Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rajendra Nayak | 873 | 38.66% | 10 | 32.26% |
Stephen Boyd | 607 | 26.88% | 5 | 16.13% |
Björn Andersson | 252 | 11.16% | 3 | 9.68% |
Amit Nischal | 163 | 7.22% | 3 | 9.68% |
Johan Hovold | 122 | 5.40% | 3 | 9.68% |
Taniya Das | 119 | 5.27% | 2 | 6.45% |
Dmitry Eremin-Solenikov | 58 | 2.57% | 1 | 3.23% |
Angelo G. Del Regno | 30 | 1.33% | 1 | 3.23% |
Jordan Crouse | 18 | 0.80% | 1 | 3.23% |
Jonathan Marek | 15 | 0.66% | 1 | 3.23% |
Thomas Gleixner | 1 | 0.04% | 1 | 3.23% |
Total | 2258 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, 2017-2018, 2022, The Linux Foundation. All rights reserved. */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/export.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/ktime.h> #include <linux/pm_domain.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset-controller.h> #include <linux/slab.h> #include "gdsc.h" #define PWR_ON_MASK BIT(31) #define EN_REST_WAIT_MASK GENMASK_ULL(23, 20) #define EN_FEW_WAIT_MASK GENMASK_ULL(19, 16) #define CLK_DIS_WAIT_MASK GENMASK_ULL(15, 12) #define SW_OVERRIDE_MASK BIT(2) #define HW_CONTROL_MASK BIT(1) #define SW_COLLAPSE_MASK BIT(0) #define GMEM_CLAMP_IO_MASK BIT(0) #define GMEM_RESET_MASK BIT(4) /* CFG_GDSCR */ #define GDSC_POWER_UP_COMPLETE BIT(16) #define GDSC_POWER_DOWN_COMPLETE BIT(15) #define GDSC_RETAIN_FF_ENABLE BIT(11) #define CFG_GDSCR_OFFSET 0x4 /* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */ #define EN_REST_WAIT_VAL 0x2 #define EN_FEW_WAIT_VAL 0x8 #define CLK_DIS_WAIT_VAL 0x2 /* Transition delay shifts */ #define EN_REST_WAIT_SHIFT 20 #define EN_FEW_WAIT_SHIFT 16 #define CLK_DIS_WAIT_SHIFT 12 #define RETAIN_MEM BIT(14) #define RETAIN_PERIPH BIT(13) #define TIMEOUT_US 500 #define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd) enum gdsc_status { GDSC_OFF, GDSC_ON }; /* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */ static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status) { unsigned int reg; u32 val; int ret; if (sc->flags & POLL_CFG_GDSCR) reg = sc->gdscr + CFG_GDSCR_OFFSET; else if (sc->gds_hw_ctrl) reg = sc->gds_hw_ctrl; else reg = sc->gdscr; ret = regmap_read(sc->regmap, reg, &val); if (ret) return ret; if (sc->flags & POLL_CFG_GDSCR) { switch (status) { case GDSC_ON: return !!(val & GDSC_POWER_UP_COMPLETE); case GDSC_OFF: return !!(val & GDSC_POWER_DOWN_COMPLETE); } } switch (status) { case GDSC_ON: return !!(val & PWR_ON_MASK); case GDSC_OFF: return !(val & PWR_ON_MASK); } return -EINVAL; } static int gdsc_hwctrl(struct gdsc *sc, bool en) { u32 val = en ? HW_CONTROL_MASK : 0; return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val); } static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status) { ktime_t start; start = ktime_get(); do { if (gdsc_check_status(sc, status)) return 0; } while (ktime_us_delta(ktime_get(), start) < TIMEOUT_US); if (gdsc_check_status(sc, status)) return 0; return -ETIMEDOUT; } static int gdsc_update_collapse_bit(struct gdsc *sc, bool val) { u32 reg, mask; int ret; if (sc->collapse_mask) { reg = sc->collapse_ctrl; mask = sc->collapse_mask; } else { reg = sc->gdscr; mask = SW_COLLAPSE_MASK; } ret = regmap_update_bits(sc->regmap, reg, mask, val ? mask : 0); if (ret) return ret; return 0; } static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status) { int ret; if (status == GDSC_ON && sc->rsupply) { ret = regulator_enable(sc->rsupply); if (ret < 0) return ret; } ret = gdsc_update_collapse_bit(sc, status == GDSC_OFF); /* If disabling votable gdscs, don't poll on status */ if ((sc->flags & VOTABLE) && status == GDSC_OFF) { /* * Add a short delay here to ensure that an enable * right after it was disabled does not put it in an * unknown state */ udelay(TIMEOUT_US); return 0; } if (sc->gds_hw_ctrl) { /* * The gds hw controller asserts/de-asserts the status bit soon * after it receives a power on/off request from a master. * The controller then takes around 8 xo cycles to start its * internal state machine and update the status bit. During * this time, the status bit does not reflect the true status * of the core. * Add a delay of 1 us between writing to the SW_COLLAPSE bit * and polling the status bit. */ udelay(1); } ret = gdsc_poll_status(sc, status); WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n"); if (!ret && status == GDSC_OFF && sc->rsupply) { ret = regulator_disable(sc->rsupply); if (ret < 0) return ret; } return ret; } static inline int gdsc_deassert_reset(struct gdsc *sc) { int i; for (i = 0; i < sc->reset_count; i++) sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]); return 0; } static inline int gdsc_assert_reset(struct gdsc *sc) { int i; for (i = 0; i < sc->reset_count; i++) sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]); return 0; } static inline void gdsc_force_mem_on(struct gdsc *sc) { int i; u32 mask = RETAIN_MEM; if (!