Contributors: 5
Author Tokens Token Proportion Commits Commit Proportion
Liam Beguin 6898 99.60% 2 33.33%
Stephen Boyd 14 0.20% 1 16.67%
Wang Hai 9 0.13% 1 16.67%
Colin Ian King 4 0.06% 1 16.67%
Uwe Kleine-König 1 0.01% 1 16.67%
Total 6926 6


// SPDX-License-Identifier: GPL-2.0
/*
 * LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner
 * Pin compatible with the LMK0482x family
 *
 * Datasheet: https://www.ti.com/lit/ds/symlink/lmk04832.pdf
 *
 * Copyright (c) 2020, Xiphos Systems Corp.
 *
 */

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/gcd.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>

/* 0x000 - 0x00d System Functions */
#define LMK04832_REG_RST3W		0x000
#define LMK04832_BIT_RESET			BIT(7)
#define LMK04832_BIT_SPI_3WIRE_DIS		BIT(4)
#define LMK04832_REG_POWERDOWN		0x002
#define LMK04832_REG_ID_DEV_TYPE	0x003
#define LMK04832_REG_ID_PROD_MSB	0x004
#define LMK04832_REG_ID_PROD_LSB	0x005
#define LMK04832_REG_ID_MASKREV		0x006
#define LMK04832_REG_ID_VNDR_MSB	0x00c
#define LMK04832_REG_ID_VNDR_LSB	0x00d

/* 0x100 - 0x137 Device Clock and SYSREF Clock Output Control */
#define LMK04832_REG_CLKOUT_CTRL0(ch)	(0x100 + (ch >> 1) * 8)
#define LMK04832_BIT_DCLK_DIV_LSB		GENMASK(7, 0)
#define LMK04832_REG_CLKOUT_CTRL1(ch)	(0x101 + (ch >> 1) * 8)
#define LMK04832_BIT_DCLKX_Y_DDLY_LSB		GENMASK(7, 0)
#define LMK04832_REG_CLKOUT_CTRL2(ch)	(0x102 + (ch >> 1) * 8)
#define LMK04832_BIT_CLKOUTX_Y_PD		BIT(7)
#define LMK04832_BIT_DCLKX_Y_DDLY_PD		BIT(4)
#define LMK04832_BIT_DCLKX_Y_DDLY_MSB		GENMASK(3, 2)
#define LMK04832_BIT_DCLK_DIV_MSB		GENMASK(1, 0)
#define LMK04832_REG_CLKOUT_SRC_MUX(ch)	(0x103 + (ch % 2) + (ch >> 1) * 8)
#define LMK04832_BIT_CLKOUT_SRC_MUX		BIT(5)
#define LMK04832_REG_CLKOUT_CTRL3(ch)	(0x103 + (ch >> 1) * 8)
#define LMK04832_BIT_DCLKX_Y_PD			BIT(4)
#define LMK04832_BIT_DCLKX_Y_DCC		BIT(2)
#define LMK04832_BIT_DCLKX_Y_HS			BIT(0)
#define LMK04832_REG_CLKOUT_CTRL4(ch)	(0x104 + (ch >> 1) * 8)
#define LMK04832_BIT_SCLK_PD			BIT(4)
#define LMK04832_BIT_SCLKX_Y_DIS_MODE		GENMASK(3, 2)
#define LMK04832_REG_SCLKX_Y_ADLY(ch)	(0x105 + (ch >> 1) * 8)
#define LMK04832_REG_SCLKX_Y_DDLY(ch)	(0x106 + (ch >> 1) * 8)
#define LMK04832_BIT_SCLKX_Y_DDLY		GENMASK(3, 0)
#define LMK04832_REG_CLKOUT_FMT(ch)	(0x107 + (ch >> 1) * 8)
#define LMK04832_BIT_CLKOUT_FMT(ch)		(ch % 2 ? 0xf0 : 0x0f)
#define LMK04832_VAL_CLKOUT_FMT_POWERDOWN		0x00
#define LMK04832_VAL_CLKOUT_FMT_LVDS			0x01
#define LMK04832_VAL_CLKOUT_FMT_HSDS6			0x02
#define LMK04832_VAL_CLKOUT_FMT_HSDS8			0x03
#define LMK04832_VAL_CLKOUT_FMT_LVPECL1600		0x04
#define LMK04832_VAL_CLKOUT_FMT_LVPECL2000		0x05
#define LMK04832_VAL_CLKOUT_FMT_LCPECL			0x06
#define LMK04832_VAL_CLKOUT_FMT_CML16			0x07
#define LMK04832_VAL_CLKOUT_FMT_CML24			0x08
#define LMK04832_VAL_CLKOUT_FMT_CML32			0x09
#define LMK04832_VAL_CLKOUT_FMT_CMOS_OFF_INV		0x0a
#define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_OFF		0x0b
#define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_INV		0x0c
#define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_NOR		0x0d
#define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_INV		0x0e
#define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_NOR		0x0f

/* 0x138 - 0x145 SYSREF, SYNC, and Device Config */
#define LMK04832_REG_VCO_OSCOUT		0x138
#define LMK04832_BIT_VCO_MUX			GENMASK(6, 5)
#define LMK04832_VAL_VCO_MUX_VCO0			0x00
#define LMK04832_VAL_VCO_MUX_VCO1			0x01
#define LMK04832_VAL_VCO_MUX_EXT			0x02
#define LMK04832_REG_SYSREF_OUT		0x139
#define LMK04832_BIT_SYSREF_REQ_EN		BIT(6)
#define LMK04832_BIT_SYSREF_MUX			GENMASK(1, 0)
#define LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC		0x00
#define LMK04832_VAL_SYSREF_MUX_RECLK			0x01
#define LMK04832_VAL_SYSREF_MUX_PULSER			0x02
#define LMK04832_VAL_SYSREF_MUX_CONTINUOUS		0x03
#define LMK04832_REG_SYSREF_DIV_MSB	0x13a
#define LMK04832_BIT_SYSREF_DIV_MSB		GENMASK(4, 0)
#define LMK04832_REG_SYSREF_DIV_LSB	0x13b
#define LMK04832_REG_SYSREF_DDLY_MSB	0x13c
#define LMK04832_BIT_SYSREF_DDLY_MSB		GENMASK(4, 0)
#define LMK04832_REG_SYSREF_DDLY_LSB	0x13d
#define LMK04832_REG_SYSREF_PULSE_CNT	0x13e
#define LMK04832_REG_FB_CTRL		0x13f
#define LMK04832_BIT_PLL2_RCLK_MUX		BIT(7)
#define LMK04832_VAL_PLL2_RCLK_MUX_OSCIN		0x00
#define LMK04832_VAL_PLL2_RCLK_MUX_CLKIN		0x01
#define LMK04832_BIT_PLL2_NCLK_MUX		BIT(5)
#define LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P		0x00
#define LMK04832_VAL_PLL2_NCLK_MUX_FB_MUX		0x01
#define LMK04832_BIT_FB_MUX_EN			BIT(0)
#define LMK04832_REG_MAIN_PD		0x140
#define LMK04832_BIT_PLL1_PD			BIT(7)
#define LMK04832_BIT_VCO_LDO_PD			BIT(6)
#define LMK04832_BIT_VCO_PD			BIT(5)
#define LMK04832_BIT_OSCIN_PD			BIT(4)
#define LMK04832_BIT_SYSREF_GBL_PD		BIT(3)
#define LMK04832_BIT_SYSREF_PD			BIT(2)
#define LMK04832_BIT_SYSREF_DDLY_PD		BIT(1)
#define LMK04832_BIT_SYSREF_PLSR_PD		BIT(0)
#define LMK04832_REG_SYNC		0x143
#define LMK04832_BIT_SYNC_CLR			BIT(7)
#define LMK04832_BIT_SYNC_1SHOT_EN		BIT(6)
#define LMK04832_BIT_SYNC_POL			BIT(5)
#define LMK04832_BIT_SYNC_EN			BIT(4)
#define LMK04832_BIT_SYNC_MODE			GENMASK(1, 0)
#define LMK04832_VAL_SYNC_MODE_OFF			0x00
#define LMK04832_VAL_SYNC_MODE_ON			0x01
#define LMK04832_VAL_SYNC_MODE_PULSER_PIN		0x02
#define LMK04832_VAL_SYNC_MODE_PULSER_SPI		0x03
#define LMK04832_REG_SYNC_DIS		0x144

