Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Lindgren | 4354 | 99.41% | 1 | 10.00% |
Stephen Boyd | 10 | 0.23% | 2 | 20.00% |
Kees Cook | 6 | 0.14% | 1 | 10.00% |
Colin Ian King | 4 | 0.09% | 2 | 20.00% |
Stephen Kitt | 3 | 0.07% | 1 | 10.00% |
Tero Kristo | 1 | 0.02% | 1 | 10.00% |
Bhumika Goyal | 1 | 0.02% | 1 | 10.00% |
Thomas Gleixner | 1 | 0.02% | 1 | 10.00% |
Total | 4380 | 10 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/string.h> #define ADPLL_PLLSS_MMR_LOCK_OFFSET 0x00 /* Managed by MPPULL */ #define ADPLL_PLLSS_MMR_LOCK_ENABLED 0x1f125B64 #define ADPLL_PLLSS_MMR_UNLOCK_MAGIC 0x1eda4c3d #define ADPLL_PWRCTRL_OFFSET 0x00 #define ADPLL_PWRCTRL_PONIN 5 #define ADPLL_PWRCTRL_PGOODIN 4 #define ADPLL_PWRCTRL_RET 3 #define ADPLL_PWRCTRL_ISORET 2 #define ADPLL_PWRCTRL_ISOSCAN 1 #define ADPLL_PWRCTRL_OFFMODE 0 #define ADPLL_CLKCTRL_OFFSET 0x04 #define ADPLL_CLKCTRL_CLKDCOLDOEN 29 #define ADPLL_CLKCTRL_IDLE 23 #define ADPLL_CLKCTRL_CLKOUTEN 20 #define ADPLL_CLKINPHIFSEL_ADPLL_S 19 /* REVISIT: which bit? */ #define ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ 19 #define ADPLL_CLKCTRL_ULOWCLKEN 18 #define ADPLL_CLKCTRL_CLKDCOLDOPWDNZ 17 #define ADPLL_CLKCTRL_M2PWDNZ 16 #define ADPLL_CLKCTRL_M3PWDNZ_ADPLL_S 15 #define ADPLL_CLKCTRL_LOWCURRSTDBY_ADPLL_S 13 #define ADPLL_CLKCTRL_LPMODE_ADPLL_S 12 #define ADPLL_CLKCTRL_REGM4XEN_ADPLL_S 10 #define ADPLL_CLKCTRL_SELFREQDCO_ADPLL_LJ 10 #define ADPLL_CLKCTRL_TINITZ 0 #define ADPLL_TENABLE_OFFSET 0x08 #define ADPLL_TENABLEDIV_OFFSET 0x8c #define ADPLL_M2NDIV_OFFSET 0x10 #define ADPLL_M2NDIV_M2 16 #define ADPLL_M2NDIV_M2_ADPLL_S_WIDTH 5 #define ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH 7 #define ADPLL_MN2DIV_OFFSET 0x14 #define ADPLL_MN2DIV_N2 16 #define ADPLL_FRACDIV_OFFSET 0x18 #define ADPLL_FRACDIV_REGSD 24 #define ADPLL_FRACDIV_FRACTIONALM 0 #define ADPLL_FRACDIV_FRACTIONALM_MASK 0x3ffff #define ADPLL_BWCTRL_OFFSET 0x1c #define ADPLL_BWCTRL_BWCONTROL 1 #define ADPLL_BWCTRL_BW_INCR_DECRZ 0 #define ADPLL_RESERVED_OFFSET 0x20 #define ADPLL_STATUS_OFFSET 0x24 #define ADPLL_STATUS_PONOUT 31 #define ADPLL_STATUS_PGOODOUT 30 #define ADPLL_STATUS_LDOPWDN 29 #define ADPLL_STATUS_RECAL_BSTATUS3 28 #define ADPLL_STATUS_RECAL_OPPIN 27 #define ADPLL_STATUS_PHASELOCK 10 #define ADPLL_STATUS_FREQLOCK 9 #define ADPLL_STATUS_BYPASSACK 8 #define ADPLL_STATUS_LOSSREF 6 #define ADPLL_STATUS_CLKOUTENACK 5 #define ADPLL_STATUS_LOCK2 4 #define ADPLL_STATUS_M2CHANGEACK 3 #define ADPLL_STATUS_HIGHJITTER 1 #define ADPLL_STATUS_BYPASS 0 #define ADPLL_STATUS_PREPARED_MASK (BIT(ADPLL_STATUS_PHASELOCK) | \ BIT(ADPLL_STATUS_FREQLOCK)) #define ADPLL_M3DIV_OFFSET 0x28 /* Only on MPUPLL */ #define ADPLL_M3DIV_M3 0 #define ADPLL_M3DIV_M3_WIDTH 5 #define ADPLL_M3DIV_M3_MASK 0x1f #define ADPLL_RAMPCTRL_OFFSET 0x2c /* Only on MPUPLL */ #define ADPLL_RAMPCTRL_CLKRAMPLEVEL 19 #define ADPLL_RAMPCTRL_CLKRAMPRATE 16 #define ADPLL_RAMPCTRL_RELOCK_RAMP_EN 0 #define MAX_ADPLL_INPUTS 3 #define MAX_ADPLL_OUTPUTS 4 #define ADPLL_MAX_RETRIES 5 #define to_dco(_hw) container_of(_hw, struct ti_adpll_dco_data, hw) #define to_adpll(_hw) container_of(_hw, struct ti_adpll_data, dco) #define to_clkout(_hw) container_of(_hw, struct ti_adpll_clkout_data, hw) enum ti_adpll_clocks { TI_ADPLL_DCO, TI_ADPLL_DCO_GATE, TI_ADPLL_N2, TI_ADPLL_M2, TI_ADPLL_M2_GATE, TI_ADPLL_BYPASS, TI_ADPLL_HIF, TI_ADPLL_DIV2, TI_ADPLL_CLKOUT, TI_ADPLL_CLKOUT2, TI_ADPLL_M3, }; #define TI_ADPLL_NR_CLOCKS (TI_ADPLL_M3 + 1) enum ti_adpll_inputs { TI_ADPLL_CLKINP, TI_ADPLL_CLKINPULOW, TI_ADPLL_CLKINPHIF, }; enum ti_adpll_s_outputs { TI_ADPLL_S_DCOCLKLDO, TI_ADPLL_S_CLKOUT, TI_ADPLL_S_CLKOUTX2, TI_ADPLL_S_CLKOUTHIF, }; enum ti_adpll_lj_outputs { TI_ADPLL_LJ_CLKDCOLDO, TI_ADPLL_LJ_CLKOUT, TI_ADPLL_LJ_CLKOUTLDO, }; struct ti_adpll_platform_data { const bool is_type_s; const int nr_max_inputs; const int nr_max_outputs; const int output_index; }; struct ti_adpll_clock { struct clk *clk; struct clk_lookup *cl; void (*unregister)(struct clk *clk); }; struct ti_adpll_dco_data { struct clk_hw hw; }; struct ti_adpll_clkout_data { struct ti_adpll_data *adpll; struct clk_gate gate; struct clk_hw hw; }; struct ti_adpll_data { struct device *dev; const struct ti_adpll_platform_data *c; struct device_node *np; unsigned long pa; void __iomem *iobase; void __iomem *regs; spinlock_t lock; /* For ADPLL shared register access */ const char *parent_names[MAX_ADPLL_INPUTS]; struct clk *parent_clocks[MAX_ADPLL_INPUTS]; struct ti_adpll_clock *clocks; struct clk_onecell_data outputs; struct ti_adpll_dco_data dco; }; static const char *ti_adpll_clk_get_name(struct ti_adpll_data *d, int output_index, const char *postfix) { const char *name; int err; if (output_index >= 0) { err = of_property_read_string_index(d->np, "clock-output-names", output_index, &name); if (err) return NULL; } else { name = devm_kasprintf(d->dev, GFP_KERNEL, "%08lx.adpll.%s", d->pa, postfix); } return name; } #define ADPLL_MAX_CON_ID 16 /* See MAX_CON_ID */ static int ti_adpll_setup_clock(struct ti_adpll_data *d, struct clk *clock, int index, int output_index, const char *name, void (*unregister)(struct clk *clk)) { struct clk_lookup *cl; const char *postfix = NULL; char con_id[ADPLL_MAX_CON_ID]; d->clocks[index].clk = clock; d->clocks[index].unregister = unregister; /* Separate con_id in format "pll040dcoclkldo" to fit MAX_CON_ID */ postfix = strrchr(name, '.'); if (postfix && strlen(postfix) > 1) { if (strlen(postfix) > ADPLL_MAX_CON_ID) dev_warn(d->dev, "clock %s con_id lookup may fail\n", name); snprintf(con_id, 16, "pll%03lx%s", d->pa & 0xfff, postfix + 1); cl = clkdev_create(clock, con_id, NULL); if (!cl) return -ENOMEM; d->clocks[index].cl = cl; } else { dev_warn(d->dev, "no con_id for clock %s\n", name); } if (output_index < 0) return 0; d->outputs.clks[output_index] = clock; d->outputs.clk_num++; return 0; } static int ti_adpll_init_divider(struct ti_adpll_data *d, enum ti_adpll_clocks index, int output_index, char *name, struct clk *parent_clock, void __iomem *reg, u8 shift, u8 width, u8 clk_divider_flags) { const char *child_name; const char *parent_name; struct clk *clock; child_name = ti_adpll_clk_get_name(d, output_index, name); if (!child_name) return -EINVAL; parent_name = __clk_get_name(parent_clock); clock = clk_register_divider(d->dev, child_name, parent_name, 0, reg, shift, width, clk_divider_flags, &d->lock); if (IS_ERR(clock)) { dev_err(d->dev, "failed to register divider %s: %li\n", name, PTR_ERR(clock)); return PTR_ERR(clock); } return