not need to do it from userspace. The fake hot-add code * as well as ppc64 will do all of their discovery in userspace * and will require this interface. */ #ifdef CONFIG_ARCH_MEMORY_PROBE static ssize_t probe_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 phys_addr; int nid, ret; unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; ret = kstrtoull(buf, 0, &phys_addr); if (ret) return ret; if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) return -EINVAL; ret = lock_device_hotplug_sysfs(); if (ret) return ret; nid = memory_add_physaddr_to_nid(phys_addr); ret = __add_memory(nid, phys_addr, MIN_MEMORY_BLOCK_SIZE * sections_per_block, MHP_NONE); if (ret) goto out; ret = count; out: unlock_device_hotplug(); return ret; } static DEVICE_ATTR_WO(probe); #endif #ifdef CONFIG_MEMORY_FAILURE /* * Support for offlining pages of memory */ /* Soft offline a page */ static ssize_t soft_offline_page_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u64 pfn; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (kstrtoull(buf, 0, &pfn) < 0) return -EINVAL; pfn >>= PAGE_SHIFT; ret = soft_offline_page(pfn, 0); return ret == 0 ? count : ret; } /* Forcibly offline a page, including killing processes. */ static ssize_t hard_offline_page_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u64 pfn; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (kstrtoull(buf, 0, &pfn) < 0) return -EINVAL; pfn >>= PAGE_SHIFT; ret = memory_failure(pfn, MF_SW_SIMULATED); if (ret == -EOPNOTSUPP) ret = 0; return ret ? ret : count; } static DEVICE_ATTR_WO(soft_offline_page); static DEVICE_ATTR_WO(hard_offline_page); #endif /* See phys_device_show(). */ int __weak arch_get_memory_phys_device(unsigned long start_pfn) { return 0; } /* * A reference for the returned memory block device is acquired. * * Called under device_hotplug_lock. */ static struct memory_block *find_memory_block_by_id(unsigned long block_id) { struct memory_block *mem; mem = xa_load(&memory_blocks, block_id); if (mem) get_device(&mem->dev); return mem; } /* * Called under device_hotplug_lock. */ struct memory_block *find_memory_block(unsigned long section_nr) { unsigned long block_id = memory_block_id(section_nr); return find_memory_block_by_id(block_id); } static struct attribute *memory_memblk_attrs[] = { &dev_attr_phys_index.attr, &dev_attr_state.attr, &dev_attr_phys_device.attr, &dev_attr_removable.attr, #ifdef CONFIG_MEMORY_HOTREMOVE &dev_attr_valid_zones.attr, #endif NULL }; static const struct attribute_group memory_memblk_attr_group = { .attrs = memory_memblk_attrs, }; static const struct attribute_group *memory_memblk_attr_groups[] = { &memory_memblk_attr_group, NULL, }; static int __add_memory_block(struct memory_block *memory) { int ret; memory->dev.bus = &memory_subsys; memory->dev.id = memory->start_section_nr / sections_per_block; memory->dev.release = memory_block_release; memory->dev.groups = memory_memblk_attr_groups; memory->dev.offline = memory->state == MEM_OFFLINE; ret = device_register(&memory->dev); if (ret) { put_device(&memory->dev); return ret; } ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory, GFP_KERNEL)); if (ret) device_unregister(&memory->dev); return ret; } static struct zone *early_node_zone_for_memory_block(struct memory_block *mem, int nid) { const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; struct zone *zone, *matching_zone = NULL; pg_data_t *pgdat = NODE_DATA(nid); int i; /* * This logic only works for early memory, when the applicable zones * already span the memory block. We don't expect overlapping zones on * a single node for early memory. So if we're told that some PFNs * of a node fall into this memory block, we can assume that all node * zones that intersect with the memory block are actually applicable. * No need to look at the memmap. */ for (i = 0; i < MAX_NR_ZONES; i++) { zone = pgdat->node_zones + i; if (!populated_zone(zone)) continue; if (!zone_intersects(zone, start_pfn, nr_pages)) continue; if (!matching_zone) { matching_zone = zone; continue; } /* Spans multiple zones ... */ matching_zone = NULL; break; } return matching_zone; } #ifdef CONFIG_NUMA /** * memory_block_add_nid() - Indicate that system RAM falling into this memory * block device (partially) belongs to the given node. * @mem: The memory block device. * @nid: The node id. * @context: The memory initialization context. * * Indicate that system RAM falling into this memory block (partially) belongs * to the given node. If the context indicates ("early") that we are adding the * node during node device subsystem initialization, this will also properly * set/adjust mem->zone based on the zone ranges of the given node. */ void memory_block_add_nid(struct memory_block *mem, int nid, enum meminit_context context) { if (context == MEMINIT_EARLY && mem->nid != nid) { /* * For early memory we have to determine the zone when setting * the node id and handle multiple nodes spanning a single * memory block by indicate via zone == NULL that we're not * dealing with a single zone. So if we're setting the node id * the first time, determine if there is a single zone. If we're * setting the node id a second time to a different node, * invalidate the single detected zone. */ if (mem->nid == NUMA_NO_NODE) mem->zone = early_node_zone_for_memory_block(mem, nid); else mem->zone = NULL; } /* * If this memory block spans multiple nodes, we only indicate * the last processed node. If we span multiple nodes (not applicable * to hotplugged memory), zone == NULL will prohibit memory offlining * and consequently unplug. */ mem->nid = nid; } #endif static int add_memory_block(unsigned long block_id, unsigned long state, unsigned long nr_vmemmap_pages, struct memory_group *group) { struct memory_block *mem; int ret = 0; mem = find_memory_block_by_id(block_id); if (mem) { put_device(&mem->dev); return -EEXIST; } mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; mem->start_section_nr = block_id * sections_per_block; mem->state = state; mem->nid = NUMA_NO_NODE; mem->nr_vmemmap_pages = nr_vmemmap_pages; INIT_LIST_HEAD(&mem->group_next); #ifndef CONFIG_NUMA if (state == MEM_ONLINE) /* * MEM_ONLINE at this point implies early memory. With NUMA, * we'll determine the zone when setting the node id via * memory_block_add_nid(). Memory hotplug updated the zone * manually when memory onlining/offlining succeeds. */ mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE); #endif /* CONFIG_NUMA */ ret = __add_memory_block(mem); if (ret) return ret; if (group) { mem->group = group; list_add(&mem->group_next, &group->memory_blocks); } return 0; } static int __init add_boot_memory_block(unsigned long base_section_nr) { int section_count = 0; unsigned long nr; for (nr = base_section_nr; nr < base_section_nr + sections_per_block; nr++) if (present_section_nr(nr)) section_count++; if (section_count == 0) return 0; return add_memory_block(memory_block_id(base_section_nr), MEM_ONLINE, 0, NULL); } static int add_hotplug_memory_block(unsigned long block_id, unsigned long nr_vmemmap_pages, struct memory_group *group) { return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group); } static void remove_memory_block(struct memory_block *memory) { if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys)) return; WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL); if (memory->group) { list_del(&memory->group_next); memory->group = NULL; } /* drop the ref. we got via find_memory_block() */ put_device(&memory->dev); device_unregister(&memory->dev); } /* * Create memory block devices for the given memory area. Start and size * have to be aligned to memory block granularity. Memory block devices * will be initialized as offline. * * Called under device_hotplug_lock. */ int create_memory_block_devices(unsigned long start, unsigned long size, unsigned long vmemmap_pages, struct memory_group *group) { const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); struct memory_block *mem; unsigned long block_id; int ret = 0; if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || !IS_ALIGNED(size, memory_block_size_bytes()))) return -EINVAL; for (block_id = start_block_id; block_id != end_block_id; block_id++) { ret = add_hotplug_memory_block(block_id, vmemmap_pages, group); if (ret) break; } if (ret) { end_block_id = block_id; for (block_id = start_block_id; block_id != end_block_id; block_id++) { mem = find_memory_block_by_id(block_id); if (WARN_ON_ONCE(!mem)) continue; remove_memory_block(mem); } } return