/* 0x146 - 0x14a CLKin Control */
#define LMK04832_REG_CLKIN_SEL0		0x148
#define LMK04832_REG_CLKIN_SEL1		0x149
#define LMK04832_REG_CLKIN_RST		0x14a
#define LMK04832_BIT_SDIO_RDBK_TYPE		BIT(6)
#define LMK04832_BIT_CLKIN_SEL_MUX		GENMASK(5, 3)
#define LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK		0x06
#define LMK04832_BIT_CLKIN_SEL_TYPE		GENMASK(2, 0)
#define LMK04832_VAL_CLKIN_SEL_TYPE_OUT			0x03

/* 0x14b - 0x152 Holdover */

/* 0x153 - 0x15f PLL1 Configuration */

/* 0x160 - 0x16e PLL2 Configuration */
#define LMK04832_REG_PLL2_R_MSB		0x160
#define LMK04832_BIT_PLL2_R_MSB			GENMASK(3, 0)
#define LMK04832_REG_PLL2_R_LSB		0x161
#define LMK04832_REG_PLL2_MISC		0x162
#define LMK04832_BIT_PLL2_MISC_P		GENMASK(7, 5)
#define LMK04832_BIT_PLL2_MISC_REF_2X_EN	BIT(0)
#define LMK04832_REG_PLL2_N_CAL_0	0x163
#define LMK04832_BIT_PLL2_N_CAL_0		GENMASK(1, 0)
#define LMK04832_REG_PLL2_N_CAL_1	0x164
#define LMK04832_REG_PLL2_N_CAL_2	0x165
#define LMK04832_REG_PLL2_N_0		0x166
#define LMK04832_BIT_PLL2_N_0			GENMASK(1, 0)
#define LMK04832_REG_PLL2_N_1		0x167
#define LMK04832_REG_PLL2_N_2		0x168
#define LMK04832_REG_PLL2_DLD_CNT_MSB	0x16a
#define LMK04832_REG_PLL2_DLD_CNT_LSB	0x16b
#define LMK04832_REG_PLL2_LD		0x16e
#define LMK04832_BIT_PLL2_LD_MUX		GENMASK(7, 3)
#define LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD		0x02
#define LMK04832_BIT_PLL2_LD_TYPE		GENMASK(2, 0)
#define LMK04832_VAL_PLL2_LD_TYPE_OUT_PP		0x03

/* 0x16F - 0x555 Misc Registers */
#define LMK04832_REG_PLL2_PD		0x173
#define LMK04832_BIT_PLL2_PRE_PD		BIT(6)
#define LMK04832_BIT_PLL2_PD			BIT(5)
#define LMK04832_REG_PLL1R_RST		0x177
#define LMK04832_REG_CLR_PLL_LOST	0x182
#define LMK04832_REG_RB_PLL_LD		0x183
#define LMK04832_REG_RB_CLK_DAC_VAL_MSB	0x184
#define LMK04832_REG_RB_DAC_VAL_LSB	0x185
#define LMK04832_REG_RB_HOLDOVER	0x188
#define LMK04832_REG_SPI_LOCK		0x555

enum lmk04832_device_types {
	LMK04832,
};

/**
 * lmk04832_device_info - Holds static device information that is specific to
 *                        the chip revision
 *
 * pid:          Product Identifier
 * maskrev:      IC version identifier
 * num_channels: Number of available output channels (clkout count)
 * vco0_range:   {min, max} of the VCO0 operating range (in MHz)
 * vco1_range:   {min, max} of the VCO1 operating range (in MHz)
 */
struct lmk04832_device_info {
	u16 pid;
	u8 maskrev;
	size_t num_channels;
	unsigned int vco0_range[2];
	unsigned int vco1_range[2];
};

static const struct lmk04832_device_info lmk04832_device_info[] = {
	[LMK04832] = {
		.pid = 0x63d1, /* WARNING PROD_ID is inverted in the datasheet */
		.maskrev = 0x70,
		.num_channels = 14,
		.vco0_range = { 2440, 2580 },
		.vco1_range = { 2945, 3255 },
	},
};

enum lmk04832_rdbk_type {
	RDBK_CLKIN_SEL0,
	RDBK_CLKIN_SEL1,
	RDBK_RESET,
};

struct lmk_dclk {
	struct lmk04832 *lmk;
	struct clk_hw hw;
	u8 id;
};

struct lmk_clkout {
	struct lmk04832 *lmk;
	struct clk_hw hw;
	bool sysref;
	u32 format;
	u8 id;
};

