Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gabriel Fernandez | 3413 | 100.00% | 8 | 100.00% |
Total | 3413 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2022 - All Rights Reserved * Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "clk-stm32-core.h" #include "reset-stm32.h" static DEFINE_SPINLOCK(rlock); static int stm32_rcc_clock_init(struct device *dev, const struct of_device_id *match, void __iomem *base) { const struct stm32_rcc_match_data *data = match->data; struct clk_hw_onecell_data *clk_data = data->hw_clks; struct device_node *np = dev_of_node(dev); struct clk_hw **hws; int n, max_binding; max_binding = data->maxbinding; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = max_binding; hws = clk_data->hws; for (n = 0; n < max_binding; n++) hws[n] = ERR_PTR(-ENOENT); for (n = 0; n < data->num_clocks; n++) { const struct clock_config *cfg_clock = &data->tab_clocks[n]; struct clk_hw *hw = ERR_PTR(-ENOENT); if (data->check_security && data->check_security(base, cfg_clock)) continue; if (cfg_clock->func) hw = (*cfg_clock->func)(dev, data, base, &rlock, cfg_clock); if (IS_ERR(hw)) { dev_err(dev, "Can't register clk %d: %ld\n", n, PTR_ERR(hw)); return PTR_ERR(hw); } if (cfg_clock->id != NO_ID) hws[cfg_clock->id] = hw; } return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); } int stm32_rcc_init(struct device *dev, const struct of_device_id *match_data, void __iomem *base) { const struct of_device_id *match; int err; match = of_match_node(match_data, dev_of_node(dev)); if (!match) { dev_err(dev, "match data not found\n"); return -ENODEV; } /* RCC Reset Configuration */ err = stm32_rcc_reset_init(dev, match, base); if (err) { pr_err("stm32 reset failed to initialize\n"); return err; } /* RCC Clock Configuration */ err = stm32_rcc_clock_init(dev, match, base); if (err) { pr_err("stm32 clock failed to initialize\n"); return err; } return 0; } static u8 stm32_mux_get_parent(void __iomem *base, struct clk_stm32_clock_data *data, u16 mux_id) { const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; u32 mask = BIT(mux->width) - 1; u32 val; val = readl(base + mux->offset) >> mux->shift; val &= mask; return val; } static int stm32_mux_set_parent(void __iomem *base, struct clk_stm32_clock_data *data, u16 mux_id, u8 index) { const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; u32 mask = BIT(mux->width) - 1; u32 reg = readl(base + mux->offset); u32 val = index << mux->shift; reg &= ~(mask << mux->shift); reg |= val; writel(reg, base + mux->offset); return 0; } static void stm32_gate_endisable(void __iomem *base, struct clk_stm32_clock_data *data, u16 gate_id, int enable) { const struct stm32_gate_cfg *gate = &data->gates[gate_id]; void __iomem *addr = base + gate->offset; if (enable) { if (data->gate_cpt[gate_id]++ > 0) return; if (gate->set_clr != 0) writel(BIT(gate->bit_idx), addr); else writel(readl(addr) | BIT(gate->bit_idx), addr); } else { if (--data->gate_cpt[gate_id] > 0) return; if (gate->set_clr != 0) writel(BIT(gate->bit_idx), addr + gate->set_clr); else writel(readl(addr) & ~BIT(gate->bit_idx), addr); } } static void stm32_gate_disable_unused(void __iomem *base, struct clk_stm32_clock_data *data, u16 gate_id) { const struct stm32_gate_cfg *gate = &data->gates[gate_id]; void __iomem *addr = base + gate->offset; if (data->gate_cpt[gate_id] > 0) return; if (gate->set_clr != 0) writel(BIT(gate->bit_idx), addr + gate->set_clr); else writel(readl(addr) & ~BIT(gate->bit_idx), addr); } static int stm32_gate_is_enabled(void __iomem *base, struct clk_stm32_clock_data *data, u16 gate_id) { const struct stm32_gate_cfg *gate = &data->gates[gate_id]; return (readl(base + gate->offset) & BIT(gate->bit_idx)) != 0; } static unsigned int _get_table_div(const struct clk_div_table *table, unsigned int val) { const struct clk_div_table *clkt; for (clkt = table; clkt->div; clkt++) if (clkt->val == val) return