ret; } /* * Remove memory block devices for the given memory area. Start and size * have to be aligned to memory block granularity. Memory block devices * have to be offline. * * Called under device_hotplug_lock. */ void remove_memory_block_devices(unsigned long start, unsigned long size) { const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); struct memory_block *mem; unsigned long block_id; if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || !IS_ALIGNED(size, memory_block_size_bytes()))) return; for (block_id = start_block_id; block_id != end_block_id; block_id++) { mem = find_memory_block_by_id(block_id); if (WARN_ON_ONCE(!mem)) continue; unregister_memory_block_under_nodes(mem); remove_memory_block(mem); } } static struct attribute *memory_root_attrs[] = { #ifdef CONFIG_ARCH_MEMORY_PROBE &dev_attr_probe.attr, #endif #ifdef CONFIG_MEMORY_FAILURE &dev_attr_soft_offline_page.attr, &dev_attr_hard_offline_page.attr, #endif &dev_attr_block_size_bytes.attr, &dev_attr_auto_online_blocks.attr, NULL }; static const struct attribute_group memory_root_attr_group = { .attrs = memory_root_attrs, }; static const struct attribute_group *memory_root_attr_groups[] = { &memory_root_attr_group, NULL, }; /* * Initialize the sysfs support for memory devices. At the time this function * is called, we cannot have concurrent creation/deletion of memory block * devices, the device_hotplug_lock is not needed. */ void __init memory_dev_init(void) { int ret; unsigned long block_sz, nr; /* Validate the configured memory block size */ block_sz = memory_block_size_bytes(); if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE) panic("Memory block size not suitable: 0x%lx\n", block_sz); sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); if (ret) panic("%s() failed to register subsystem: %d\n", __func__, ret); /* * Create entries for memory sections that were found * during boot and have been initialized */ for (nr = 0; nr <= __highest_present_section_nr; nr += sections_per_block) { ret = add_boot_memory_block(nr); if (ret) panic("%s() failed to add memory block: %d\n", __func__, ret); } } /** * walk_memory_blocks - walk through all present memory blocks overlapped * by the range [start, start + size) * * @start: start address of the memory range * @size: size of the memory range * @arg: argument passed to func * @func: callback for each memory section walked * * This function walks through all present memory blocks overlapped by the * range [start, start + size), calling func on each memory block. * * In case func() returns an error, walking is aborted and the error is * returned. * * Called under device_hotplug_lock. */ int walk_memory_blocks(unsigned long start, unsigned long size, void *arg, walk_memory_blocks_func_t func) { const unsigned long start_block_id = phys_to_block_id(start); const unsigned long end_block_id = phys_to_block_id(start + size - 1); struct memory_block *mem; unsigned long block_id; int ret = 0; if (!size) return 0; for (block_id = start_block_id; block_id <= end_block_id; block_id++) { mem = find_memory_block_by_id(block_id); if (!mem) continue; ret = func(mem, arg); put_device(&mem->dev); if (ret) break; } return ret; } struct for_each_memory_block_cb_data { walk_memory_blocks_func_t func; void *arg; }; static int for_each_memory_block_cb(struct device *dev, void *data) { struct memory_block *mem = to_memory_block(dev); struct for_each_memory_block_cb_data *cb_data = data; return cb_data->func(mem, cb_data->arg); } /** * for_each_memory_block - walk through all present memory blocks * * @arg: argument passed to func * @func: callback for each memory block walked * * This function walks through all present memory blocks, calling func on * each memory block. * * In case func() returns an error, walking is aborted and the error is * returned. */ int for_each_memory_block(void *arg, walk_memory_blocks_func_t func) { struct for_each_memory_block_cb_data cb_data = { .func = func, .arg = arg, }; return bus_for_each_dev(&memory_subsys, NULL, &cb_data, for_each_memory_block_cb); } /* * This is an internal helper to unify allocation and initialization of * memory groups. Note that the passed memory group will be copied to a * dynamically