/**
 * struct lmk04832 - The LMK04832 device structure
 *
 * @dev: reference to a struct device, linked to the spi_device
 * @regmap: struct regmap instance use to access the chip
 * @sync_mode: operational mode for SYNC signal
 * @sysref_mux: select SYSREF source
 * @sysref_pulse_cnt: number of SYSREF pulses generated while not in continuous
 *                    mode.
 * @sysref_ddly: SYSREF digital delay value
 * @oscin: PLL2 input clock
 * @vco: reference to the internal VCO clock
 * @sclk: reference to the internal sysref clock (SCLK)
 * @vco_rate: user provided VCO rate
 * @reset_gpio: reference to the reset GPIO
 * @dclk: list of internal device clock references.
 *        Each pair of clkout clocks share a single device clock (DCLKX_Y)
 * @clkout: list of output clock references
 * @clk_data: holds clkout related data like clk_hw* and number of clocks
 */
struct lmk04832 {
	struct device *dev;
	struct regmap *regmap;

	unsigned int sync_mode;
	unsigned int sysref_mux;
	unsigned int sysref_pulse_cnt;
	unsigned int sysref_ddly;

	struct clk *oscin;
	struct clk_hw vco;
	struct clk_hw sclk;
	unsigned int vco_rate;

	struct gpio_desc *reset_gpio;

	struct lmk_dclk *dclk;
	struct lmk_clkout *clkout;
	struct clk_hw_onecell_data *clk_data;
};

static bool lmk04832_regmap_rd_regs(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case LMK04832_REG_RST3W ... LMK04832_REG_ID_MASKREV:
	case LMK04832_REG_ID_VNDR_MSB:
	case LMK04832_REG_ID_VNDR_LSB:
	case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
	case LMK04832_REG_PLL2_LD:
	case LMK04832_REG_PLL2_PD:
	case LMK04832_REG_PLL1R_RST:
	case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
	case LMK04832_REG_RB_HOLDOVER:
	case LMK04832_REG_SPI_LOCK:
		return true;
	default:
		return false;
	};
};

static bool lmk04832_regmap_wr_regs(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case LMK04832_REG_RST3W:
	case LMK04832_REG_POWERDOWN:
		return true;
	case LMK04832_REG_ID_DEV_TYPE ... LMK04832_REG_ID_MASKREV:
	case LMK04832_REG_ID_VNDR_MSB:
	case LMK04832_REG_ID_VNDR_LSB:
		return false;
	case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
	case LMK04832_REG_PLL2_LD:
	case LMK04832_REG_PLL2_PD:
	case LMK04832_REG_PLL1R_RST:
	case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
	case LMK04832_REG_RB_HOLDOVER:
	case LMK04832_REG_SPI_LOCK:
		return true;
	default:
		return false;
	};
};

static const struct regmap_config regmap_config = {
	.name = "lmk04832",
	.reg_bits = 16,
	.val_bits = 8,
	.use_single_read = 1,
	.use_single_write = 1,
	.read_flag_mask = 0x80,
	.write_flag_mask = 0x00,
	.readable_reg = lmk04832_regmap_rd_regs,
	.writeable_reg = lmk04832_regmap_wr_regs,
	.cache_type = REGCACHE_NONE,
	.max_register = LMK04832_REG_SPI_LOCK,
};

static int lmk04832_vco_is_enabled(struct clk_hw *hw)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
	unsigned int tmp;
	int ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
	if (ret)
		return ret;

	return !(FIELD_GET(LMK04832_BIT_OSCIN_PD, tmp) |
		 FIELD_GET(LMK04832_BIT_VCO_PD, tmp) |
		 FIELD_GET(LMK04832_BIT_VCO_LDO_PD, tmp));
}

static int lmk04832_vco_prepare(struct clk_hw *hw)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
	int ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
				 LMK04832_BIT_PLL2_PRE_PD |
				 LMK04832_BIT_PLL2_PD,
				 0x00);
	if (ret)
		return ret;

	return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
				  LMK04832_BIT_VCO_LDO_PD |
				  LMK04832_BIT_VCO_PD |
				  LMK04832_BIT_OSCIN_PD, 0x00);
}

static void lmk04832_vco_unprepare(struct clk_hw *hw)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);

	regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
			   LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD,
			   0xff);

	/* Don't set LMK04832_BIT_OSCIN_PD since other clocks depend on it */
	regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
			   LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD, 0xff);
}

static unsigned long lmk04832_vco_recalc_rate(struct clk_hw *hw,
					      unsigned long prate)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
	unsigned int pll2_p[] = {8, 2, 2, 3, 4, 5, 6, 7};
	unsigned int pll2_n, p, pll2_r;
	unsigned int pll2_misc;
	unsigned long vco_rate;
	u8 tmp[3];
	int ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_PLL2_MISC, &pll2_misc);
	if (ret)
		return ret;

	p = FIELD_GET(LMK04832_BIT_PLL2_MISC_P, pll2_misc);

	ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_N_0, &tmp, 3);
	if (ret)
		return ret;

	pll2_n = FIELD_PREP(0x030000, tmp[0]) |
		 FIELD_PREP(0x00ff00, tmp[1]) |
		 FIELD_PREP(0x0000ff, tmp[2]);

	ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_R_MSB, &tmp, 2);
	if (ret)
		return ret;

	pll2_r = FIELD_PREP(0x0f00, tmp[0]) |
		 FIELD_PREP(0x00ff, tmp[1]);

	vco_rate = (prate << FIELD_GET(LMK04832_BIT_PLL2_MISC_REF_2X_EN,
				       pll2_misc)) * pll2_n * pll2_p[p] / pll2_r;

	return vco_rate;
};

/**
 * lmk04832_check_vco_ranges - Check requested VCO frequency against VCO ranges
 *
 * @lmk:   Reference to the lmk device
 * @rate:  Desired output rate for the VCO
 *
 * The LMK04832 has 2 internal VCO, each with independent operating ranges.
 * Use the device_info structure to determine which VCO to use based on rate.
 *
 * Returns VCO_MUX value or negative errno.
 */
static int lmk04832_check_vco_ranges(struct lmk04832 *lmk, unsigned long rate)
{
	struct spi_device *spi = to_spi_device(lmk->dev);
	const struct lmk04832_device_info *info;
	unsigned long mhz = rate / 1000000;

	info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];

	if (mhz >= info->vco0_range[0] && mhz <= info->vco0_range[1])
		return LMK04832_VAL_VCO_MUX_VCO0;

	if (mhz >= info->vco1_range[0] && mhz <= info->vco1_range[1])
		return LMK04832_VAL_VCO_MUX_VCO1;

	dev_err(lmk->dev, "%lu Hz is out of VCO ranges\n", rate);
	return -ERANGE;
}

/**
 * lmk04832_calc_pll2_params - Get PLL2 parameters used to set the VCO frequency
 *
 * @prate: parent rate to the PLL2, usually OSCin
 * @rate:  Desired output rate for the VCO
 * @n:     reference to PLL2_N
 * @p:     reference to PLL2_P
 * @r:     reference to PLL2_R
 *
 * This functions assumes LMK04832_BIT_PLL2_MISC_REF_2X_EN is set since it is
 * recommended in the datasheet because a higher phase detector frequencies
 * makes the design of wider loop bandwidth filters possible.
 *
 * the VCO rate can be calculated using the following expression:
 *
 *	VCO = OSCin * 2 * PLL2_N * PLL2_P / PLL2_R
 *
 * Returns vco rate or negative errno.
 */
static long lmk04832_calc_pll2_params(unsigned long prate, unsigned long rate,
				      unsigned int *n, unsigned int *p,
				      unsigned int *r)
{
	unsigned int pll2_n, pll2_p, pll2_r;
	unsigned long num, div;