clkt->div; return 0; } static unsigned int _get_div(const struct clk_div_table *table, unsigned int val, unsigned long flags, u8 width) { if (flags & CLK_DIVIDER_ONE_BASED) return val; if (flags & CLK_DIVIDER_POWER_OF_TWO) return 1 << val; if (table) return _get_table_div(table, val); return val + 1; } static unsigned long stm32_divider_get_rate(void __iomem *base, struct clk_stm32_clock_data *data, u16 div_id, unsigned long parent_rate) { const struct stm32_div_cfg *divider = &data->dividers[div_id]; unsigned int val; unsigned int div; val = readl(base + divider->offset) >> divider->shift; val &= clk_div_mask(divider->width); div = _get_div(divider->table, val, divider->flags, divider->width); if (!div) { WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO), "%d: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n", div_id); return parent_rate; } return DIV_ROUND_UP_ULL((u64)parent_rate, div); } static int stm32_divider_set_rate(void __iomem *base, struct clk_stm32_clock_data *data, u16 div_id, unsigned long rate, unsigned long parent_rate) { const struct stm32_div_cfg *divider = &data->dividers[div_id]; int value; u32 val; value = divider_get_val(rate, parent_rate, divider->table, divider->width, divider->flags); if (value < 0) return value; if (divider->flags & CLK_DIVIDER_HIWORD_MASK) { val = clk_div_mask(divider->width) << (divider->shift + 16); } else { val = readl(base + divider->offset); val &= ~(clk_div_mask(divider->width) << divider->shift); } val |= (u32)value << divider->shift; writel(val, base + divider->offset); return 0; } static u8 clk_stm32_mux_get_parent(struct clk_hw *hw) { struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); return stm32_mux_get_parent(mux->base, mux->clock_data, mux->mux_id); } static int clk_stm32_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); unsigned long flags = 0; spin_lock_irqsave(mux->lock, flags); stm32_mux_set_parent(mux->base, mux->clock_data, mux->mux_id, index); spin_unlock_irqrestore(mux->lock, flags); return 0; } const struct clk_ops clk_stm32_mux_ops = { .get_parent = clk_stm32_mux_get_parent, .set_parent = clk_stm32_mux_set_parent, }; static void clk_stm32_gate_endisable(struct clk_hw *hw, int enable) { struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); unsigned long flags = 0; spin_lock_irqsave(gate->lock, flags); stm32_gate_endisable(gate->base, gate->clock_data, gate->gate_id, enable); spin_unlock_irqrestore(gate->lock, flags); } static int clk_stm32_gate_enable(struct clk_hw *hw) { clk_stm32_gate_endisable(hw, 1); return 0; } static void clk_stm32_gate_disable(struct clk_hw *hw) { clk_stm32_gate_endisable(hw, 0); } static int clk_stm32_gate_is_enabled(struct clk_hw *hw) { struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); return stm32_gate_is_enabled(gate->base, gate->clock_data, gate->gate_id); } static void clk_stm32_gate_disable_unused(struct clk_hw *hw) { struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); unsigned long flags = 0; spin_lock_irqsave(gate->lock, flags); stm32_gate_disable_unused(gate->base, gate->clock_data, gate->gate_id); spin_unlock_irqrestore(gate->lock, flags); } const struct clk_ops clk_stm32_gate_ops = { .enable = clk_stm32_gate_enable, .disable = clk_stm32_gate_disable, .is_enabled = clk_stm32_gate_is_enabled, .disable_unused = clk_stm32_gate_disable_unused, }; static int clk_stm32_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_stm32_div *div = to_clk_stm32_divider(hw); unsigned long flags = 0; int ret; if (div->div_id == NO_STM32_DIV) return rate; spin_lock_irqsave(div->lock, flags); ret = stm32_divider_set_rate(div->base, div->clock_data, div->div_id, rate, parent_rate); spin_unlock_irqrestore(div->lock, flags); return ret; } static long clk_stm32_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_stm32_div *div = to_clk_stm32_divider(hw); const struct stm32_div_cfg *divider; if (div->div_id == NO_STM32_DIV) return rate; divider = &div->clock_data->dividers[div->div_id]; /* if read only, just return current value */ if (divider->flags & CLK_DIVIDER_READ_ONLY) { u32 val; val = readl(div->base + divider->offset) >> divider->shift; val &= clk_div_mask(divider->width); return divider_ro_round_rate(hw, rate, prate, divider->table, divider->width, divider->flags, val); } return divider_round_rate_parent(hw, clk_hw_get_parent(hw), rate, prate, divider->table, divider->width, divider->flags); } static unsigned long clk_stm32_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_stm32_div *div = to_clk_stm32_divider(hw); if (div->div_id == NO_STM32_DIV) return parent_rate; return stm32_divider_get_rate(div->base, div->clock_data, div->div_id, parent_rate); } const struct clk_ops clk_stm32_divider_ops = { .recalc_rate = clk_stm32_divider_recalc_rate, .round_rate = clk_stm32_divider_round_rate, .set_rate = clk_stm32_divider_set_rate, }; static int clk_stm32_composite_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); unsigned long flags = 0; int ret; if (composite->div_id == NO_STM32_DIV) return rate; spin_lock_irqsave(composite->lock, flags); ret = stm32_divider_set_rate(composite->base, composite->clock_data, composite->div_id, rate, parent_rate); spin_unlock_irqrestore(composite->lock, flags); return ret; } static unsigned long clk_stm32_composite_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); if (composite->div_id == NO_STM32_DIV) return parent_rate; return stm32_divider_get_rate(composite->base, composite->clock_data, composite->div_id, parent_rate); } static long clk_stm32_composite_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); const struct stm32_div_cfg *divider; if (composite->div_id == NO_STM32_DIV) return rate; divider = &composite->clock_data->dividers[composite->div_id]; /* if read only, just return current value */ if (divider->flags & CLK_DIVIDER_READ_ONLY) { u32 val; val = readl(composite->base + divider->offset) >> divider->shift; val &= clk_div_mask(divider->width); return divider_ro_round_rate(hw, rate, prate, divider->table, divider->width, divider->flags, val); } return divider_round_rate_parent(hw, clk_hw_get_parent(hw), rate, prate, divider->table, divider->width, divider->flags); } static u8 clk_stm32_composite_get_parent(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); return stm32_mux_get_parent(composite->base, composite->clock_data, composite->mux_id); } static int clk_stm32_composite_set_parent(struct clk_hw *hw, u8 index) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); unsigned long flags = 0; spin_lock_irqsave(composite->lock, flags); stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, index); spin_unlock_irqrestore(composite->lock, flags); if (composite->clock_data->is_multi_mux) { struct clk_hw *other_mux_hw = composite->clock_data->is_multi_mux(hw); if (other_mux_hw) { struct clk_hw *hwp = clk_hw_get_parent_by_index(hw, index); clk_hw_reparent(other_mux_hw, hwp); } } return 0; } static int clk_stm32_composite_is_enabled(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); if (composite->gate_id == NO_STM32_GATE) return (__clk_get_enable_count(hw->clk) > 0); return stm32_gate_is_enabled(composite->base, composite->clock_data, composite->gate_id); } #define MUX_SAFE_POSITION 0 static int clk_stm32_has_safe_mux(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); const struct stm32_mux_cfg *mux = &composite->clock_data->muxes[composite->mux_id]; return !!