Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sören Brinkmann | 2136 | 95.27% | 1 | 10.00% |
Stephen Kitt | 56 | 2.50% | 1 | 10.00% |
Saeed Nowshadi | 28 | 1.25% | 1 | 10.00% |
Stephen Boyd | 18 | 0.80% | 3 | 30.00% |
Krzysztof Kozlowski | 1 | 0.04% | 1 | 10.00% |
Thomas Gleixner | 1 | 0.04% | 1 | 10.00% |
Michal Simek | 1 | 0.04% | 1 | 10.00% |
Uwe Kleine-König | 1 | 0.04% | 1 | 10.00% |
Total | 2242 | 10 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Silicon Labs Si570/Si571 Programmable XO/VCXO * * Copyright (C) 2010, 2011 Ericsson AB. * Copyright (C) 2011 Guenter Roeck. * Copyright (C) 2011 - 2021 Xilinx Inc. * * Author: Guenter Roeck <guenter.roeck@ericsson.com> * Sören Brinkmann <soren.brinkmann@xilinx.com> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> /* Si570 registers */ #define SI570_REG_HS_N1 7 #define SI570_REG_N1_RFREQ0 8 #define SI570_REG_RFREQ1 9 #define SI570_REG_RFREQ2 10 #define SI570_REG_RFREQ3 11 #define SI570_REG_RFREQ4 12 #define SI570_REG_CONTROL 135 #define SI570_REG_FREEZE_DCO 137 #define SI570_DIV_OFFSET_7PPM 6 #define HS_DIV_SHIFT 5 #define HS_DIV_MASK 0xe0 #define HS_DIV_OFFSET 4 #define N1_6_2_MASK 0x1f #define N1_1_0_MASK 0xc0 #define RFREQ_37_32_MASK 0x3f #define SI570_MIN_FREQ 10000000L #define SI570_MAX_FREQ 1417500000L #define SI598_MAX_FREQ 525000000L #define FDCO_MIN 4850000000LL #define FDCO_MAX 5670000000LL #define SI570_CNTRL_RECALL (1 << 0) #define SI570_CNTRL_FREEZE_M (1 << 5) #define SI570_CNTRL_NEWFREQ (1 << 6) #define SI570_FREEZE_DCO (1 << 4) /** * struct clk_si570: * @hw: Clock hw struct * @regmap: Device's regmap * @div_offset: Rgister offset for dividers * @max_freq: Maximum frequency for this device * @fxtal: Factory xtal frequency * @n1: Clock divider N1 * @hs_div: Clock divider HSDIV * @rfreq: Clock multiplier RFREQ * @frequency: Current output frequency * @i2c_client: I2C client pointer */ struct clk_si570 { struct clk_hw hw; struct regmap *regmap; unsigned int div_offset; u64 max_freq; u64 fxtal; unsigned int n1; unsigned int hs_div; u64 rfreq; u64 frequency; struct i2c_client *i2c_client; }; #define to_clk_si570(_hw) container_of(_hw, struct clk_si570, hw) enum clk_si570_variant { si57x, si59x }; /** * si570_get_divs() - Read clock dividers from HW * @data: Pointer to struct clk_si570 * @rfreq: Fractional multiplier (output) * @n1: Divider N1 (output) * @hs_div: Divider HSDIV (output) * Returns 0 on success, negative errno otherwise. * * Retrieve clock dividers and multipliers from the HW. */ static int si570_get_divs(struct clk_si570 *data, u64 *rfreq, unsigned int *n1, unsigned int *hs_div) { int err; u8 reg[6]; u64 tmp; err = regmap_bulk_read(data->regmap, SI570_REG_HS_N1 + data->div_offset, reg, ARRAY_SIZE(reg)); if (err) return err; *hs_div = ((reg[0] & HS_DIV_MASK) >> HS_DIV_SHIFT) + HS_DIV_OFFSET; *n1 = ((reg[0] & N1_6_2_MASK) << 2) + ((reg[1] & N1_1_0_MASK) >> 6) + 1; /* Handle invalid cases */ if (*n1 > 1) *n1 &= ~1; tmp = reg[1] & RFREQ_37_32_MASK; tmp = (tmp << 8) + reg[2]; tmp = (tmp << 8) + reg[3]; tmp = (tmp << 8) + reg[4]; tmp = (tmp << 8) + reg[5]; *rfreq = tmp; return 0; } /** * si570_get_defaults() - Get default values * @data: Driver data structure * @fout: Factory frequency output * @skip_recall: If true, don't recall NVM into RAM * Returns 0 on success, negative errno otherwise. */ static int si570_get_defaults(struct clk_si570 *data, u64 fout, bool skip_recall) { int err; u64 fdco; if (!skip_recall) regmap_write(data->regmap, SI570_REG_CONTROL, SI570_CNTRL_RECALL); err = si570_get_divs(data, &data->rfreq, &data->n1, &data->hs_div); if (err) return err; /* * Accept optional precision loss to avoid arithmetic overflows. * Acceptable per Silicon Labs Application Note AN334. */ fdco = fout * data->n1 * data->hs_div; if (fdco >= (1LL << 36)) data->fxtal = div64_u64(fdco << 24, data->rfreq >> 4); else data->fxtal = div64_u64(fdco << 28, data->rfreq); data->frequency = fout; return 0; } /** * si570_update_rfreq() - Update clock multiplier * @data: Driver data structure * Passes on regmap_bulk_write() return value. */ static int si570_update_rfreq(struct clk_si570 *data) { u8 reg[5]; reg[0] = ((data->n1 - 1) << 6) | ((data->rfreq >> 32) & RFREQ_37_32_MASK); reg[1] = (data->rfreq >> 24) & 0xff; reg[2] = (data->rfreq >> 16) & 