	/* Set PLL2_P to a fixed value to simplify optimizations */
	pll2_p = 2;

	div = gcd(rate, prate);

	num = DIV_ROUND_CLOSEST(rate, div);
	pll2_r = DIV_ROUND_CLOSEST(prate, div);

	if (num > 4) {
		pll2_n = num >> 2;
	} else {
		pll2_r = pll2_r << 2;
		pll2_n = num;
	}

	if (pll2_n < 1 || pll2_n > 0x03ffff)
		return -EINVAL;
	if (pll2_r < 1 || pll2_r > 0xfff)
		return -EINVAL;

	*n = pll2_n;
	*p = pll2_p;
	*r = pll2_r;

	return DIV_ROUND_CLOSEST(prate * 2 * pll2_p * pll2_n, pll2_r);
}

static long lmk04832_vco_round_rate(struct clk_hw *hw, unsigned long rate,
				    unsigned long *prate)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
	unsigned int n, p, r;
	long vco_rate;
	int ret;

	ret = lmk04832_check_vco_ranges(lmk, rate);
	if (ret < 0)
		return ret;

	vco_rate = lmk04832_calc_pll2_params(*prate, rate, &n, &p, &r);
	if (vco_rate < 0) {
		dev_err(lmk->dev, "PLL2 parameters out of range\n");
		return vco_rate;
	}

	if (rate != vco_rate)
		return -EINVAL;

	return vco_rate;
};

static int lmk04832_vco_set_rate(struct clk_hw *hw, unsigned long rate,
				 unsigned long prate)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
	unsigned int n, p, r;
	long vco_rate;
	int vco_mux;
	int ret;

	vco_mux = lmk04832_check_vco_ranges(lmk, rate);
	if (vco_mux < 0)
		return vco_mux;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
				 LMK04832_BIT_VCO_MUX,
				 FIELD_PREP(LMK04832_BIT_VCO_MUX, vco_mux));
	if (ret)
		return ret;

	vco_rate = lmk04832_calc_pll2_params(prate, rate, &n, &p, &r);
	if (vco_rate < 0) {
		dev_err(lmk->dev, "failed to determine PLL2 parameters\n");
		return vco_rate;
	}

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_R_MSB,
				 LMK04832_BIT_PLL2_R_MSB,
				 FIELD_GET(0x000700, r));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_R_LSB,
			   FIELD_GET(0x0000ff, r));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
				 LMK04832_BIT_PLL2_MISC_P,
				 FIELD_PREP(LMK04832_BIT_PLL2_MISC_P, p));
	if (ret)
		return ret;

	/*
	 * PLL2_N registers must be programmed after other PLL2 dividers are
	 * programmed to ensure proper VCO frequency calibration
	 */
	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_0,
			   FIELD_GET(0x030000, n));
	if (ret)
		return ret;
	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_1,
			   FIELD_GET(0x00ff00, n));
	if (ret)
		return ret;

	return regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_2,
			    FIELD_GET(0x0000ff, n));
};

static const struct clk_ops lmk04832_vco_ops = {
	.is_enabled = lmk04832_vco_is_enabled,
	.prepare = lmk04832_vco_prepare,
	.unprepare = lmk04832_vco_unprepare,
	.recalc_rate = lmk04832_vco_recalc_rate,
	.round_rate = lmk04832_vco_round_rate,
	.set_rate = lmk04832_vco_set_rate,
};

/*
 * lmk04832_register_vco - Initialize the internal VCO and clock distribution
 *                         path in PLL2 single loop mode.
 */
static int lmk04832_register_vco(struct lmk04832 *lmk)
{
	const char *parent_names[1];
	struct clk_init_data init;
	int ret;

	init.name = "lmk-vco";
	parent_names[0] = __clk_get_name(lmk->oscin);
	init.parent_names = parent_names;

	init.ops = &lmk04832_vco_ops;
	init.num_parents = 1;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
				 LMK04832_BIT_VCO_MUX,
				 FIELD_PREP(LMK04832_BIT_VCO_MUX,
					    LMK04832_VAL_VCO_MUX_VCO1));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_FB_CTRL,
				 LMK04832_BIT_PLL2_RCLK_MUX |
				 LMK04832_BIT_PLL2_NCLK_MUX,
				 FIELD_PREP(LMK04832_BIT_PLL2_RCLK_MUX,
					    LMK04832_VAL_PLL2_RCLK_MUX_OSCIN)|
				 FIELD_PREP(LMK04832_BIT_PLL2_NCLK_MUX,
					    LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
				 LMK04832_BIT_PLL2_MISC_REF_2X_EN,
				 LMK04832_BIT_PLL2_MISC_REF_2X_EN);
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_LD,
			   FIELD_PREP(LMK04832_BIT_PLL2_LD_MUX,
				      LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD) |
			   FIELD_PREP(LMK04832_BIT_PLL2_LD_TYPE,
				      LMK04832_VAL_PLL2_LD_TYPE_OUT_PP));
	if (ret)
		return ret;

	lmk->vco.init = &init;
	return devm_clk_hw_register(lmk->dev, &lmk->vco);
}

static int lmk04832_clkout_set_ddly(struct lmk04832 *lmk, int id)
{
	int dclk_div_adj[] = {0, 0, -2, -2, 0, 3, -1, 0};
	unsigned int sclkx_y_ddly = 10;
	unsigned int dclkx_y_ddly;
	unsigned int dclkx_y_div;
	unsigned int sysref_ddly;
	unsigned int dclkx_y_hs;
	unsigned int lsb, msb;
	int ret;

	ret = regmap_update_bits(lmk->regmap,
				 LMK04832_REG_CLKOUT_CTRL2(id),
				 LMK04832_BIT_DCLKX_Y_DDLY_PD,
				 FIELD_PREP(LMK04832_BIT_DCLKX_Y_DDLY_PD, 0));
	if (ret)
		return ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, &lsb);
	if (ret)
		return ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, &msb);
	if (ret)
		return ret;

	sysref_ddly = FIELD_GET(LMK04832_BIT_SYSREF_DDLY_MSB, msb) << 8 | lsb;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(id), &lsb);
	if (ret)
		return ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), &msb);
	if (ret)
		return ret;

	dclkx_y_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(id), &lsb);
	if (ret)
		return ret;

	dclkx_y_hs = FIELD_GET(LMK04832_BIT_DCLKX_Y_HS, lsb);

	dclkx_y_ddly = sysref_ddly + 1 -
		dclk_div_adj[dclkx_y_div < 6 ?  dclkx_y_div : 7] -
		dclkx_y_hs + sclkx_y_ddly;

	if (dclkx_y_ddly < 7 || dclkx_y_ddly > 0x3fff) {
		dev_err(lmk->dev, "DCLKX_Y_DDLY out of range (%d)\n",
			dclkx_y_ddly);
		return -EINVAL;
	}

	ret = regmap_write(lmk->regmap,
			   LMK04832_REG_SCLKX_Y_DDLY(id),
			   FIELD_GET(LMK04832_BIT_SCLKX_Y_DDLY, sclkx_y_ddly));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL1(id),
				FIELD_GET(0x00ff, dclkx_y_ddly));
	if (ret)
		return ret;

	dev_dbg(lmk->dev, "clkout%02u: sysref_ddly=%u, dclkx_y_ddly=%u, "
		"dclk_div_adj=%+d, dclkx_y_hs=%u, sclkx_y_ddly=%u\n",
		id, sysref_ddly, dclkx_y_ddly,
		dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7],
		dclkx_y_hs, sclkx_y_ddly);

	return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id),
				  LMK04832_BIT_DCLKX_Y_DDLY_MSB,
				  FIELD_GET(0x0300, dclkx_y_ddly));
}