allocated memory group. After this call, the passed * memory group should no longer be used. */ static int memory_group_register(struct memory_group group) { struct memory_group *new_group; uint32_t mgid; int ret; if (!node_possible(group.nid)) return -EINVAL; new_group = kzalloc(sizeof(group), GFP_KERNEL); if (!new_group) return -ENOMEM; *new_group = group; INIT_LIST_HEAD(&new_group->memory_blocks); ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b, GFP_KERNEL); if (ret) { kfree(new_group); return ret; } else if (group.is_dynamic) { xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC); } return mgid; } /** * memory_group_register_static() - Register a static memory group. * @nid: The node id. * @max_pages: The maximum number of pages we'll have in this static memory * group. * * Register a new static memory group and return the memory group id. * All memory in the group belongs to a single unit, such as a DIMM. All * memory belonging to a static memory group is added in one go to be removed * in one go -- it's static. * * Returns an error if out of memory, if the node id is invalid, if no new * memory groups can be registered, or if max_pages is invalid (0). Otherwise, * returns the new memory group id. */ int memory_group_register_static(int nid, unsigned long max_pages) { struct memory_group group = { .nid = nid, .s = { .max_pages = max_pages, }, }; if (!max_pages) return -EINVAL; return memory_group_register(group); } EXPORT_SYMBOL_GPL(memory_group_register_static); /** * memory_group_register_dynamic() - Register a dynamic memory group. * @nid: The node id. * @unit_pages: Unit in pages in which is memory added/removed in this dynamic * memory group. * * Register a new dynamic memory group and return the memory group id. * Memory within a dynamic memory group is added/removed dynamically * in unit_pages. * * Returns an error if out of memory, if the node id is invalid, if no new * memory groups can be registered, or if unit_pages is invalid (0, not a * power of two, smaller than a single memory block). Otherwise, returns the * new memory group id. */ int memory_group_register_dynamic(int nid, unsigned long unit_pages) { struct memory_group group = { .nid = nid, .is_dynamic = true, .d = { .unit_pages = unit_pages, }, }; if (!unit_pages || !is_power_of_2(unit_pages) || unit_pages < PHYS_PFN(memory_block_size_bytes())) return -EINVAL; return memory_group_register(group); } EXPORT_SYMBOL_GPL(memory_group_register_dynamic); /** * memory_group_unregister() - Unregister a memory group. * @mgid: the memory group id * * Unregister a memory group. If any memory block still belongs to this * memory group, unregistering will fail. * * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some * memory blocks still belong to this memory group and returns 0 if * unregistering succeeded. */ int memory_group_unregister(int mgid) { struct memory_group *group; if (mgid < 0) return -EINVAL; group = xa_load(&memory_groups, mgid); if (!group) return -EINVAL; if (!list_empty(&group->memory_blocks)) return -EBUSY; xa_erase(&memory_groups, mgid); kfree(group); return 0; } EXPORT_SYMBOL_GPL(memory_group_unregister); /* * This is an internal helper only to be used in core memory hotplug code to * lookup a memory group. We don't care about locking, as we don't expect a * memory group to get unregistered while adding memory to it -- because * the group and the memory is managed by the same driver. */ struct memory_group *memory_group_find_by_id(int mgid) { return xa_load(&memory_groups, mgid); } /* * This is an internal helper only to be used in core memory hotplug code to * walk all dynamic memory groups excluding a given memory group, either * belonging to a specific node, or belonging to any node. */ int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func, struct memory_group *excluded, void *arg) { struct memory_group *group; unsigned long index; int ret = 0; xa_for_each_marked(&memory_groups, index, group, MEMORY_GROUP_MARK_DYNAMIC) { if (group == excluded) continue; #ifdef CONFIG_NUMA if (nid != NUMA_NO_NODE && group->nid != nid) continue; #endif /* CONFIG_NUMA */ ret = func(group, arg); if (ret) break; } return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1