(sc->flags & NO_RET_PERIPH)) mask |= RETAIN_PERIPH; for (i = 0; i < sc->cxc_count; i++) regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask); } static inline void gdsc_clear_mem_on(struct gdsc *sc) { int i; u32 mask = RETAIN_MEM; if (!(sc->flags & NO_RET_PERIPH)) mask |= RETAIN_PERIPH; for (i = 0; i < sc->cxc_count; i++) regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0); } static inline void gdsc_deassert_clamp_io(struct gdsc *sc) { regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, GMEM_CLAMP_IO_MASK, 0); } static inline void gdsc_assert_clamp_io(struct gdsc *sc) { regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, GMEM_CLAMP_IO_MASK, 1); } static inline void gdsc_assert_reset_aon(struct gdsc *sc) { regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, GMEM_RESET_MASK, 1); udelay(1); regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, GMEM_RESET_MASK, 0); } static void gdsc_retain_ff_on(struct gdsc *sc) { u32 mask = GDSC_RETAIN_FF_ENABLE; regmap_update_bits(sc->regmap, sc->gdscr, mask, mask); } static int gdsc_enable(struct generic_pm_domain *domain) { struct gdsc *sc = domain_to_gdsc(domain); int ret; if (sc->pwrsts == PWRSTS_ON) return gdsc_deassert_reset(sc); if (sc->flags & SW_RESET) { gdsc_assert_reset(sc); udelay(1); gdsc_deassert_reset(sc); } if (sc->flags & CLAMP_IO) { if (sc->flags & AON_RESET) gdsc_assert_reset_aon(sc); gdsc_deassert_clamp_io(sc); } ret = gdsc_toggle_logic(sc, GDSC_ON); if (ret) return ret; if (sc->pwrsts & PWRSTS_OFF) gdsc_force_mem_on(sc); /* * If clocks to this power domain were already on, they will take an * additional 4 clock cycles to re-enable after the power domain is * enabled. Delay to account for this. A delay is also needed to ensure * clocks are not enabled within 400ns of enabling power to the * memories. */ udelay(1); /* Turn on HW trigger mode if supported */ if (sc->flags & HW_CTRL) { ret = gdsc_hwctrl(sc, true); if (ret) return ret; /* * Wait for the GDSC to go through a power down and * up cycle. In case a firmware ends up polling status * bits for the gdsc, it might read an 'on' status before * the GDSC can finish the power cycle. * We wait 1us before returning to ensure the firmware * can't immediately poll the status bits. */ udelay(1); } if (sc->flags & RETAIN_FF_ENABLE) gdsc_retain_ff_on(sc); return 0; } static int gdsc_disable(struct generic_pm_domain *domain) { struct gdsc *sc = domain_to_gdsc(domain); int ret; if (sc->pwrsts == PWRSTS_ON) return gdsc_assert_reset(sc); /* Turn off HW trigger mode if supported */ if (sc->flags & HW_CTRL) { ret = gdsc_hwctrl(sc, false); if (ret < 0) return ret; /* * Wait for the GDSC to go through a power down and * up cycle. In case we end up polling status * bits for the gdsc before the power cycle is completed * it might read an 'on' status wrongly. */ udelay(1); ret = gdsc_poll_status(sc, GDSC_ON); if (ret) return ret; } if (sc->pwrsts & PWRSTS_OFF) gdsc_clear_mem_on(sc); /* * If the GDSC supports only a Retention state, apart from ON, * leave it in ON state. * There is no SW control to transition the GDSC into * Retention state. This happens in HW when the parent * domain goes down to a Low power state */ if (sc->pwrsts == PWRSTS_RET_ON) return 0; ret = gdsc_toggle_logic(sc, GDSC_OFF); if (ret) return ret; if (sc->flags & CLAMP_IO) gdsc_assert_clamp_io(sc); return 0; } static int gdsc_init(struct gdsc *sc) { u32 mask, val; int on, ret; /* * Disable HW trigger: collapse/restore occur based on registers writes. * Disable SW override: Use hardware state-machine for sequencing. * Configure wait time between states. */ mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK | EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK; if (!sc->en_rest_wait_val) sc->en_rest_wait_val = EN_REST_WAIT_VAL; if (!sc->en_few_wait_val) sc->en_few_wait_val = EN_FEW_WAIT_VAL; if (!sc->clk_dis_wait_val) sc->clk_dis_wait_val = CLK_DIS_WAIT_VAL; val = sc->en_rest_wait_val << EN_REST_WAIT_SHIFT | sc->en_few_wait_val << EN_FEW_WAIT_SHIFT | sc->clk_dis_wait_val << CLK_DIS_WAIT_SHIFT; ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val); if (ret) return ret; /* Force gdsc ON if only ON state is supported */ if (sc->pwrsts == PWRSTS_ON) { ret = gdsc_toggle_logic(sc, GDSC_ON); if (ret) return ret; } on = gdsc_check_status(sc, GDSC_ON); if (on < 0) return on; if (on) { /* The regulator must be on, sync the kernel state */ if (sc->rsupply) { ret = regulator_enable(sc->rsupply); if (ret < 0) return ret; } /* * Votable GDSCs can be ON due to Vote from other masters. * If a Votable GDSC is ON, make sure we have a Vote. */ if (sc->flags & VOTABLE) { ret = gdsc_update_collapse_bit(sc, false); if (ret) goto err_disable_supply; } /* Turn on HW trigger mode if supported */ if (sc->flags & HW_CTRL) { ret = gdsc_hwctrl(sc, true); if (ret < 0) goto err_disable_supply; } /* * Make sure the retain bit is set if the GDSC is already on, * otherwise we end up turning off the GDSC and destroying all * the register contents that we thought we were saving. */ if (sc->flags & RETAIN_FF_ENABLE) gdsc_retain_ff_on(sc); } else if (sc->flags & ALWAYS_ON) { /* If ALWAYS_ON GDSCs are not ON, turn them ON */ gdsc_enable(&sc->pd); on = true; } if (on || (sc->pwrsts & PWRSTS_RET)) gdsc_force_mem_on(sc); else gdsc_clear_mem_on(sc); if (sc->flags & ALWAYS_ON) sc->pd.flags |= GENPD_FLAG_ALWAYS_ON; if (!sc->pd.power_off) sc->pd.power_off = gdsc_disable; if (!sc->pd.power_on) sc->pd.power_on = gdsc_enable; ret = pm_genpd_init(&sc->pd, NULL, !on); if (ret) goto err_disable_supply; return 0; err_disable_supply: if (on && sc->rsupply) regulator_disable(sc->rsupply); return ret; } int gdsc_register(struct gdsc_desc *desc, struct reset_controller_dev *rcdev, struct regmap *regmap) { int i, ret; struct genpd_onecell_data *data; struct device *dev = desc->dev; struct gdsc **scs = desc->scs; size_t num = desc->num; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->domains = devm_kcalloc(dev, num, sizeof(*data->domains), GFP_KERNEL); if (!data->domains) return -ENOMEM; for (i = 0; i < num; i++) { if (!scs[i] || !scs[i]->supply) continue; scs[i]->rsupply = devm_regulator_get(dev, scs[i]->supply); if (IS_ERR(scs[i]->rsupply)) return PTR_ERR(scs[i]->rsupply); } data->num_domains = num; for (i = 0; i < num; i++) { if (!scs[i]) continue; scs[i]->regmap = regmap; scs[i]->rcdev = rcdev; ret = gdsc_init(scs[i]); if (ret) return ret; data->domains[i] = &scs[i]->pd; } /* Add subdomains */ for (i = 0; i < num; i++) { if (!scs[i]) continue; if (scs[i]->parent) pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd); else if (!IS_ERR_OR_NULL(dev->pm_domain)) pm_genpd_add_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd); } return of_genpd_add_provider_onecell(dev->of_node, data); } void gdsc_unregister(struct gdsc_desc *desc) { int i; struct device *dev = desc->dev; struct gdsc **scs = desc->scs; size_t num = desc->num; /* Remove subdomains */ for (i = 0; i < num; i++) { if (!scs[i]) continue; if (scs[i]->parent) pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd); else if (!IS_ERR_OR_NULL(dev->pm_domain)) pm_genpd_remove_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd); } of_genpd_del_provider(dev->of_node); } /* * On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU * running in the CX domain so the CPU doesn't need to know anything about the * GX domain EXCEPT.... * * Hardware constraints dictate that the GX be powered down before the CX. If * the GMU crashes it could leave the GX on. In order to successfully bring back * the device the CPU needs to disable the GX headswitch. There being no sane * way to reach in and touch that register from deep inside the GPU driver we * need to set up the infrastructure to be able to ensure that the GPU can * ensure that the GX is off during this super special case. We do this by * defining a GX gdsc with a dummy enable function and a "default" disable * function. * * This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU * driver. During power up, nothing will happen from the CPU (and the GMU will * power up normally but during power down this will ensure that the GX domain * is *really* off - this gives us a semi standard way of doing what we need. */ int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain) { /* Do nothing but give genpd the impression that we were successful */ return 0; } EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1