/** lmk04832_sclk_sync - Establish deterministic phase relationship between sclk
 *                       and dclk
 *
 * @lmk: Reference to the lmk device
 *
 * The synchronization sequence:
 * - in the datasheet https://www.ti.com/lit/ds/symlink/lmk04832.pdf, p.31
 *   (8.3.3.1 How to enable SYSREF)
 * - Ti forum: https://e2e.ti.com/support/clock-and-timing/f/48/t/970972
 *
 * Returns 0 or negative errno.
 */
static int lmk04832_sclk_sync_sequence(struct lmk04832 *lmk)
{
	int ret;
	int i;

	/* 1. (optional) mute all sysref_outputs during synchronization */
	/* 2. Enable and write device clock digital delay to applicable clocks */
	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
				 LMK04832_BIT_SYSREF_DDLY_PD,
				 FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0));
	if (ret)
		return ret;

	for (i = 0; i < lmk->clk_data->num; i += 2) {
		ret = lmk04832_clkout_set_ddly(lmk, i);
		if (ret)
			return ret;
	}

	/*
	 * 3. Configure SYNC_MODE to SYNC_PIN and SYSREF_MUX to Normal SYNC,
	 *    and clear SYSREF_REQ_EN (see 6.)
	 */
	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
				 LMK04832_BIT_SYSREF_REQ_EN |
				 LMK04832_BIT_SYSREF_MUX,
				 FIELD_PREP(LMK04832_BIT_SYSREF_REQ_EN, 0) |
				 FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
					    LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
				 LMK04832_BIT_SYNC_MODE,
				 FIELD_PREP(LMK04832_BIT_SYNC_MODE,
					    LMK04832_VAL_SYNC_MODE_ON));
	if (ret)
		return ret;

	/* 4. Clear SYNXC_DISx or applicable clocks and clear SYNC_DISSYSREF */
	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0x00);
	if (ret)
		return ret;

	/*
	 * 5. If SCLKX_Y_DDLY != 0, Set SYSREF_CLR=1 for at least 15 clock
	 *    distribution path cycles (VCO cycles), then back to 0. In
	 *    PLL2-only use case, this will be complete in less than one SPI
	 *    transaction. If SYSREF local digital delay is not used, this step
	 *    can be skipped.
	 */
	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
				 LMK04832_BIT_SYNC_CLR,
				 FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x01));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
				 LMK04832_BIT_SYNC_CLR,
				 FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x00));
	if (ret)
		return ret;

	/*
	 * 6. Toggle SYNC_POL state between inverted and not inverted.
	 *    If you use an external signal on the SYNC pin instead of toggling
	 *    SYNC_POL, make sure that SYSREF_REQ_EN=0 so that the SYSREF_MUX
	 *    does not shift into continuous SYSREF mode.
	 */
	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
			   LMK04832_BIT_SYNC_POL,
			   FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x01));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
			   LMK04832_BIT_SYNC_POL,
			   FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x00));
	if (ret)
		return ret;

	/* 7. Set all SYNC_DISx=1, including SYNC_DISSYSREF */
	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
	if (ret)
		return ret;

	/* 8. Restore state of SYNC_MODE and SYSREF_MUX to desired values */
	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
				 LMK04832_BIT_SYSREF_MUX,
				 FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
					    lmk->sysref_mux));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
				 LMK04832_BIT_SYNC_MODE,
				 FIELD_PREP(LMK04832_BIT_SYNC_MODE,
					    lmk->sync_mode));
	if (ret)
		return ret;

	/*
	 * 9. (optional) if SCLKx_y_DIS_MODE was used to mute SYSREF outputs
	 *    during the SYNC event, restore SCLKx_y_DIS_MODE=0 for active state,
	 *    or set SYSREF_GBL_PD=0 if SCLKx_y_DIS_MODE is set to a conditional
	 *    option.
	 */

	/*
	 * 10. (optional) To reduce power consumption, after the synchronization
	 *     event is complete, DCLKx_y_DDLY_PD=1 and SYSREF_DDLY_PD=1 disable the
	 *     digital delay counters (which are only used immediately after the
	 *     SYNC pulse to delay the output by some number of VCO counts).
	 */

	return ret;
}

static int lmk04832_sclk_is_enabled(struct clk_hw *hw)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
	unsigned int tmp;
	int ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
	if (ret)
		return ret;

	return FIELD_GET(LMK04832_BIT_SYSREF_PD, tmp);
}

static int lmk04832_sclk_prepare(struct clk_hw *hw)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);

	return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
				  LMK04832_BIT_SYSREF_PD, 0x00);
}

static void lmk04832_sclk_unprepare(struct clk_hw *hw)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);

	regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
			   LMK04832_BIT_SYSREF_PD, LMK04832_BIT_SYSREF_PD);
}

static unsigned long lmk04832_sclk_recalc_rate(struct clk_hw *hw,
					       unsigned long prate)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
	unsigned int sysref_div;
	u8 tmp[2];
	int ret;

	ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, &tmp, 2);
	if (ret)
		return ret;

	sysref_div = FIELD_GET(LMK04832_BIT_SYSREF_DIV_MSB, tmp[0]) << 8 |
		tmp[1];

	return DIV_ROUND_CLOSEST(prate, sysref_div);
}

static long lmk04832_sclk_round_rate(struct clk_hw *hw, unsigned long rate,
				     unsigned long *prate)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
	unsigned long sclk_rate;
	unsigned int sysref_div;

	sysref_div = DIV_ROUND_CLOSEST(*prate, rate);
	sclk_rate = DIV_ROUND_CLOSEST(*prate, sysref_div);

	if (sysref_div < 0x07 || sysref_div > 0x1fff) {
		dev_err(lmk->dev, "SYSREF divider out of range\n");
		return -EINVAL;
	}

	if (rate != sclk_rate)
		return -EINVAL;

	return sclk_rate;
}

static int lmk04832_sclk_set_rate(struct clk_hw *hw, unsigned long rate,
				  unsigned long prate)
{
	struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
	unsigned int sysref_div;
	int ret;

	sysref_div = DIV_ROUND_CLOSEST(prate, rate);

	if (sysref_div < 0x07 || sysref_div > 0x1fff) {
		dev_err(lmk->dev, "SYSREF divider out of range\n");
		return -EINVAL;
	}