ti_adpll_setup_clock(d, clock, index, output_index, child_name, clk_unregister_divider); } static int ti_adpll_init_mux(struct ti_adpll_data *d, enum ti_adpll_clocks index, char *name, struct clk *clk0, struct clk *clk1, void __iomem *reg, u8 shift) { const char *child_name; const char *parents[2]; struct clk *clock; child_name = ti_adpll_clk_get_name(d, -ENODEV, name); if (!child_name) return -ENOMEM; parents[0] = __clk_get_name(clk0); parents[1] = __clk_get_name(clk1); clock = clk_register_mux(d->dev, child_name, parents, 2, 0, reg, shift, 1, 0, &d->lock); if (IS_ERR(clock)) { dev_err(d->dev, "failed to register mux %s: %li\n", name, PTR_ERR(clock)); return PTR_ERR(clock); } return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name, clk_unregister_mux); } static int ti_adpll_init_gate(struct ti_adpll_data *d, enum ti_adpll_clocks index, int output_index, char *name, struct clk *parent_clock, void __iomem *reg, u8 bit_idx, u8 clk_gate_flags) { const char *child_name; const char *parent_name; struct clk *clock; child_name = ti_adpll_clk_get_name(d, output_index, name); if (!child_name) return -EINVAL; parent_name = __clk_get_name(parent_clock); clock = clk_register_gate(d->dev, child_name, parent_name, 0, reg, bit_idx, clk_gate_flags, &d->lock); if (IS_ERR(clock)) { dev_err(d->dev, "failed to register gate %s: %li\n", name, PTR_ERR(clock)); return PTR_ERR(clock); } return ti_adpll_setup_clock(d, clock, index, output_index, child_name, clk_unregister_gate); } static int ti_adpll_init_fixed_factor(struct ti_adpll_data *d, enum ti_adpll_clocks index, char *name, struct clk *parent_clock, unsigned int mult, unsigned int div) { const char *child_name; const char *parent_name; struct clk *clock; child_name = ti_adpll_clk_get_name(d, -ENODEV, name); if (!child_name) return -ENOMEM; parent_name = __clk_get_name(parent_clock); clock = clk_register_fixed_factor(d->dev, child_name, parent_name, 0, mult, div); if (IS_ERR(clock)) return PTR_ERR(clock); return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name, clk_unregister); } static void ti_adpll_set_idle_bypass(struct ti_adpll_data *d) { unsigned long flags; u32 v; spin_lock_irqsave(&d->lock, flags); v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET); v |= BIT(ADPLL_CLKCTRL_IDLE); writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET); spin_unlock_irqrestore(&d->lock, flags); } static void ti_adpll_clear_idle_bypass(struct ti_adpll_data *d) { unsigned long flags; u32 v; spin_lock_irqsave(&d->lock, flags); v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET); v &= ~BIT(ADPLL_CLKCTRL_IDLE); writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET); spin_unlock_irqrestore(&d->lock, flags); } static bool ti_adpll_clock_is_bypass(struct ti_adpll_data *d) { u32 v; v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET); return v & BIT(ADPLL_STATUS_BYPASS); } /* * Locked and bypass are not actually mutually exclusive: if you only care * about the DCO clock and not CLKOUT you can clear M2PWDNZ before enabling * the PLL, resulting in status (FREQLOCK | PHASELOCK | BYPASS) after lock. */ static bool ti_adpll_is_locked(struct ti_adpll_data *d) { u32 v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET); return (v & ADPLL_STATUS_PREPARED_MASK) == ADPLL_STATUS_PREPARED_MASK; } static int ti_adpll_wait_lock(struct ti_adpll_data *d) { int retries = ADPLL_MAX_RETRIES; do { if (ti_adpll_is_locked(d)) return 0; usleep_range(200, 300); } while (retries--); dev_err(d->dev, "pll failed to lock\n"); return -ETIMEDOUT; } static int ti_adpll_prepare(struct clk_hw *hw) { struct ti_adpll_dco_data *dco = to_dco(hw); struct ti_adpll_data *d = to_adpll(dco); ti_adpll_clear_idle_bypass(d); ti_adpll_wait_lock(d); return 0; } static void ti_adpll_unprepare(struct clk_hw *hw) { struct ti_adpll_dco_data *dco = to_dco(hw); struct ti_adpll_data *d = to_adpll(dco); ti_adpll_set_idle_bypass(d); } static int ti_adpll_is_prepared(struct clk_hw *hw) { struct ti_adpll_dco_data *dco = to_dco(hw); struct ti_adpll_data *d = to_adpll(dco); return ti_adpll_is_locked(d); } /* * Note that the DCO clock is never subject to bypass: if the PLL is off, * dcoclk is low. */ static unsigned long ti_adpll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct ti_adpll_dco_data *dco = to_dco(hw); struct ti_adpll_data *d = to_adpll(dco); u32 frac_m, divider, v; u64 rate; unsigned long flags; if (ti_adpll_clock_is_bypass(d)) return 0; spin_lock_irqsave(&d->lock, flags); frac_m = readl_relaxed(d->regs + ADPLL_FRACDIV_OFFSET); frac_m &= ADPLL_FRACDIV_FRACTIONALM_MASK; rate = (u64)readw_relaxed(d->regs + ADPLL_MN2DIV_OFFSET) << 18; rate += frac_m; rate *= parent_rate; divider = (readw_relaxed(d->regs + ADPLL_M2NDIV_OFFSET) + 1) << 18; spin_unlock_irqrestore(&d->lock, flags); do_div(rate, divider); if (d->c->is_type_s) { v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET); if (v & BIT(ADPLL_CLKCTRL_REGM4XEN_ADPLL_S)) rate *= 4; rate *= 2; } return rate; } /* PLL parent is always clkinp, bypass only affects the children */ static u8 ti_adpll_get_parent(struct clk_hw *hw) { return 0; } static const struct clk_ops ti_adpll_ops = { .prepare = ti_adpll_prepare, .unprepare = ti_adpll_unprepare, .is_prepared = ti_adpll_is_prepared, .recalc_rate = ti_adpll_recalc_rate, .get_parent = ti_adpll_get_parent, }; static int ti_adpll_init_dco(struct ti_adpll_data *d) { struct clk_init_data init; struct clk *clock; const char *postfix; int width, err; d->outputs.clks = devm_kcalloc(d->dev, MAX_ADPLL_OUTPUTS, sizeof(struct clk *), GFP_KERNEL); if (!d->outputs.clks) return -ENOMEM; if (d->c->output_index < 0) postfix = "dco"; else postfix = NULL; init.name = ti_adpll_clk_get_name(d, d->c->output_index, postfix); if (!init.name) return -EINVAL; init.parent_names = d->parent_names; init.num_parents = d->c->nr_max_inputs; init.ops = &ti_adpll_ops; init.flags = CLK_GET_RATE_NOCACHE; d->dco.hw.init = &init; if (d->c->is_type_s) width = 5; else width = 4; /* Internal input clock divider N2 */ err = ti_adpll_init_divider(d, TI_ADPLL_N2, -ENODEV, "n2", d->parent_clocks[TI_ADPLL_CLKINP], d->regs + ADPLL_MN2DIV_OFFSET, ADPLL_MN2DIV_N2, width, 0); if (err) return err; clock = devm_clk_register(d->dev, &d->dco.hw); if (IS_ERR(clock)) return PTR_ERR(clock); return ti_adpll_setup_clock(d, clock, TI_ADPLL_DCO, d->c->output_index, init.name, NULL); } static int ti_adpll_clkout_enable(struct clk_hw *hw) { struct ti_adpll_clkout_data *co = to_clkout(hw); struct clk_hw *gate_hw = &co->gate.hw; __clk_hw_set_clk(gate_hw, hw); return