0xff; reg[3] = (data->rfreq >> 8) & 0xff; reg[4] = data->rfreq & 0xff; return regmap_bulk_write(data->regmap, SI570_REG_N1_RFREQ0 + data->div_offset, reg, ARRAY_SIZE(reg)); } /** * si570_calc_divs() - Caluclate clock dividers * @frequency: Target frequency * @data: Driver data structure * @out_rfreq: RFREG fractional multiplier (output) * @out_n1: Clock divider N1 (output) * @out_hs_div: Clock divider HSDIV (output) * Returns 0 on success, negative errno otherwise. * * Calculate the clock dividers (@out_hs_div, @out_n1) and clock multiplier * (@out_rfreq) for a given target @frequency. */ static int si570_calc_divs(unsigned long frequency, struct clk_si570 *data, u64 *out_rfreq, unsigned int *out_n1, unsigned int *out_hs_div) { int i; unsigned int n1, hs_div; u64 fdco, best_fdco = ULLONG_MAX; static const uint8_t si570_hs_div_values[] = { 11, 9, 7, 6, 5, 4 }; for (i = 0; i < ARRAY_SIZE(si570_hs_div_values); i++) { hs_div = si570_hs_div_values[i]; /* Calculate lowest possible value for n1 */ n1 = div_u64(div_u64(FDCO_MIN, hs_div), frequency); if (!n1 || (n1 & 1)) n1++; while (n1 <= 128) { fdco = (u64)frequency * (u64)hs_div * (u64)n1; if (fdco > FDCO_MAX) break; if (fdco >= FDCO_MIN && fdco < best_fdco) { *out_n1 = n1; *out_hs_div = hs_div; *out_rfreq = div64_u64(fdco << 28, data->fxtal); best_fdco = fdco; } n1 += (n1 == 1 ? 1 : 2); } } if (best_fdco == ULLONG_MAX) return -EINVAL; return 0; } static unsigned long si570_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { int err; u64 rfreq, rate; unsigned int n1, hs_div; struct clk_si570 *data = to_clk_si570(hw); err = si570_get_divs(data, &rfreq, &n1, &hs_div); if (err) { dev_err(&data->i2c_client->dev, "unable to recalc rate\n"); return data->frequency; } rfreq = div_u64(rfreq, hs_div * n1); rate = (data->fxtal * rfreq) >> 28; return rate; } static long si570_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { int err; u64 rfreq; unsigned int n1, hs_div; struct clk_si570 *data = to_clk_si570(hw); if (!rate) return 0; if (div64_u64(abs(rate - data->frequency) * 10000LL, data->frequency) < 35) { rfreq = div64_u64((data->rfreq * rate) + div64_u64(data->frequency, 2), data->frequency); n1 = data->n1; hs_div = data->hs_div; } else { err = si570_calc_divs(rate, data, &rfreq, &n1, &hs_div); if (err) { dev_err(&data->i2c_client->dev, "unable to round rate\n"); return 0; } } return rate; } /** * si570_set_frequency() - Adjust output frequency * @data: Driver data structure * @frequency: Target frequency * Returns 0 on success. * * Update output frequency for big frequency changes (> 3,500 ppm). */ static int si570_set_frequency(struct clk_si570 *data, unsigned long frequency) { int err; err = si570_calc_divs(frequency, data, &data->rfreq, &data->n1, &data->hs_div); if (err) return err; /* * The DCO reg should be accessed with a read-modify-write operation * per AN334 */ regmap_write(data->regmap, SI570_REG_FREEZE_DCO, SI570_FREEZE_DCO); regmap_write(data->regmap, SI570_REG_HS_N1 + data->div_offset, ((data->hs_div - HS_DIV_OFFSET) << HS_DIV_SHIFT) | (((data->n1 - 1) >> 2) & N1_6_2_MASK)); si570_update_rfreq(data); regmap_write(data->regmap, SI570_REG_FREEZE_DCO, 0); regmap_write(data->regmap, SI570_REG_CONTROL, SI570_CNTRL_NEWFREQ); /* Applying a new frequency can take up to 10ms */ usleep_range(10000, 12000); return 0; } /** * si570_set_frequency_small() - Adjust output frequency * @data: Driver data structure * @frequency: Target frequency * Returns 0 on success. * * Update output frequency for small frequency changes (< 3,500 ppm). */ static int si570_set_frequency_small(struct clk_si570 *data, unsigned long frequency) { /* * This is a re-implementation of DIV_ROUND_CLOSEST * using the div64_u64 function lieu of letting the compiler * insert EABI calls */ data->rfreq = div64_u64((data->rfreq * frequency) + div_u64(data->frequency, 2), data->frequency); regmap_write(data->regmap, SI570_REG_CONTROL, SI570_CNTRL_FREEZE_M); si570_update_rfreq(data); regmap_write(data->regmap, SI570_REG_CONTROL, 0); /* Applying a new frequency (small change) can take up to 100us */ usleep_range(100, 200); return 0; } static int si570_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_si570 *data = to_clk_si570(hw); struct i2c_client *client = data->i2c_client; int err; if (rate < SI570_MIN_FREQ || rate > data->max_freq) { dev_err(&client->dev, "requested frequency %lu Hz is out of range\n", rate); return -EINVAL; } if (div64_u64(abs(rate - data->frequency) * 10000LL, data->frequency) < 35) err = si570_set_frequency_small(data, rate); else err = si570_set_frequency(data, rate); if (err) return err; data->frequency = rate; return 0; } static const struct clk_ops si570_clk_ops = { .recalc_rate = si570_recalc_rate, .round_rate = si570_round_rate, .set_rate = si570_set_rate, }; static bool si570_regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case SI570_REG_CONTROL: return true; default: return false; } } static bool si570_regmap_is_writeable(struct device *dev, unsigned int reg) { switch (reg) { case SI570_REG_HS_N1 ... (SI570_REG_RFREQ4 + SI570_DIV_OFFSET_7PPM): case SI570_REG_CONTROL: case SI570_REG_FREEZE_DCO: return true; default: return false; } } static const struct regmap_config si570_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_RBTREE, .max_register = 137, .writeable_reg = si570_regmap_is_writeable, .volatile_reg = si570_regmap_is_volatile, }; static const struct i2c_device_id si570_id[] = { { "si570", si57x }, { "si571", si57x }, { "si598", si59x }, { "si599", si59x }, { } }; MODULE_DEVICE_TABLE(i2c, si570_id); static int si570_probe(struct i2c_client *client) { struct clk_si570 *data; struct clk_init_data init; const struct i2c_device_id *id = i2c_match_id(si570_id, client); u32 initial_fout, factory_fout, stability; bool skip_recall; int err; enum clk_si570_variant variant = id->driver_data; data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; init.ops = &si570_clk_ops; init.flags = 0; init.num_parents = 0; data->hw.init = &init; data->i2c_client = client; if (variant == si57x) { err = of_property_read_u32(client->dev.of_node, "temperature-stability", &stability); if (err) { dev_err(&client->dev, "'temperature-stability' property missing\n"); return err; } /* adjust register offsets for 7ppm devices */ if (stability == 7) data->div_offset = SI570_DIV_OFFSET_7PPM; data->max_freq = SI570_MAX_FREQ; } else { data->max_freq = SI598_MAX_FREQ; } if (of_property_read_string(client->dev.of_node, "clock-output-names", &init.name)) init.name = client->dev.of_node->name; err = of_property_read_u32(client->dev.of_node, "factory-fout", &factory_fout); if (err) { dev_err(&client->dev, "'factory-fout' property missing\n"); return err; } skip_recall = of_property_read_bool(client->dev.of_node, "silabs,skip-recall"); data->regmap = devm_regmap_init_i2c(client, &si570_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, "failed to allocate register map\n"); return PTR_ERR(data->regmap); } i2c_set_clientdata(client, data); err = si570_get_defaults(data, factory_fout, skip_recall); if (err) return err; err = devm_clk_hw_register(&client->dev, &data->hw); if (err) { dev_err(&client->dev, "clock registration failed\n"); return err; } err = of_clk_add_hw_provider(client->dev.of_node, of_clk_hw_simple_get, &data->hw); if (err) { dev_err(&client->dev, "unable to add clk provider\n"); return err; } /* Read the requested initial output frequency from device tree */ if (!of_property_read_u32(client->dev.of_node, "clock-frequency", &initial_fout)) { err = clk_set_rate(data->hw.clk, initial_fout); if (err) { of_clk_del_provider(client->dev.of_node); return err; } } /* Display a message indicating that we've successfully registered */ dev_info(&client->dev, "registered, current frequency %llu Hz\n", data->frequency); return 0; } static void si570_remove(struct i2c_client *client) { of_clk_del_provider(client->dev.of_node); } static const struct of_device_id clk_si570_of_match[] = { { .compatible = "silabs,si570" }, { .compatible = "silabs,si571" }, { .compatible = "silabs,si598" }, { .compatible = "silabs,si599" }, { }, }; MODULE_DEVICE_TABLE(of, clk_si570_of_match); static struct i2c_driver si570_driver = { .driver = { .name = "si570", .of_match_table = clk_si570_of_match, }, .probe_new = si570_probe, .remove = si570_remove, .id_table = si570_id, }; module_i2c_driver(si570_driver); MODULE_AUTHOR("Guenter Roeck <guenter.roeck@ericsson.com>"); MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com>"); MODULE_DESCRIPTION("Si570 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1