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB,
			   FIELD_GET(0x1f00, sysref_div));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_LSB,
			    FIELD_GET(0x00ff, sysref_div));
	if (ret)
		return ret;

	ret = lmk04832_sclk_sync_sequence(lmk);
	if (ret)
		dev_err(lmk->dev, "SYNC sequence failed\n");

	return ret;
}

static const struct clk_ops lmk04832_sclk_ops = {
	.is_enabled = lmk04832_sclk_is_enabled,
	.prepare = lmk04832_sclk_prepare,
	.unprepare = lmk04832_sclk_unprepare,
	.recalc_rate = lmk04832_sclk_recalc_rate,
	.round_rate = lmk04832_sclk_round_rate,
	.set_rate = lmk04832_sclk_set_rate,
};

static int lmk04832_register_sclk(struct lmk04832 *lmk)
{
	const char *parent_names[1];
	struct clk_init_data init;
	int ret;

	init.name = "lmk-sclk";
	parent_names[0] = clk_hw_get_name(&lmk->vco);
	init.parent_names = parent_names;

	init.ops = &lmk04832_sclk_ops;
	init.flags = CLK_SET_RATE_PARENT;
	init.num_parents = 1;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
				 LMK04832_BIT_SYSREF_MUX,
				 FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
					    lmk->sysref_mux));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB,
			   FIELD_GET(0x00ff, lmk->sysref_ddly));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB,
			   FIELD_GET(0x1f00, lmk->sysref_ddly));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_PULSE_CNT,
			   ilog2(lmk->sysref_pulse_cnt));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
				 LMK04832_BIT_SYSREF_DDLY_PD |
				 LMK04832_BIT_SYSREF_PLSR_PD,
				 FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0) |
				 FIELD_PREP(LMK04832_BIT_SYSREF_PLSR_PD, 0));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC,
			   FIELD_PREP(LMK04832_BIT_SYNC_POL, 0) |
			   FIELD_PREP(LMK04832_BIT_SYNC_EN, 1) |
			   FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode));
	if (ret)
		return ret;

	ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
	if (ret)
		return ret;

	lmk->sclk.init = &init;
	return devm_clk_hw_register(lmk->dev, &lmk->sclk);
}

static int lmk04832_dclk_is_enabled(struct clk_hw *hw)
{
	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
	struct lmk04832 *lmk = dclk->lmk;
	unsigned int tmp;
	int ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id),
			  &tmp);
	if (ret)
		return ret;

	return !FIELD_GET(LMK04832_BIT_DCLKX_Y_PD, tmp);
}

static int lmk04832_dclk_prepare(struct clk_hw *hw)
{
	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
	struct lmk04832 *lmk = dclk->lmk;

	return regmap_update_bits(lmk->regmap,
				  LMK04832_REG_CLKOUT_CTRL3(dclk->id),
				  LMK04832_BIT_DCLKX_Y_PD, 0x00);
}

static void lmk04832_dclk_unprepare(struct clk_hw *hw)
{
	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
	struct lmk04832 *lmk = dclk->lmk;

	regmap_update_bits(lmk->regmap,
			   LMK04832_REG_CLKOUT_CTRL3(dclk->id),
			   LMK04832_BIT_DCLKX_Y_PD, 0xff);
}

static unsigned long lmk04832_dclk_recalc_rate(struct clk_hw *hw,
					       unsigned long prate)
{
	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
	struct lmk04832 *lmk = dclk->lmk;
	unsigned int dclk_div;
	unsigned int lsb, msb;
	unsigned long rate;
	int ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
			  &lsb);
	if (ret)
		return ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id),
			  &msb);
	if (ret)
		return ret;

	dclk_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
	rate = DIV_ROUND_CLOSEST(prate, dclk_div);

	return rate;
};

static long lmk04832_dclk_round_rate(struct clk_hw *hw, unsigned long rate,
				     unsigned long *prate)
{
	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
	struct lmk04832 *lmk = dclk->lmk;
	unsigned long dclk_rate;
	unsigned int dclk_div;

	dclk_div = DIV_ROUND_CLOSEST(*prate, rate);
	dclk_rate = DIV_ROUND_CLOSEST(*prate, dclk_div);

	if (dclk_div < 1 || dclk_div > 0x3ff) {
		dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
		return -EINVAL;
	}

	if (rate != dclk_rate)
		return -EINVAL;

	return dclk_rate;
};

static int lmk04832_dclk_set_rate(struct clk_hw *hw, unsigned long rate,
				  unsigned long prate)
{
	struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
	struct lmk04832 *lmk = dclk->lmk;
	unsigned int dclk_div;
	int ret;

	dclk_div = DIV_ROUND_CLOSEST(prate, rate);

	if (dclk_div > 0x3ff) {
		dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
		return -EINVAL;
	}

	/* Enable Duty Cycle Correction */
	if (dclk_div == 1) {
		ret = regmap_update_bits(lmk->regmap,
					 LMK04832_REG_CLKOUT_CTRL3(dclk->id),
					 LMK04832_BIT_DCLKX_Y_DCC,
					 FIELD_PREP(LMK04832_BIT_DCLKX_Y_DCC, 1));
		if (ret)
			return ret;
	}

	/*
	 * While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC
	 * procedure requires to first program Divide-by-4 and then back to
	 * Divide-by-2 or Divide-by-3 before doing SYNC.
	 */
	if (dclk_div == 2 || dclk_div == 3) {
		ret = regmap_update_bits(lmk->regmap,
					 LMK04832_REG_CLKOUT_CTRL2(dclk->id),
					 LMK04832_BIT_DCLK_DIV_MSB, 0x00);
		if (ret)
			return ret;

		ret = regmap_write(lmk->regmap,
				   LMK04832_REG_CLKOUT_CTRL0(dclk->id), 0x04);
		if (ret)
			return ret;
	}

	ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
			   FIELD_GET(0x0ff, dclk_div));
	if (ret)
		return ret;

	ret = regmap_update_bits(lmk->regmap,
				  LMK04832_REG_CLKOUT_CTRL2(dclk->id),
				  LMK04832_BIT_DCLK_DIV_MSB,
				  FIELD_GET(0x300, dclk_div));
	if (ret)
		return ret;

	ret = lmk04832_sclk_sync_sequence(lmk);
	if (ret)
		dev_err(lmk->dev, "SYNC sequence failed\n");

	return ret;
};

static const struct clk_ops lmk04832_dclk_ops = {
	.is_enabled = lmk04832_dclk_is_enabled,
	.prepare = lmk04832_dclk_prepare,
	.unprepare = lmk04832_dclk_unprepare,
	.recalc_rate = lmk04832_dclk_recalc_rate,
	.round_rate = lmk04832_dclk_round_rate,
	.set_rate = lmk04832_dclk_set_rate,
};

static int lmk04832_clkout_is_enabled(struct clk_hw *hw)
{
	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
	struct lmk04832 *lmk = clkout->lmk;
	unsigned int clkoutx_y_pd;
	unsigned int sclkx_y_pd;
	unsigned int tmp;
	u32 enabled;
	int ret;
	u8 fmt;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id),
			  &clkoutx_y_pd);
	if (ret)
		return ret;

	enabled = !FIELD_GET(LMK04832_BIT_CLKOUTX_Y_PD, clkoutx_y_pd);