(mux->flags & MUX_SAFE); } static void clk_stm32_set_safe_position_mux(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); if (!clk_stm32_composite_is_enabled(hw)) { unsigned long flags = 0; if (composite->clock_data->is_multi_mux) { struct clk_hw *other_mux_hw = NULL; other_mux_hw = composite->clock_data->is_multi_mux(hw); if (!other_mux_hw || clk_stm32_composite_is_enabled(other_mux_hw)) return; } spin_lock_irqsave(composite->lock, flags); stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, MUX_SAFE_POSITION); spin_unlock_irqrestore(composite->lock, flags); } } static void clk_stm32_safe_restore_position_mux(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); int sel = clk_hw_get_parent_index(hw); unsigned long flags = 0; spin_lock_irqsave(composite->lock, flags); stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, sel); spin_unlock_irqrestore(composite->lock, flags); } static void clk_stm32_composite_gate_endisable(struct clk_hw *hw, int enable) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); unsigned long flags = 0; spin_lock_irqsave(composite->lock, flags); stm32_gate_endisable(composite->base, composite->clock_data, composite->gate_id, enable); spin_unlock_irqrestore(composite->lock, flags); } static int clk_stm32_composite_gate_enable(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); if (composite->gate_id == NO_STM32_GATE) return 0; clk_stm32_composite_gate_endisable(hw, 1); if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) clk_stm32_safe_restore_position_mux(hw); return 0; } static void clk_stm32_composite_gate_disable(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); if (composite->gate_id == NO_STM32_GATE) return; clk_stm32_composite_gate_endisable(hw, 0); if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) clk_stm32_set_safe_position_mux(hw); } static void clk_stm32_composite_disable_unused(struct clk_hw *hw) { struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); unsigned long flags = 0; if (composite->gate_id == NO_STM32_GATE) return; spin_lock_irqsave(composite->lock, flags); stm32_gate_disable_unused(composite->base, composite->clock_data, composite->gate_id); spin_unlock_irqrestore(composite->lock, flags); } const struct clk_ops clk_stm32_composite_ops = { .set_rate = clk_stm32_composite_set_rate, .recalc_rate = clk_stm32_composite_recalc_rate, .round_rate = clk_stm32_composite_round_rate, .get_parent = clk_stm32_composite_get_parent, .set_parent = clk_stm32_composite_set_parent, .enable = clk_stm32_composite_gate_enable, .disable = clk_stm32_composite_gate_disable, .is_enabled = clk_stm32_composite_is_enabled, .disable_unused = clk_stm32_composite_disable_unused, }; struct clk_hw *clk_stm32_mux_register(struct device *dev, const struct stm32_rcc_match_data *data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct clk_stm32_mux *mux = cfg->clock_cfg; struct clk_hw *hw = &mux->hw; int err; mux->base = base; mux->lock = lock; mux->clock_data = data->clock_data; err = clk_hw_register(dev, hw); if (err) return ERR_PTR(err); return hw; } struct clk_hw *clk_stm32_gate_register(struct device *dev, const struct stm32_rcc_match_data *data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct clk_stm32_gate *gate = cfg->clock_cfg; struct clk_hw *hw = &gate->hw; int err; gate->base = base; gate->lock = lock; gate->clock_data = data->clock_data; err = clk_hw_register(dev, hw); if (err) return ERR_PTR(err); return hw; } struct clk_hw *clk_stm32_div_register(struct device *dev, const struct stm32_rcc_match_data *data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct clk_stm32_div *div = cfg->clock_cfg; struct clk_hw *hw = &div->hw; int err; div->base = base; div->lock = lock; div->clock_data = data->clock_data; err = clk_hw_register(dev, hw); if (err) return ERR_PTR(err); return hw; } struct clk_hw *clk_stm32_composite_register(struct device *dev, const struct stm32_rcc_match_data *data, void __iomem *base, spinlock_t *lock, const struct clock_config *cfg) { struct clk_stm32_composite *composite = cfg->clock_cfg; struct clk_hw *hw = &composite->hw; int err; composite->base = base; composite->lock = lock; composite->clock_data = data->clock_data; err = clk_hw_register(dev, hw); if (err) return ERR_PTR(err); return hw; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1