clk_gate_ops.enable(gate_hw); } static void ti_adpll_clkout_disable(struct clk_hw *hw) { struct ti_adpll_clkout_data *co = to_clkout(hw); struct clk_hw *gate_hw = &co->gate.hw; __clk_hw_set_clk(gate_hw, hw); clk_gate_ops.disable(gate_hw); } static int ti_adpll_clkout_is_enabled(struct clk_hw *hw) { struct ti_adpll_clkout_data *co = to_clkout(hw); struct clk_hw *gate_hw = &co->gate.hw; __clk_hw_set_clk(gate_hw, hw); return clk_gate_ops.is_enabled(gate_hw); } /* Setting PLL bypass puts clkout and clkoutx2 into bypass */ static u8 ti_adpll_clkout_get_parent(struct clk_hw *hw) { struct ti_adpll_clkout_data *co = to_clkout(hw); struct ti_adpll_data *d = co->adpll; return ti_adpll_clock_is_bypass(d); } static int ti_adpll_init_clkout(struct ti_adpll_data *d, enum ti_adpll_clocks index, int output_index, int gate_bit, char *name, struct clk *clk0, struct clk *clk1) { struct ti_adpll_clkout_data *co; struct clk_init_data init; struct clk_ops *ops; const char *parent_names[2]; const char *child_name; struct clk *clock; int err; co = devm_kzalloc(d->dev, sizeof(*co), GFP_KERNEL); if (!co) return -ENOMEM; co->adpll = d; err = of_property_read_string_index(d->np, "clock-output-names", output_index, &child_name); if (err) return err; ops = devm_kzalloc(d->dev, sizeof(*ops), GFP_KERNEL); if (!ops) return -ENOMEM; init.name = child_name; init.ops = ops; init.flags = 0; co->hw.init = &init; parent_names[0] = __clk_get_name(clk0); parent_names[1] = __clk_get_name(clk1); init.parent_names = parent_names; init.num_parents = 2; ops->get_parent = ti_adpll_clkout_get_parent; ops->determine_rate = __clk_mux_determine_rate; if (gate_bit) { co->gate.lock = &d->lock; co->gate.reg = d->regs + ADPLL_CLKCTRL_OFFSET; co->gate.bit_idx = gate_bit; ops->enable = ti_adpll_clkout_enable; ops->disable = ti_adpll_clkout_disable; ops->is_enabled = ti_adpll_clkout_is_enabled; } clock = devm_clk_register(d->dev, &co->hw); if (IS_ERR(clock)) { dev_err(d->dev, "failed to register output %s: %li\n", name, PTR_ERR(clock)); return PTR_ERR(clock); } return ti_adpll_setup_clock(d, clock, index, output_index, child_name, NULL); } static int ti_adpll_init_children_adpll_s(struct ti_adpll_data *d) { int err; if (!d->c->is_type_s) return 0; /* Internal mux, sources from divider N2 or clkinpulow */ err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass", d->clocks[TI_ADPLL_N2].clk, d->parent_clocks[TI_ADPLL_CLKINPULOW], d->regs + ADPLL_CLKCTRL_OFFSET, ADPLL_CLKCTRL_ULOWCLKEN); if (err) return err; /* Internal divider M2, sources DCO */ err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV, "m2", d->clocks[TI_ADPLL_DCO].clk, d->regs + ADPLL_M2NDIV_OFFSET, ADPLL_M2NDIV_M2, ADPLL_M2NDIV_M2_ADPLL_S_WIDTH, CLK_DIVIDER_ONE_BASED); if (err) return err; /* Internal fixed divider, after M2 before clkout */ err = ti_adpll_init_fixed_factor(d, TI_ADPLL_DIV2, "div2", d->clocks[TI_ADPLL_M2].clk, 1, 2); if (err) return err; /* Output clkout with a mux and gate, sources from div2 or bypass */ err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT, ADPLL_CLKCTRL_CLKOUTEN, "clkout", d->clocks[TI_ADPLL_DIV2].clk, d->clocks[TI_ADPLL_BYPASS].clk); if (err) return err; /* Output clkoutx2 with a mux and gate, sources from M2 or bypass */ err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT2, TI_ADPLL_S_CLKOUTX2, 0, "clkout2", d->clocks[TI_ADPLL_M2].clk, d->clocks[TI_ADPLL_BYPASS].clk); if (err) return err; /* Internal mux, sources from DCO and clkinphif */ if (d->parent_clocks[TI_ADPLL_CLKINPHIF]) { err = ti_adpll_init_mux(d, TI_ADPLL_HIF, "hif", d->clocks[TI_ADPLL_DCO].clk, d->parent_clocks[TI_ADPLL_CLKINPHIF], d->regs + ADPLL_CLKCTRL_OFFSET, ADPLL_CLKINPHIFSEL_ADPLL_S); if (err) return err; } /* Output clkouthif with a divider M3, sources from hif */ err = ti_adpll_init_divider(d, TI_ADPLL_M3, TI_ADPLL_S_CLKOUTHIF, "m3", d->clocks[TI_ADPLL_HIF].clk, d->regs + ADPLL_M3DIV_OFFSET, ADPLL_M3DIV_M3, ADPLL_M3DIV_M3_WIDTH, CLK_DIVIDER_ONE_BASED); if (err) return err; /* Output clock dcoclkldo is the DCO */ return 0; } static int ti_adpll_init_children_adpll_lj(struct ti_adpll_data *d) { int err; if (d->c->is_type_s) return 0; /* Output clkdcoldo, gated output of DCO */ err = ti_adpll_init_gate(d, TI_ADPLL_DCO_GATE, TI_ADPLL_LJ_CLKDCOLDO, "clkdcoldo", d->clocks[TI_ADPLL_DCO].clk, d->regs + ADPLL_CLKCTRL_OFFSET, ADPLL_CLKCTRL_CLKDCOLDOEN, 0); if (err) return err; /* Internal divider M2, sources from DCO */ err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV, "m2", d->clocks[TI_ADPLL_DCO].clk, d->regs + ADPLL_M2NDIV_OFFSET, ADPLL_M2NDIV_M2, ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH, CLK_DIVIDER_ONE_BASED); if (err) return err; /* Output clkoutldo, gated output of M2 */ err = ti_adpll_init_gate(d, TI_ADPLL_M2_GATE, TI_ADPLL_LJ_CLKOUTLDO, "clkoutldo", d->clocks[TI_ADPLL_M2].clk, d->regs + ADPLL_CLKCTRL_OFFSET, ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ, 0); if (err) return err; /* Internal mux, sources from divider N2 or clkinpulow */ err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass", d->clocks[TI_ADPLL_N2].clk, d->parent_clocks[TI_ADPLL_CLKINPULOW], d->regs + ADPLL_CLKCTRL_OFFSET, ADPLL_CLKCTRL_ULOWCLKEN); if (err) return err; /* Output clkout, sources M2 or bypass */ err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT, ADPLL_CLKCTRL_CLKOUTEN, "clkout", d->clocks[TI_ADPLL_M2].clk, d->clocks[TI_ADPLL_BYPASS].clk); if (err) return err; return 0; } static void ti_adpll_free_resources(struct ti_adpll_data *d) { int i; for (i = TI_ADPLL_M3; i >= 0; i--) { struct ti_adpll_clock *ac = &d->clocks[i]; if (!ac || IS_ERR_OR_NULL(ac->clk)) continue; if (ac->cl) clkdev_drop(ac->cl); if (ac->unregister) ac->unregister(ac->clk); } } /* MPU PLL manages the lock register for all PLLs */ static void ti_adpll_unlock_all(void __iomem *reg) { u32 v; v = readl_relaxed(reg); if (v == ADPLL_PLLSS_MMR_LOCK_ENABLED) writel_relaxed(ADPLL_PLLSS_MMR_UNLOCK_MAGIC, reg); } static int ti_adpll_init_registers(struct ti_adpll_data *d) { int register_offset = 0; if (d->c->is_type_s) { register_offset = 8; ti_adpll_unlock_all(d->iobase + ADPLL_PLLSS_MMR_LOCK_OFFSET); } d->regs = d->iobase + register_offset + ADPLL_PWRCTRL_OFFSET; return 0; } static int ti_adpll_init_inputs(struct ti_adpll_data *d) { static const char error[] = "need at least %i inputs"; struct clk *clock; int nr_inputs; nr_inputs = of_clk_get_parent_count(d->np); if (nr_inputs < d->c->nr_max_inputs) { dev_err(d->dev, error, nr_inputs); return -EINVAL; } of_clk_parent_fill(d->np, d->parent_names, nr_inputs); clock = devm_clk_get(d->dev, d->parent_names[0]); if (IS_ERR(clock)) { dev_err(d->dev, "could not get clkinp\n"); return PTR_ERR(clock); } d->parent_clocks[TI_ADPLL_CLKINP] = clock; clock = devm_clk_get(d->dev, d->parent_names[1]); if (IS_ERR(clock)) { dev_err(d->dev, "could not get clkinpulow clock\n"); return PTR_ERR(clock); } d->parent_clocks[TI_ADPLL_CLKINPULOW] = clock; if (d->c->is_type_s) { clock = devm_clk_get(d->dev, d->parent_names[2]); if (IS_ERR(clock)) { dev_err(d->dev, "could not get clkinphif clock\n"); return PTR_ERR(clock); } d->parent_clocks[TI_ADPLL_CLKINPHIF] = clock; } return 0; } static const struct ti_adpll_platform_data ti_adpll_type_s = { .is_type_s = true, .nr_max_inputs = MAX_ADPLL_INPUTS, .nr_max_outputs = MAX_ADPLL_OUTPUTS, .output_index = TI_ADPLL_S_DCOCLKLDO, }; static const struct ti_adpll_platform_data ti_adpll_type_lj = { .is_type_s = false, .nr_max_inputs = MAX_ADPLL_INPUTS - 1, .nr_max_outputs = MAX_ADPLL_OUTPUTS - 1, .output_index = -EINVAL, }; static const struct of_device_id ti_adpll_match[] = { { .compatible = "ti,dm814-adpll-s-clock", &ti_adpll_type_s }, { .compatible = "ti,dm814-adpll-lj-clock", &ti_adpll_type_lj }, {}, }; MODULE_DEVICE_TABLE(of, ti_adpll_match); static int ti_adpll_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; const struct of_device_id *match; const struct ti_adpll_platform_data *pdata; struct ti_adpll_data *d; struct resource *res; int err; match = of_match_device(ti_adpll_match, dev); if (match) pdata = match->data; else return -ENODEV; d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->dev = dev; d->np = node; d->c = pdata; dev_set_drvdata(d->dev, d); spin_lock_init(&d->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; d->pa = res->start; d->iobase = devm_ioremap_resource(dev, res); if (IS_ERR(d->iobase)) return PTR_ERR(d->iobase); err = ti_adpll_init_registers(d); if (err) return err; err = ti_adpll_init_inputs(d); if (err) return err; d->clocks = devm_kcalloc(d->dev, TI_ADPLL_NR_CLOCKS, sizeof(struct ti_adpll_clock), GFP_KERNEL); if (!d->clocks) return -ENOMEM; err = ti_adpll_init_dco(d); if (err) { dev_err(dev, "could not register dco: %i\n", err); goto free; } err = ti_adpll_init_children_adpll_s(d); if (err) goto free; err = ti_adpll_init_children_adpll_lj(d); if (err) goto free; err = of_clk_add_provider(d->np, of_clk_src_onecell_get, &d->outputs); if (err) goto free; return 0; free: WARN_ON(1); ti_adpll_free_resources(d); return err; } static int ti_adpll_remove(struct platform_device *pdev) { struct ti_adpll_data *d = dev_get_drvdata(&pdev->dev); ti_adpll_free_resources(d); return 0; } static struct platform_driver ti_adpll_driver = { .driver = { .name = "ti-adpll", .of_match_table = ti_adpll_match, }, .probe = ti_adpll_probe, .remove = ti_adpll_remove, }; static int __init ti_adpll_init(void) { return platform_driver_register(&ti_adpll_driver); } core_initcall(ti_adpll_init); static void __exit ti_adpll_exit(void) { platform_driver_unregister(&ti_adpll_driver); } module_exit(ti_adpll_exit); MODULE_DESCRIPTION("Clock driver for dm814x ADPLL"); MODULE_ALIAS("platform:dm814-adpll-clock"); MODULE_AUTHOR("Tony LIndgren <tony@atomide.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1