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
			  &tmp);
	if (ret)
		return ret;

	if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
		ret = regmap_read(lmk->regmap,
				  LMK04832_REG_CLKOUT_CTRL4(clkout->id),
				  &sclkx_y_pd);
		if (ret)
			return ret;

		enabled = enabled && !FIELD_GET(LMK04832_BIT_SCLK_PD, sclkx_y_pd);
	}

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
			  &tmp);
	if (ret)
		return ret;

	if (clkout->id % 2)
		fmt = FIELD_GET(0xf0, tmp);
	else
		fmt = FIELD_GET(0x0f, tmp);

	return enabled && !fmt;
}

static int lmk04832_clkout_prepare(struct clk_hw *hw)
{
	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
	struct lmk04832 *lmk = clkout->lmk;
	unsigned int tmp;
	int ret;

	if (clkout->format == LMK04832_VAL_CLKOUT_FMT_POWERDOWN)
		dev_err(lmk->dev, "prepared %s but format is powerdown\n",
			clk_hw_get_name(hw));

	ret = regmap_update_bits(lmk->regmap,
				 LMK04832_REG_CLKOUT_CTRL2(clkout->id),
				 LMK04832_BIT_CLKOUTX_Y_PD, 0x00);
	if (ret)
		return ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
			  &tmp);
	if (ret)
		return ret;

	if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
		ret = regmap_update_bits(lmk->regmap,
					 LMK04832_REG_CLKOUT_CTRL4(clkout->id),
					 LMK04832_BIT_SCLK_PD, 0x00);
		if (ret)
			return ret;
	}

	return regmap_update_bits(lmk->regmap,
				  LMK04832_REG_CLKOUT_FMT(clkout->id),
				  LMK04832_BIT_CLKOUT_FMT(clkout->id),
				  clkout->format << 4 * (clkout->id % 2));
}

static void lmk04832_clkout_unprepare(struct clk_hw *hw)
{
	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
	struct lmk04832 *lmk = clkout->lmk;

	regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
			   LMK04832_BIT_CLKOUT_FMT(clkout->id),
			   0x00);
}

static int lmk04832_clkout_set_parent(struct clk_hw *hw, uint8_t index)
{
	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
	struct lmk04832 *lmk = clkout->lmk;

	return regmap_update_bits(lmk->regmap,
				  LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
				  LMK04832_BIT_CLKOUT_SRC_MUX,
				  FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
					     index));
}

static uint8_t lmk04832_clkout_get_parent(struct clk_hw *hw)
{
	struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
	struct lmk04832 *lmk = clkout->lmk;
	unsigned int tmp;
	int ret;

	ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
			  &tmp);
	if (ret)
		return ret;

	return FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp);
}

static const struct clk_ops lmk04832_clkout_ops = {
	.is_enabled = lmk04832_clkout_is_enabled,
	.prepare = lmk04832_clkout_prepare,
	.unprepare = lmk04832_clkout_unprepare,
	.set_parent = lmk04832_clkout_set_parent,
	.get_parent = lmk04832_clkout_get_parent,
};

static int lmk04832_register_clkout(struct lmk04832 *lmk, const int num)
{
	char name[] = "lmk-clkoutXX";
	char dclk_name[] = "lmk-dclkXX_YY";
	const char *parent_names[2];
	struct clk_init_data init;
	int dclk_num = num / 2;
	int ret;

	if (num % 2 == 0) {
		sprintf(dclk_name, "lmk-dclk%02d_%02d", num, num + 1);
		init.name = dclk_name;
		parent_names[0] = clk_hw_get_name(&lmk->vco);
		init.ops = &lmk04832_dclk_ops;
		init.flags = CLK_SET_RATE_PARENT;
		init.num_parents = 1;

		lmk->dclk[dclk_num].id = num;
		lmk->dclk[dclk_num].lmk = lmk;
		lmk->dclk[dclk_num].hw.init = &init;

		ret = devm_clk_hw_register(lmk->dev, &lmk->dclk[dclk_num].hw);
		if (ret)
			return ret;
	} else {
		sprintf(dclk_name, "lmk-dclk%02d_%02d", num - 1, num);
	}

	if (of_property_read_string_index(lmk->dev->of_node,
					  "clock-output-names",
					  num, &init.name)) {
		sprintf(name, "lmk-clkout%02d", num);
		init.name = name;
	}

	parent_names[0] = dclk_name;
	parent_names[1] = clk_hw_get_name(&lmk->sclk);
	init.parent_names = parent_names;
	init.ops = &lmk04832_clkout_ops;
	init.flags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT;
	init.num_parents = ARRAY_SIZE(parent_names);

	lmk->clkout[num].id = num;
	lmk->clkout[num].lmk = lmk;
	lmk->clkout[num].hw.init = &init;
	lmk->clk_data->hws[num] = &lmk->clkout[num].hw;

	/* Set initial parent */
	regmap_update_bits(lmk->regmap,
			   LMK04832_REG_CLKOUT_SRC_MUX(num),
			   LMK04832_BIT_CLKOUT_SRC_MUX,
			   FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
				      lmk->clkout[num].sysref));

	return devm_clk_hw_register(lmk->dev, &lmk->clkout[num].hw);
}

static int lmk04832_set_spi_rdbk(const struct lmk04832 *lmk, const int rdbk_pin)
{
	int reg;
	int ret;

	dev_info(lmk->dev, "setting up 4-wire mode\n");
	ret = regmap_write(lmk->regmap, LMK04832_REG_RST3W,
			   LMK04832_BIT_SPI_3WIRE_DIS);
	if (ret)
		return ret;

	switch (rdbk_pin) {
	case RDBK_CLKIN_SEL0:
		reg = LMK04832_REG_CLKIN_SEL0;
		break;
	case RDBK_CLKIN_SEL1:
		reg = LMK04832_REG_CLKIN_SEL1;
		break;
	case RDBK_RESET:
		reg = LMK04832_REG_CLKIN_RST;
		break;
	default:
		return -EINVAL;
	}

	return regmap_write(lmk->regmap, reg,
			    FIELD_PREP(LMK04832_BIT_CLKIN_SEL_MUX,
				       LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK) |
			    FIELD_PREP(LMK04832_BIT_CLKIN_SEL_TYPE,
				       LMK04832_VAL_CLKIN_SEL_TYPE_OUT));
}

static int lmk04832_probe(struct spi_device *spi)
{
	const struct lmk04832_device_info *info;
	int rdbk_pin = RDBK_CLKIN_SEL1;
	struct device_node *child;
	struct lmk04832 *lmk;
	u8 tmp[3];
	int ret;
	int i;

	info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];

	lmk = devm_kzalloc(&spi->dev, sizeof(struct lmk04832), GFP_KERNEL);
	if (!lmk)
		return -ENOMEM;

	lmk->dev = &spi->dev;

	lmk->oscin = devm_clk_get(lmk->dev, "oscin");
	if (IS_ERR(lmk->oscin)) {
		dev_err(lmk->dev, "failed to get oscin clock\n");
		return PTR_ERR(lmk->oscin);
	}

	ret = clk_prepare_enable(lmk->oscin);
	if (ret)
		return ret;

	lmk->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset",
						  GPIOD_OUT_LOW);

	lmk->dclk = devm_kcalloc(lmk->dev, info->num_channels >> 1,
				 sizeof(struct lmk_dclk), GFP_KERNEL);
	if (!lmk->dclk) {
		ret = -ENOMEM;
		goto err_disable_oscin;
	}

	lmk->clkout = devm_kcalloc(lmk->dev, info->num_channels,
				   sizeof(*lmk->clkout), GFP_KERNEL);
	if (!lmk->clkout) {
		ret = -ENOMEM;
		goto err_disable_oscin;
	}

	lmk->clk_data = devm_kzalloc(lmk->dev, struct_size(lmk->clk_data, hws,
							   info->num_channels),
				     GFP_KERNEL);
	if (!lmk->clk_data) {
		ret = -ENOMEM;
		goto err_disable_oscin;
	}

	device_property_read_u32(lmk->dev, "ti,vco-hz", &lmk->vco_rate);

	lmk->sysref_ddly = 8;
	device_property_read_u32(lmk->dev, "ti,sysref-ddly", &lmk->sysref_ddly);

	lmk->sysref_mux = LMK04832_VAL_SYSREF_MUX_CONTINUOUS;
	device_property_read_u32(lmk->dev, "ti,sysref-mux",
				 &lmk->sysref_mux);

	lmk->sync_mode = LMK04832_VAL_SYNC_MODE_OFF;
	device_property_read_u32(lmk->dev, "ti,sync-mode",
				 &lmk->sync_mode);

	lmk->sysref_pulse_cnt = 4;
	device_property_read_u32(lmk->dev, "ti,sysref-pulse-count",
				 &lmk->sysref_pulse_cnt);

	for_each_child_of_node(lmk->dev->of_node, child) {
		int reg;

		ret = of_property_read_u32(child, "reg", &reg);
		if (ret) {
			dev_err(lmk->dev, "missing reg property in child: %s\n",
				child->full_name);
			of_node_put(child);
			goto err_disable_oscin;
		}

		of_property_read_u32(child, "ti,clkout-fmt",
				     &lmk->clkout[reg].format);

		if (lmk->clkout[reg].format >= 0x0a && reg % 2 == 0
		    && reg != 8 && reg != 10)
			dev_err(lmk->dev, "invalid format for clkout%02d\n",
				reg);

		lmk->clkout[reg].sysref =
			of_property_read_bool(child, "ti,clkout-sysref");
	}

	lmk->regmap = devm_regmap_init_spi(spi, &regmap_config);
	if (IS_ERR(lmk->regmap)) {
		dev_err(lmk->dev, "%s: regmap allocation failed: %ld\n",

			__func__, PTR_ERR(lmk->regmap));
		ret = PTR_ERR(lmk->regmap);
		goto err_disable_oscin;
	}

	regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_RESET);

	if (!(spi->mode & SPI_3WIRE)) {
		device_property_read_u32(lmk->dev, "ti,spi-4wire-rdbk",
					 &rdbk_pin);
		ret = lmk04832_set_spi_rdbk(lmk, rdbk_pin);
		if (ret)
			goto err_disable_oscin;
	}

	regmap_bulk_read(lmk->regmap, LMK04832_REG_ID_PROD_MSB, &tmp, 3);
	if ((tmp[0] << 8 | tmp[1]) != info->pid || tmp[2] != info->maskrev) {
		dev_err(lmk->dev, "unsupported device type: pid 0x%04x, maskrev 0x%02x\n",
			tmp[0] << 8 | tmp[1], tmp[2]);
		ret = -EINVAL;
		goto err_disable_oscin;
	}

	ret = lmk04832_register_vco(lmk);
	if (ret) {
		dev_err(lmk->dev, "failed to init device clock path\n");
		goto err_disable_oscin;
	}

	if (lmk->vco_rate) {
		dev_info(lmk->dev, "setting VCO rate to %u Hz\n", lmk->vco_rate);
		ret = clk_set_rate(lmk->vco.clk, lmk->vco_rate);
		if (ret) {
			dev_err(lmk->dev, "failed to set VCO rate\n");
			goto err_disable_vco;
		}
	}

	ret = lmk04832_register_sclk(lmk);
	if (ret) {
		dev_err(lmk->dev, "failed to init SYNC/SYSREF clock path\n");
		goto err_disable_vco;
	}

	for (i = 0; i < info->num_channels; i++) {
		ret = lmk04832_register_clkout(lmk, i);
		if (ret) {
			dev_err(lmk->dev, "failed to register clk %d\n", i);
			goto err_disable_vco;
		}
	}

	lmk->clk_data->num = info->num_channels;
	ret = of_clk_add_hw_provider(lmk->dev->of_node, of_clk_hw_onecell_get,
				     lmk->clk_data);
	if (ret) {
		dev_err(lmk->dev, "failed to add provider (%d)\n", ret);
		goto err_disable_vco;
	}

	spi_set_drvdata(spi, lmk);

	return 0;

err_disable_vco:
	clk_disable_unprepare(lmk->vco.clk);

err_disable_oscin:
	clk_disable_unprepare(lmk->oscin);

	return ret;
}

static void lmk04832_remove(struct spi_device *spi)
{
	struct lmk04832 *lmk = spi_get_drvdata(spi);

	clk_disable_unprepare(lmk->oscin);
	of_clk_del_provider(spi->dev.of_node);
}
static const struct spi_device_id lmk04832_id[] = {
	{ "lmk04832", LMK04832 },
	{}
};
MODULE_DEVICE_TABLE(spi, lmk04832_id);

static const struct of_device_id lmk04832_of_id[] = {
	{ .compatible = "ti,lmk04832" },
	{}
};
MODULE_DEVICE_TABLE(of, lmk04832_of_id);

static struct spi_driver lmk04832_driver = {
	.driver = {
		.name	= "lmk04832",
		.of_match_table = lmk04832_of_id,
	},
	.probe		= lmk04832_probe,
	.remove		= lmk04832_remove,
	.id_table	= lmk04832_id,
};
module_spi_driver(lmk04832_driver);

MODULE_AUTHOR("Liam Beguin <lvb@xiphos.com>");
MODULE_DESCRIPTION("Texas Instruments LMK04832");
MODULE_LICENSE("GPL v2");